
Research Article
Transient Electromagnetic 1-Dimensional Inversion Based on the
Quantum Particle Swarms Optimization-Smooth Constrained
Least Squares Joint Algorithm and Its Application in
Karst Exploration

Xue Liu ,1,2 Chunwei Pan,3 Fangkun Zheng ,1,2 Ying Sun,1,2 and Qingsong Gou4

1CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China
2CCCC Key Laboratory of Environment Protection and Safety in Foundation Engineering of Transportation, Guangzhou 510230,
Guangdong, China
3Guangdong Transportation Industrial Investment Co., Ltd., Guangdong, Guangzhou 510000, China
4Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China

Correspondence should be addressed to Xue Liu; lxue1@cccc4.com

Received 30 May 2022; Revised 22 July 2022; Accepted 16 August 2022; Published 31 August 2022

Academic Editor: Yang Chen

Copyright © 2022 Xue Liu et al.�is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Before the construction of the bridge bored pile in the karst area, geological conditions of the excavation area should be in-
vestigated. In order to avoid the karst caves in underground space making adverse impacts on the construction, bearing capacity,
and stability of pile foundation, in this paper, we use the transient electromagnetic method to detect the karst development in the
bearing layer of the pile foundation, which is di�erent from the traditional karst survey method. To improve the interpretation
accuracy of transient electromagnetic detection for karst caves, the quantum particle swarm optimization (QPSO) algorithm was
combined with the smooth constrained least squares (CLS) algorithm, and the transient electromagnetic inversion based on the
QPSO-CLS joint algorithm was generated. Better inversion results were achieved by the proposed method in this study. Based on
the inversion calculation results of simulation data and �eld test data, it is further demonstrated that the QPSO-CLS joint
algorithm has high optimization e�ciency without manually setting the initial model. �e interpretation results are consistent
with the theoretical model and drilling logging results, which proves the adaptability of the proposed algorithm.

1. Introduction

Karst has been widely developed in Yunnan and Guizhou
areas in China and also has been frequently distributed in
northern Guangdong, western Hunan, western Hubei, and
eastern Sichuan of China [1]. If the development of the
underground unfavorable geological body is not found out
when drilling cast-in-place pile in karst area, then safety
accidents such as hole collapse, ground subsidence, buried
drill, and cracking of surrounding building structure can be
caused [2]. �e transient electromagnetic method has the
advantages of low cost, simple operation, large detection
depth, strong sensitivity to water, and mud bearing karst
cave and is less susceptible to external interference.

�erefore, a transient electromagnetic method for karst cave
detection has become an e�cient method [3–6]. However,
the apparent resistivity pro�le of transient electromagnetic is
a comprehensive response of underground medium, and its
interpretation has low accuracy. To obtain more accurate
results, the geophysical inversion method is often used to
process transient electromagnetic detection data.

In fact, geophysical inversion is a highly nonlinear
problem, and a reliable initial model is di�cult to be de�ned
for geophysical inversion. To this end, researchers intro-
duced a fully nonlinear algorithm into geophysical inver-
sion. Somanash has made some research achievements on a
simulated annealing method, a genetic algorithm, and an
arti�cial neural network algorithm [7]. Li et al. proposed a
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nonlinear programming genetic algorithm and applied it to
1D inversion of ground transient electromagnetic and
achieved good results [8]. )rough the integral equation
numerical simulation, Chen studied the transient electro-
magnetic response characteristics in the full space of a mine
and obtained the best response component [9]. Sun et al.
introduced the simulated annealing nonlinear global opti-
mization algorithm into transient electromagnetic inversion
calculation, took L1 norm as the objective function, and
achieved good inversion results [10]. However, the above
algorithm has the disadvantages of slow convergence speed
and low accuracy.

