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�ere are many novel applications of space-time decoupled least squares and Galerkin formulations that simulate wave
propagation through di�erent types of media. Numerical simulation of stress wave propagation through viscoelastic medium is
commonly carried out using the space-time decoupled Galerkin weak form in site response problem, etc. In a recent investigation
into accuracy of this formulation in simulating elastic wave propagation, it was shown that the di�usive and dispersive errors are
greatly reduced when space-time coupled least squares formulation is used instead in variational form. �is paper investigates
convergence characteristics of both formulations. To this end, two test cases, which are site response and impact models for
viscoelastic medium, are employed, one dominated by dispersive and the other by di�usive numerical error. Convergence studies
reveal that, compared to the commonly used space-time decoupled Galerkin and the coupled least squares formulation has much
lower numerical errors, higher rates of convergence, and ability to take far larger time increments in the evolution process. In
solving such models, coe�cient matrices would require updating after each time step, a process that can be very costly. However
large time steps allowed by cLs are expected to be a signi�cant feature in reducing the overall computational cost.

1. Introduction

Vibration energy dissipation, damping, is involved in many
�elds of mechanics problems. Mostly, reducing response
amplitudes of �exible or solid bodies is important to be
considered for engineering subjects. Employment of the
elasticity theory to simplify the analysis proves to be incon-
sistent with the accurate behavior of materials, because most
engineering materials have much dependency on their in-
trinsic properties due to internal friction. In mechanical
problem, investigation of damping has a main role in smart
mechanical tools, response free�eldout and, structures suchas
tall buildingandhighwaybridges [1].Anumberof researchers
investigated damping property e�ect of rubber-sand mixture
material underlain by the structures to reduce peak of ac-
celeration, displacement, and shear stress at their bases [2–4].

�e study in [5] �rst introduced a famous approach
called viscous damping that had been obtained from rhe-
ology science. �is was competent idealization to describe
locally vague material properties which dissipated vibration
energy by means of their internal friction. Other idealization
is mentioned that the damping matrix assumed to be
consisted of linear combination of mass and sti�eness
matrices. In this model, undamped systems can be used for
the analysis of damped systems e�ortlessly.

Overall, damping is divided into two main classes: (1)
damping in discrete systems including SDOF and MDOF
systems and (2) damping in continuous systems. Usually, the
�rst is in conjunction with ordinary di�erential equations
(ODEs), extracted from dynamic equilibrium equations, and
the second is related to partial di�erential equations (PDEs),
such as wave di�erential equation. �e authors of [4, 6, 7]
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worked on viscoelastic problems in different damping
models.

(ere have been studies on one-dimensional viscoelastic
analysis of axial wave propagation through rod with various
damping models. (e authors of [8–10] demonstrated re-
alistic behavior of viscous damping for analyzing actual
dynamic systems.

From before to recently, wave propagation simulation
considering energy dissipation has been a desirable and
attractive topic to research of viscoelastic problem all over
the world. (ere are two major computational methods to
analyze viscoelastic dynamic problems, with discrete or
continuous systems; (a) time-domain methods, in which the
most general computational approaches are included, and
(b) frequency-domain methods, which are favorable for
linear or equivalent linear problems, extensively computed
by mean of finite difference, boundary elements, and finite
element methods along with the isogeometric and meshless
variations. (e study in [11, 12] investigated the earthquake
response of surcharged soil layers using Hybrid Frequency
Time Domain (HFTD) approach. (ey used and developed
transfer function method, which is categorized into fre-
quency domain analyses, for viscoelastic soil medium on
which equivalent mass is surcharged. (e study in [13]
compared responses 1D viscoelastic horizontally layered soil
model and 2D one and observed no significant difference
between them.

In time-domain analyses, the solution is known for all
points of the spatial domain at a given time t0 and theobjective
is to determine the solution at time t0 + Δt. (e formulation
needed for this evolution canbe cast in a space-timedecoupled
or a space-time coupled computational framework. (e
decoupled Galerkin formulation is widely utilized in study of
wave equations, as they appear in many engineering disci-
plines. Here, coefficient matrices representing discrete spatial
distributionofmedium’s property forma set of ordinary time-
dependent equations, which are then solved over a given time
spanusingdifference-based techniques suchasNewmark-βor
Wilson-θmethods [14].Many improvements have been done
to the decoupled formulations [15–17]. Even though the semi-
discrete finite elements approach has led to significant im-
provements in simulation of elastic wave propagation,
problems with high frequency loading and sharp temporal
gradients still present a significant challenge.