Particle swarm optimization (PSO) is a crowd-based
algorithm [11]. Compared with the algorithms mentioned
above, PSO has strong adaptability and can be based on the
global optimization algorithm. Many scholars have studied
the application of the PSO algorithm in the field of geo-
physics. Shaw and Srivastava evaluated the adaptability of
the PSO algorithm in geophysical data inversion by inverting
synthetic data with noise interference retrieved on a mul-
tilayer one-dimensional model [12]. Monteiro Santos used
the PSO algorithm to retrieve spontaneous potential data to
detect shallow anomalies [13]. Cheng et al. proposed the PSO
algorithm based on the transient electromagnetic method
and the direct current method. )e research shows that the
proposed algorithm can obtain better results and has been
successfully applied in the advanced exploration of coal
mine roadways [14]. Li et al. combined the particle swarm
optimization algorithm with a damped least square method
and realized the inversion calculation of full space transient
electromagnetic data. )e results show that the combined
algorithm can invert the transient electromagnetic detection
data of roadways with high accuracy [15]. Similar to other
global optimization algorithms, the PSO algorithm is also
prone to fall into local extremum and premature conver-
gence. To solve this problem, Li and Li fused the improved
QEA (quantum-inspired evolutionary algorithm) with the
PSO algorithm and proposed a fast convergence and
abundant algorithm of quantum particle swarm optimiza-
tion (QPSO) [16]. However, in recent years, scholars have
found through research that the QPSO algorithm also has
the disadvantages of premature convergence and is easy to
fall into the local minimum [17]. Moreover, the QPSO al-
gorithm is rarely applied in the field of geophysics.

)e smooth constrained least square method (CLS) is
commonly used to solve nonlinearity fittings. Based on the
Newton optimized nonlinearity least square method, it can
adjust the damping coefficient and the smoothing filter to
keep its forward value close to the true value andmeasure the
gap between them by themean square deviation RMS.When
the RMS tends to be stable, the result is the final inversion
result [18, 19]. )is algorithm is faster than the conventional
least square method and takes up less memory [20].

Based on the above, in this manuscript, the quantum
particle swarm optimization (QPSO) algorithm was com-
bined with the smooth constrained least squares algorithm.
)e QPSO algorithm was used to carry out the preliminary
iterative search, and the preliminary inversion results were
taken as the initial model for the following inversion

calculation in the smooth constrained least squares (CLS)
algorithm. Subsequently, the reliability and accuracy of the
proposed inversion algorithm were further verified by a
series of numerical experiments of test functions, simulation
synthesis, and field measured data.

2. The Inversion of the QPSO-CLS
Joint Algorithm

Based on the strong global search ability of the QPSO algo-
rithm, the application of the QPSO algorithm to loop source
transient electromagnetic nonlinear inversion can help the
algorithm deviate from the local optimal value and provide a
more reliable initial value for the next CLS algorithm.

2.1. Basic Principle. In this study, the quantum particle
swarm optimization (QPSO) algorithm is applied to the
inversion of layer resistivity and layer thickness simulta-
neously. Assuming that the initial inversion layer number is
N, the resistivity value ρ1, ρ2, ρ3, ..., ρN and the thickness of
each layerh1, h2, h3, ..., hN−1 need to be reversely calculated.
)e total number of variables to be solved is 2N – 1. )en,
this problem can be transformed into a 2N – 1 dimensional
optimization problem. )e basic calculation principle is as
follows:

(1) Initialization and transformation. It is different from
the ordinary PSO algorithm; the qubit phase plays
the role of random initial population, which is in the
range of [0, 2π]. )en, the qubit can be calculated by
probability amplitude. After then, by solving the
solution space transformation formula, the qubit can
be transformed into the corresponding value in the
domain of the independent variable so that the
corresponding appropriate value can be calculated.

(2) Update. )e updated rules of particle state are as
follows, including the update of the qubit angle and
the probability amplitude of qubit:

(a) )e incremental update of the qubit angle on
particles is as follows:

Δθij(t + 1) � ωΔθij(t) + c1r1 Δθl(  + c2r2 Δθg ,

(1)

where

Δθl �

2π + θilj − θij θilj − θij < − π 

θilj − θij π ≤ θilj − θij ≤ π 

θilj − θij − 2π θilj − θij > π 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δθg �

2π + θgj − θij θgj − θij < − π 

θgj − θij π ≤ θgj − θij ≤ π 

θgj − θij − 2π θgj − θij > π 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

, (2)

ϖ is a random number with inertia weight; c1, c2
is a self-factor and a global factor, respectively;
r1, r2 is a random number of (0,1).
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(b) )e probability amplitude of qubit on particles is
updated as follows:

cos θij(t + 1) 

sin θij(t + 1) 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�
cos Δθij(t + 1)  − sin Δθij(t + 1) 

sin Δθij(t + 1) cos Δθij(t + 1) 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

cos θij(t) 

sin θij(t) 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�
cos θij(t) + Δθij(t + 1) 

sin θij(t) + Δθij(t + 1) 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(3)

Among them, i � 1, 2, ..., n; j � 1, 2, ..., d; n and d

are the number of population and the dimension
of unknown variables, respectively.

(3) Mutation treatment.)e quantum nongate is used to
mutate particles. It gives each particle a random
number [ran d]i between (0,1). When the random
number [ran d]i is lower than the set value K−m, the
[n/2] qubits are randomly selected, for the mutation
operation using equations (2) and (3).

01
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sin θij 

cos θij 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

cos θij +
π
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sin θij +
π
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4)

where i � 1, 2, ..., n; j � 1, 2, ..., d [21].

2.2. Regulation Mechanism of Inertia Weight and Mutation
Operator. In particle swarm optimization, inertia weight ω
is an important parameter. If the value of ω is increased, the
global search ability will be enhanced. If the value of ω is
decreased, the local search ability will be enhanced. In this
study, the commonly used nonlinear method is employed
to adjust the inertia weight. Besides, two methods of
adjusting inertia weight are comprehensively compared, as
shown in Figures 1(a) and 1(b). It is found that better
results can be obtained by equations (2)–(4) rather than
equations (2)–(5). )erefore, equations (2)–(4) are used as
the inertia weight adjustment strategy of the QPSO
algorithm.

Adjustment strategy 1: equations (2)–(4) are used to
realize the nonlinear dynamic adjustment of inertia weight
as follows:

ϖ1 �

ϖmin −
ϖmax − ϖmin( ∗ f − fmin( 

favg − fmin
, f≤favg,

ϖmax, f>favg,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where frepresents the real-time objective function value of
particles; fmin and favg are the minimum and average
moderate values of all particles [21].

Adjustment strategy 2: equations (2)–(5) are used to
realize the nonlinear dynamic adjustment of inertia weight
as follows:

ϖ2 � 0.99k ∗
r

2
+ a, (6)

where k is the current evolution algebra, r is a random
number of (0, 1), and ais a decimal greater than zero, ranging
from [0, 0.5].

To increase the diversity of the population, equations
(2)–(6) are used to adaptively adjust the mutation operator
as follows:
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Figure 1: )e decline curve of the moderate value of an objective function of the QPSO algorithm. (a) Griewank function (b) Ackley function.
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Km(t) � Km ∗ 2
e 1−Gm/Gm+1−t( )

, (7)

where Km is the maximum mutation probability, Gm is the
maximum number of iterations, and t is the current number
of iterations.

As shown in Figures 1 and 2 (a) and (b), better performance
can be obtained by using an adaptive mutation operator.

To verify the ability of the adjusted QPSO algorithm, two
functions are set for the optimization test as follows:
① Griewank function

f1 �
1

4000


n

i�1
x
2
i − 

n

i�1
cos

xi�
i

√  + 1. (8)

② Ackley function

f2 � 20 + e − 20 exp −0.2

����

1
n



n

i�1




x
2
i

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

− exp
1
n



n

i�1
cos 2πxi( ⎛⎝ ⎞⎠.

(9)

As shown in Figures 1(a) and 1(b), the performance of
the QPSO algorithm under the ϖ1 adaptive strategy of Km is
better. )erefore, this strategy is used in this study.

2.3.6e QPSO-CLS Joint Algorithm. )e QPSO algorithm is
improved by equations (2)–(4) and equations (2)–(6) and
then combined with smooth constrained least squares (CLS).
Finally, a QPSO-CLS joint transient electromagnetic 1D
inversion method is formed. In the initial stage of inversion,

the improved QPSO algorithm is used to invert the layer
resistivity and thickness of the model, and reasonable pa-
rameters such as the number of particles and the number of
iterations are set according to the actual needs. After the
algorithm iterates to a certain extent, the QPSO algorithm is
terminated. )e inversion results of the QPSO algorithm are
taken as the initial model of the CLS algorithm, and the CLS
algorithm is started for iterative inversion until the inversion
results meet the requirements. )e flow chart of the QPSO-
CLS algorithm is shown in Figure 2.