Space-time coupled formulations have been successfully
applied in studying time-dependent problems [18]. In this
framework, finite element interpolation is performed over
an m + 1-dimensional computational domain with m being
the number of spatial dimensions. (e study in [19] was the
first to carry out study over the coupled domain. As dem-
onstrated in [20], in the study of elastic wave propagation
due to impact, the decoupled Galerkin yields unsatisfactory
results and a space-time coupled discontinuous Galerkin
scheme was introduced in order to reduce the dispersive
error in this problem. (e author of [21] in PhD thesis
proposes a discontinuous scheme with least squares stabi-
lizers; this method requires auxiliary variables and, like other
discontinuous schemes, upwinding parameters have to be
tuned to a particular problem at hand.

Instead of using discontinuous formulations and dealing
with complications of proper upwinding scheme, the study in
[22] has suggested a comprehensive framework for casting
the problem in a space-time coupled least squares framework
with higher continuity elements. (is framework presents
means of convergence through a combination of element
length, order of interpolation, and global smoothness. In an
error analysis of the wave equation, a quadratic rate of
convergence for thewave equationwas predicted by [23].(e
rate is with respect to element characteristic length, with
approximation defined over the coupled domain. However,
in context of finite element, it was established that higher
smoothness is needed to obtain such rates.

Reference [24] proposed new nonsymmetric variational
formulations which are employed to parallelize computa-
tions on MIMD-parallel computer for viscoelastic problems
based on the continuous and discontinuous Galerkin
method. In the study therein, the three-parameter Malvern
model described viscoelastic pattern. Promising results were
achieved for discontinuous Galerkin method with respect to
continuous Galerkin method.

Reference [25] developed temporal decoupling of dis-
continuous Galerkian space-time finite element method,
which is formulatedby [26],which is appliedonly toparabolic
differential equation, heat diffusion equation. Continuous
Galerkin form in space and discontinuous Galerkin form in
time were adopted for second-order wave equations in-
cluding elastodynamic problem with and without Kel-
vin–Voigt and Maxwell–Zener, viscoelasticity. Acceptable
results were extracted for moderately high-order (up to de-
gree 7) temporal and spatial-temporal approximation. (eir
method, decoupling procedure, produced a set of boundary
value problems that need to be solved for each time interval.

(e most popular methods in the engineering practice
are the finite and the spectral element methods.(ey present
known advantages (deal with complex geometries, material
nonlinearities, etc.) and drawbacks (numerical damping and
dispersion, spurious reflections at artificial truncation
boundaries). Although various numerical strategies exist to
limit spurious reflections (e.g., absorbing boundary condi-
tions or boundary layers), the boundary element method
(BEM) remains a very effective approach for dynamic
problems in spatially-extended regions (idealized as un-
bounded), especially so since the advent of fast BEMs such as
the fast multiple method (FMM) used in this work. [27].

(is macroelement allows one to model soil-footing
geometric (uplift) and material (soil plasticity) nonlinearities
that are coupled through a stiffness degradation model.
Footing uplift is introduced by a simple non-linear elastic
model based on the concept of effective foundation width,
whereas soil plasticity is treated by means of a bounding
surface approach in which a vertical load mapping rule is
implemented [28]. Performance criteria are generally dis-
placement-based in the performance-based design approach.
Quality requirements in the approach to performance-based
design are typically based on displacement. Firstly, keeping
this displacement within an acceptable limit ensures themain
purposeofplanning tohave sufficient strengthandstiffness. In
multistorey commercial and residential structures, coupled
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walls are a typical type of shear wall. (rough a fusion of the
coupling beam’s frame action and the wall pier’s flexural
action, a coupled shear wall system resists lateral forces [29].
Carbon textile is considered an alternate material due to its
corrosive resistance property, high tensile strength, and being
perfectly elastic. Prestressing is also the only realistic way to
utilize fully ultra-high tensile strength in carbon textile ma-
terial [30].

In a recent paper [31], it was shown that numerical errors
can be significantly reduced if the problem is cast in a space-
time coupled least squares finite element framework. As an
extension to that work, in this paper, convergence charac-
teristics of damped wave equation are studied for the
decoupled Galerkin and coupled least squares formulations.
In this investigation, since numerical errors are a combi-
nation of dispersive and diffusive types, two test cases were
designed: one of them is site response model and the other is
impact model, each dominated by one of the two error types.
Using exact solution, convergence through spatial and
temporal refinements and the effects of interpolation and
global smoothness on the computational process are studied
here.

(e remainder of this manuscript is organized as follows:
(e mathematical model describing viscoelastic wave
propagation is presented first followed by the decoupled
Galerkin and coupled least squares weak formulations. (e
succeeding section presents two test cases; one simulates
impact and the other base motion. Convergence studies are
presented and overall patterns are deduced. (is is followed
by a discussion on findings and concluding remarks. (is
study tried to investigate about the relations of variational
space-time coupled least squares frameworks using wave
propagation in viscoelastic medium, while other research
works concentrated on some aspect of this concept.