Since the one-dimensional layered Earth model belongs to
themutationmodel, the resistivity and thickness of each layer are
not continuous. Considering the calculation time and accuracy,
the L1 normof observation data andmodel data is selected as the
objective function. )e objective function is as follows:

F ρ1, ρ2, ρ3, ..., ρN  �
1
n



n

i�1
ρ(i)

t − ρ(i)


, (10)

where ρN is the apparent resistivity value of the n-th re-
cording time trace, ρ(i)

t is the apparent resistivity value of t
iterations of the i-th recording time trace, and ρ(i) is the
actual resistivity value of the i-th recording time trace.

3. Numerical Simulation

)e data collected by the transient electromagnetic sounding
instrument used in this paper are the induced EMF (elec-
tromotive force), which can be normalised to give a late
apparent resistivity by the late apparent resistivity formula.
However, late apparent resistivity is assumed to be derived
approximately as time tends to infinity, so in the early stages,

Initialize the particle population, change the
solution space according to the upper and lower

limits of variables, calculated and record the
individual optimal position and the population

optimal position

Set the population numberand calculation
parameters

c1=1.2,c2=1.1,ωmax=0.7,ωmin=0.3,and r1 and r2
are two random numbers between(0,1)

Inertia weight adaptive abjustment

Update particle state (update qubit depression
angle and qubit probability amplitude)

Adaptive adjustment of mutation operator and
mutation processing

IS fitting error
less than set value?

Or is the iteration reaching
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YES
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Figure 2: Flow chart of the QPSO-CLS joint algorithm.
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the apparent resistivity curve is severely distorted and cannot
be imaged well for shallow areas, becoming one of the
distractions of shallow geological interpretation, so many
scholars have proposed the concept of area-time apparent
resistivity. )e all-time apparent resistivity calculated di-
rectly from the magnetic field strength is a more realistic
reflection of the shallow geological conditions and is closer
to the true apparent resistivity definition. In this paper, the
area-wide apparent resistivity is adopted as the fitting pa-
rameter for the QPSO-CLS inversion algorithm.

For 1D forward of the central loop TEM, the strength of
the magnetic field perpendicular to the central loop can be
solved directly. Suppose a geoelectric model with N layers,
the resistivity of layer j as ρj, and the thickness as hj, so the
magnetic field intensity response in frequency domain is

Hz � aI(ϖ) 
∞

0

λ2

λ + u
(1)

J1(λa)dλ, (11)

where a represents the equivalent radius of the transmitting
wireframe. )e recurrence formula of u is as follows:

uj �

������

λ2 − k
2
j



, k
2
j � −

iϖμ0
ρj

, j � 1, 2, 3, · · · , n,

u
(j)

� uj

u
(j+1)

+ uj tan h ujhj 

uj + u
(j+1) tan h ujhj 

,

u
(n)

� un.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

)e transient detection instrument used in this paper adopts
a square wave with a duty cycle of 1 :1, so only half a period of
the waveform needs to be considered in the forward simulation,
which can be regarded as a step-by-step wave as follows:

I(t) �
I0, t< 0,

0, t> 0,
 (13)

where I0 is the emission current. Fourier transforms the
above formula to obtain the expression of emission current
in frequency domain as follows:
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Figure 3: Forward modeling of TEM.

Table 1: Test model parameters.

Layer number 1 2 3 4 5
Resistivity ρ (Ω·m) 10 45 65 130 80
)ickness h (m) 10 10 15 40 ∞
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I(ϖ) � 
∞

−∞
I(t)e

iϖt
dt � −

1
ϖ

I0. (14)

)erefore, the magnetic field strength can be simplified
as follows:

Hz �
2
π


∞

0
Im

Hz(ϖ)
ϖ

  cos (ϖt)dϖ,

�
2I0

π

∞

0
Im

1
ϖ


∞

0

λ2

λ + u
(1)

J1(λa)dλ cos (ϖt)dϖ.

(15)

Let the inner integral kernel function be
func � λ2/λ + u(1). Hankel transform is represented by

HT ∗{ }, and the cosine transform is represented by CT ∗{ }.
So, formulas (3)–(5) can be abbreviated as follows:

Hz �
2I0

π
· CT

HT Im(func) 

ϖ
 . (16)

For the uniform half space geoelectric model, the ana-
lytical expression of Hz can be derived as follows:

Hz(t, x) �
I0

2a

3
��
π

√
1
x

e
− x2

+ 1 −
3
2x

2 erf(x) , (17)

where erf(x) is the error function. Normalize Hz to obtain
the following function:

Z(x) �
3
��
π

√
1
x

e
− x2

+ 1 −
3
2x

2 erf(x)

�
4a

π
CT

HT Im(func) 

ϖ
 .

(18)

Calculate the inverse function x of Z(x) and derive the
region-wide apparent resistivity based on magnetic field
strength as follows:

ρa �
μ0a

2

4x
2
t
. (19)

Since the function Z(x) is an implicit function, its in-
verse function cannot be obtained; therefore, it cannot be
solved analytically. However, the numerical solution can be
obtained by using the dichotomous finding method or the
golden section method due to Z(x) being monotonically
increasing between 0 and 1.

To verify the effectiveness of the inversion algorithm,
five-layer model forward data are established in this study,
and the model is shown in Figure 3. Table 1 shows the layer
thickness and resistivity of the model. )e square loop of
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Figure 6: Inversion results of the QPSO-CLS joint algorithm, (a) model fitting curve, and (b) fitting curve of attenuation voltage.
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10m× 10m is used as transmitting coil, the emission current
is 1A, and the receiving mode of common center point
receiving is adopted. In the inversion algorithm, 10 layers of
the initial model are set for calculation.

)e descent curves of iterative computation obtained by
different inversion algorithms are shown in Figures 4 and 5.

Figure 6 shows the results of the QPSO-CLS joint
algorithm.

)e results of different inversion algorithms are com-
pared. It is found that the QPSO-CLS joint algorithm can
effectively break through the local optimal extremum and
presents better inversion results. By comparing Figures 4
and 5, the inversion results of the QPSO-CLS joint algorithm
are more consistent with the theoretical model, and the
results have a higher reduction degree and higher fitting
degree for the layer thickness and resistivity of the model.

4. Field Test

4.1. Location Overview and Data Acquisition. )e field data
were collected at pile Y1 (112.70 E, 25.14N) of the Caojiaben
interchange main line bridge of Linwu-Lianzhou (Hunan-
Guangdong Boundary) expressway project in Yizhang
County, Hunan Province. )e specific location is shown in
Figure 7 as follows. )e terrain conditions of the Caojiaben
junction interchange are relatively simple, with relatively
gentle terrain and local steep area, and the natural slope is
20°–40°. According to the boring results illustrated in Fig-
ure 8, the strata revealed in site include Holocene deluvial
and eluvial clay and the underlaying bedrock: Devonian
carbonaceous limestone and sandstone. )e grimy highly
weathered carbonaceous limestone with texture and struc-
ture partially destroyed is closely sectioned by joints and
fractures and drilling core recovered as detritus and gravel.
)e moderately weathered carbonaceous limestone with
cryptocrystalline texture and layered structure is broken by
joints and fractures with calcite veins filled in the fissures.
)e moderately weathered rock that is widely distributed

within the site and karst is discovered locally by borings.
According to the data of borehole Y1, within 24.2–33.5m in
the underground, the surrounding rock is mainly moder-
ately weathered carbonaceous limestone with broken joints
and developed karst caves. )e geological conditions are
complex.

)e transient electromagnetic survey line in Figure 7 is
named L1, with a length of 20m and a fundamental fre-
quency of 25Hz. A total of 21 measuring points were set up,
with an interval of 1m. )en, 25 channels of data were
collected at each point, and the emission line of 1.9m× 1.9m
and the receiving coil of 110.16 m2 were used, as well as the
common central point detection method was adopted. )e
circle in Figure 7 is located in borehole Y1, and the logging
information can be compared with the inversion results.