2. Mathematical Model

Propagation of viscoelastic waves in a one dimensional
homogeneous medium can be modeled with

ρ
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zt
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z
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3
u

ztzx
2 , (1)

where E and η respectively are the elastic and viscous
modulus; ρ denotes mass density; and u � u(x, t) is the
displacement field over space-time domain Ω � X × T

defined by intervals x ∈ X � [0, L] and t ∈ T � [0, T].
(is model (1) together with suitable boundary and

initial conditions constitute the strong formulation of vis-
coelastic wave propagation in one dimension.

(e exact solution to (1) can be approximated by uh(x, t)

as

u(x, t) ≈ u
h

� N · Φ, (2)

where superscript h signifies characteristic length in the
finite element mesh over the spatial domainX. N is the row
vector of the approximating shape functions and Φ repre-
sents the degrees of freedom vector 4. (is approximation
leads to the residual function
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which is subsequently utilized to develop variation-based
integral statements that can be used to determine Φin (2).

Next, two different integral-based computational frame-
works, namely the space-time coupled least squares and the
space-time decoupled Galerkin are generated for (3). Nu-
merical experiments are then conducted to compare com-
putational errors and convergence rates in each of the
frameworks.

Viscoacoustic seismic modeling is much cheaper, but at
the tradeoff of using incomplete physics. (e algorithm
contains two viscoacoustic forward modeling steps; the first
is the same as the traditional viscoacoustic modeling, while
the second propagation is generated using a residual error
source, which is derived by comparing the viscoacoustic and
viscoelastic wave equations in the form of stress-particle
velocity formulations. (e corrected P-wave particle ve-
locities can be obtained by adding the wavefield from the
second simulation step to the original (the first simulation
step) viscoacoustic wavefield. Only Pwaves aremodeled.(e
overall cost is about twice that of viscoacoustic modeling, but
it is significantly less than a viscoelastic propagation, because
there are fewer calculations, and we can use a coarser grid
and larger time steps for the same accuracy [32].

2.1. Space-Time Coupled Least Squares Formulation.
Solutions from space-time coupled least squares formulation
(cLs) are a linear combination of two dimensional shape
functions formed over (x − t) space; i.e. u(x, t) � N(x, t) ·Φ.
(e least square error functional is defined as

J � 􏽚 R
2
(u)dΩ, (4)

which is bounded, nonnegative, and quadratic by con-
struction. First variation of J yields the least squares
minimization statement.

I � δJ � 􏽚
T

􏽚
X
QTQA dx dt · Φ � 0, (5)

where
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Solution vector Φthat satisfies the minimization state-
ment given in (5) is the best approximation to u that may be
found in solution space spanned by basis N(x, t).

Note that the least squares weak form, (5), requires
global continuity of C1 over both space and time compu-
tational domains. In all computations carried out here,
space-time elements are constructed from tensor product of
two cubic ordered C1 elements [33].

(e representation of viscoelastic media in the time
domain becomes more challenging with greater bandwidth
of the propagating waves and number of travelled wave-
lengths. With the continuously increasing computational
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power, more extreme parameter regimes become accessible,
which requires the reassessment and improvement of the
standard memory variable methods to implement attenu-
ation in time-domain seismic wave propagation methods
[34].

2.2. Space-Time Decoupled Galerkin Formulation.
Space-time decoupled Galerkin formulation (dGa) is the
most commonly used computational framework in study of
viscoelastic vibrations. (e space-time decoupled Galerkin
weak form of (1) can be derived by letting
u(x, t) � N(x).Φ(t), leading to a set of time dependent
ordinary differential equations, i.e.,

M
d
2

dt
2 + C

d

dt
+ K􏼠 􏼡 · Φ � 0, (7)

where M � 􏽒
X
ρNTNA dx is the mass matrix, C � 􏽒

X
ηdNT/

dxdN/dxA dx is the damping matrix, and K � 􏽒
X

EdNT/
dxdN/dxA dx is the stiffness matrix.

(e highest order of derivative appearing in the defi-
nition of each coefficient matrix is unity; hence, utilization of
linear C0 finite elements provides the minimum global
continuity requirement in dGa computations.

(e set of linear ordinary differential equations in (7) is
evolved through time using the unconditionally-stable
Newmark-β integration. (e method assumes linear accel-
eration profile; i.e., the displacement is cubic in time. (is
order of interpolation in time is equivalent to the cubic
distribution employed in approximation of displacement in
temporal direction. However, in the cLs framework, con-
tinuity of displacement and velocity are strictly enforced,
whereas in the Newmark method continuity of displacement
and velocity are controlled by a shift in continuity of velocity
defined as averaged acceleration across the time-increment.