4.2. Inversion Analysis of Field Data. Figure 8 shows the
comparison of inversion results and borehole logging re-
sults. )e comparative analysis shows that the uppermost
layer is the clay layer, which is humid and has high water
content. )us, the formation resistivity of about 0m–5m is
low. Due to the existence of strongly weathered sandstone
with low strength, developed fractures, and poor integrity
within 5m–25m, the resistivity value of this layer is higher
than that of the overlying clay layer, and the local low re-
sistivity area is probably caused by the development of
fracture water. )e borehole revealed that there are karst
caves and moderately weathered carbonaceous limestone
intercalations within 25m–54.5m.)ere are both fully filled
and semifilled karst caves (the filling material is plastic clay).
)us, this section presents the characteristics of high re-
sistivity value. )e local high resistivity anomaly area is
probably caused by the karst cavity, and the local low re-
sistivity anomaly area is probably caused by the high-water
content plastic clay-filled area in the karst cave. )e strata
below 54.5m show the characteristics of medium and high
resistance values. It is inferred that the rock structure in this
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Figure 8: Comparison of inversion results (left) and borehole logging results (right).
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area is complete and dense. As the known borehole depth is
61.60m, only the borehole logging information is compared
within this range. When the detection distance is greater
than 61.60m, the transient electromagnetic detection results
are obtained. It can be seen that the inversion results are
generally consistent with all kinds of strata exposed by
drilling, indicating that the inversion results are accurate in
the strata division. )us, the effectiveness of the QPSO-CLS
joint algorithm and its application value in engineering are
verified.

5. Conclusion

(1) )e proposed transient electromagnetic 1D inver-
sion algorithm based on the QPSO-CLS joint algo-
rithm can be used to effectively depict the formation
boundary of the model and efficiently inverse the
information of formation thickness and formation
resistivity.

(2) )e inversion calculation of simulated data shows
that the QPSO-CLS joint algorithm has better in-
version results and has a higher reduction degree for
the inversion of layer thickness and resistivity value
of the model, which is superior to a single algorithm.
)e inversion results of field test data show that the
inversion results of the QPSO-CLS joint algorithm
are consistent with the results of borehole logging,
and the proposed QPSO-CLS joint algorithm can
accurately reveal the formation information.

(3) )e QPSO-CLS joint algorithm improves the in-
terpretation accuracy of transient electromagnetic. It
provides a new inversion interpretation idea for the
transient electromagnetic detection of the bored pile,
reduces the engineering cost, and enriches the de-
tection means of karst geological conditions.

)e QPSO-CLS joint inversion algorithm proposed in
this manuscript is only aimed at the 1- dimensional model
which assumes that the strata under the exploration area are
evenly distributed in layers. However, it has certain limi-
tations in the 2-dimensional section imaging. In the future,
relevant research and testing can be carried out so that the
joint algorithm can be applied to the two-dimensional in-
version to increase the accuracy of the exploration of the
spatial position and shape of the cave.

Data Availability

)e [TEM data.DTE] data used to support the findings of
this study are available from the corresponding author upon
request.

Conflicts of Interest

)e authors declare no conflicts of interest.

Authors’ Contributions

Xue Liu conducted conceptualization, methodology, vali-
dation, writing, review, and editing, as well as supervision.

Chunwei Pan conducted methodology, model analysis,
validation, and data curation. Fangkun Zheng conducted
methodology, formal analysis, investigation, and data
curation. Ying Sun conducted data curation, writing, review,
and editing. Qingsong Gou conducted writing, review, and
editing.

Acknowledgments

)is research was supported by the National Natural Science
Foundation of China (NSFC) funded project (51969023).

References

[1] X. F. Shi, Study on the Roof Stability of Concealed Karst Cave
under Pile Foundation, )e Chinese Academy of Sciences,
Wuhan, China, 2005.

[2] H. B. Zhou, “Built-in-rock bored pile construction technology
of pre-treatment to cover layer and karst cave in karst ge-
ology,” Construction Technology, vol. 40, pp. 198–202, 2011.

[3] X. Li, J. J. Wu, and D. M. Cao, “Advanced geologic forecasting
for unfavorable geological body with water-transient elec-
tromagnetic method,” Geotechnical Investigation and Sur-
veying, vol. 34, no. 3, pp. 70–75, 2006.

[4] D. M. Tan, T. Y. Qi, and C. L. Liu, “Research on the transient
electromagnetic response in tunnel whole space and its ap-
plication,”Hydrogeology & Engineering Geology, vol. 36, no. 3,
pp. 111–116, 2009.

[5] D. J. Yu, L. Huang, and W. Zhang, “Application of transient
electromagnetic method in advance geologic prediction
technique of Mingyuexia tunnel,” Site Investigation Science
and Technology, vol. 2, pp. 48–50, 2010.

[6] S. C. Li, S. Li, Q. Zhang et al., “Predicting geological hazards
during tunnel construction,” Journal of Rock Mechanics and
Geotechnical Engineering, vol. 2, no. 3, pp. 232–242, 2010.

[7] M. Somanath, Global optimization with application to geo-
physics, vol. 73, pp. R71–R82, University of Alberta,
Edmonton, Canada, 2008.

[8] F. P. Li, H. Y. Yang, and X. H. Liu, “Nonlineat programming
geneic algorithm in transient electromagnetic invesion,”
Geophysical and Gewchemical Exploration, vol. 41, no. 2,
pp. 347–353, 2017.

[9] D. Cheng, J. L. Cheng, and A. M. Wang, “Numerical simu-
lation of drillhole transient electromagnetic response in mine
roadway whole space using integral equation method,” Chi-
nese Journal of Geophysics, vol. 61, pp. 4182–4193, 2018.

[10] H. F. Sun, N. Y. Zhang, and S. B. Liu, “Ll-norm based
nonlinear inversion of transient electromagnetic data,” Chi-
nese Journal of Geophysics, vol. 62, no. 12, pp. 4860–4873,
2019.

[11] J. Kennedy and R. C. Eberhart, “Particle swarm optimization
[R],” in Proceedings of the IEEE International Conference on
Neural Networks, WA, Australia, December 1995.

[12] R. Shaw and S. Srivastava, “Particle swarm optimization: a
new tool to invert geophysical data,”Geophysics, vol. 72, no. 2,
pp. F75–F83, 2007.

[13] F. A. Monteiro Santos, “Inversion of self-potential of idealized
bodies’ anomalies using particle swarm optimization,”
Computers & Geosciences, vol. 36, no. 9, pp. 1185–1190, 2010.

[14] J. L. Cheng, F. Li, S. P. Peng, X. Sun, J. Zheng, and J Jia, “Joint
inversion of TEM and DC in roadway advanced detection
based on particle swarm optimization,” Journal of Applied
Geophysics, vol. 123, pp. 30–35, 2015.

8 Advances in Civil Engineering



[15] M. X. Li, J. Y. Cheng, and P. Wang, “Transient electromag-
netic 1D inversion based on the PSO–DLS combination al-
gorithm,” Exploration Geophysics, vol. 5, pp. 1–9, 2019.

[16] S. Y. Li and P. C. Li, “Quantum particle swarms algorithm for
continuous space optimization,” Chinese Journal of Quantum
Electronics, vol. 24, no. 5, pp. 569–574, 2007.

[17] X. S. Zhao, S. W. Wang, and X. Shao, “Cooperative task al-
location for multiple UCAV based on improved quantum-
behaved particle swarm optimization algorithm,” Journal of
Sichuan Ordnance, vol. 10, pp. 120–124, 2015.

[18] B. X. Su, P. H. Zhai, and Z. Zhang, “Application of three-
dimensional high-density electrical method in detection of
sandstone water on coal,” Roof Coal Technology, vol. 40, no. 3,
pp. 43–45, 2021.

[19] Z. ., Y. Zhang, “Application of 3 D high-density electrical
method in detection of water-accumulated gob,” Mining
Safety & Environmental Protection, vol. 1, pp. 76–79, 2015.

[20] M. H. Loke and R. Barker, “Rapid least-squares inversion of
apparent resistivity pseudosections by a quasi-Newton
method1,” Geophysical Prospecting, vol. 44, no. 1, pp. 131–152,
1996.

[21] W. X. Zhang, J. S. Liu, L. Yu, and B Jin, “Nonlinear inversion
for complex resistivity method based on QPSO-BP algo-
rithm,” Open Journal of Geology, vol. 11, no. 10, pp. 494–508,
2021.

Advances in Civil Engineering 9