3. Numerical Experiments

In studying the computational characteristics of dGa and
cLs, dynamic response predictions made by the weak forms
(7) and (5) of (1) are compared to exact solution. Test cases
are designed to allow for separate studies in connection with
dispersive and diffusive numerical errors. Errors in dis-
placement and stress distributions over the first few cycles of
wave reflection and propagation are measured; and are
utilized to identify convergence characteristics of each
computational framework.

3.1. Evaluation Tools. For evaluating the merits and draw-
backs of each formulation, means of convergence and
measurement of numerical error are defined as follows.

3.1.1. Error Measurement. Since the exact solutions are
available in all case studies, relative error is measured using
%Error � 100 × 􏽐iDi/􏽐iEi where Di � Δi(di + di+1)/2 is the
weighted average difference and Ei � Δi(ei + ei+1)/2 is the
weighted average exact value. Here, di � |ai − ei|, ai is the

approximate value, and ei is the exact value at the ith time
point of time segment Δi.

3.1.2. h-Convergence. In any finite element computational
process, errors can be reduced by increasing the number of
approximating elements (mesh refinement), i.e., h-Conver-
gence. In studies conducted here uniform spatial meshing is
employed, i.e., a uniform mesh of n elements is defined over
the spatial domain of length L with h � L/n. In all dGa
studies, n is taken from the set NGa and in cLs studies from
the set NLs, where

NGa � 12, 24, 48, 96, 192, 384{ }, (8)

NLs � 12, 24, 48{ }. (9)

Note that the sequence uses a growth factor of 2. Hence,
the characteristic length h is halved in each refinement.

3.1.3. R-Convergence. It is also possible to reduce numerical
error using smaller time increments, or R-refinement. Here,
time increment Δt is kept constant and it is set equal to a
fraction of the reference time increment 􏽢Δt; i.e., Δt � 􏽢Δt/R;
where, 􏽢Δt � h/c and c �

���
E/ρ

􏽰
is the axial stress wave

propagation speed in domain Ω with zero damping. De-
fining mesh speed as the ratio of characteristic length to
time-increment’s size, i.e., V � h/Δt, R may be regarded as
the ratio of mesh speed to the stress wave speed, i.e.,
R � V/c.

In dGa studies, R-convergence is applied by halving time
increment’s duration, starting with R � 1; which in turn
doubles the number of time steps required for evolving the
solution over the specified time span, T. In cLs studies
values of R< 1 are also considered for the sake of speeding
the computational process.

Time increment factor, R, is selected from sets RGa and
RLs in dGaand cLs convergence studies, respectively.

RGa � 1, 2, 4, 8, 16, 32{ }, (10)

RLs � 0.1, 0.25, 0.5, 0.75, 0.8, 0.9, 1, 2, 4{ }. (11)

Note that RGa sequence has a growth factor of 2; i.e., in
dGa R-convergence studies time increment is halved in each
refinement, with Δt � 􏽢Δt/32 being the smallest time incre-
ment. Also note thatRLs set contains values less than unity as
well. For R< 1 mesh speed is less than stress wave’s speed,
i.e.,V< c. (is allows for larger time increments to be taken;
which translates to fewer number of evolution steps needed
to reach a given final time.

3.1.4. p-Convergence. Minimum polynomial order required
by dGa weak form (7) is unity with C0 global continuity; and
for cLsweak form(5), a bicubic polynomialwithC1 continuity
in both space and time is the minimum requirement. Possi-
bility of reducing the approximation error through polyno-
mial-order increase orp-convergence is also investigatedhere.
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Finite elements used here are Lagrange-based hierarchical
elements [33].

3.1.5. τ-Convergence. In particular, since the coupled for-
mulation allows for temporal discretization as well as the
usual spatial discretization over each time slab (space-time
domain over a time increment), possibility of reducing the
error through temporal meshing or τ-convergence is also
investigated for the least squares formulation. Here, the
computational domain is meshed over the time increment,
where three cases are considered by dividing Δt to 1, 2, 4{ }

divisions.

3.2. Test Models. In general, numerical errors have disper-
sive and diffusive (dissipative) characteristics [31]. Each of
the two test models employed here exhibits dominance of
one type of numerical error. (e first test case, Impact
(Imp.), simulates the response of a relatively stiff medium to

a constant load, where dispersive numerical error is dom-
inant. Diffusive error is dominant in the second test case,
Base-motion (Bms.), which simulates response of a relatively
flexible medium to an imposed harmonic displacement
boundary condition. Relative stiffness in each case refers to
stress wave speed; which is 1000m/s for Imp. and it is 60m/s
for base motion case. Errors are measured using the com-
puted displacement u or stress σ � Eϵ � Ezu/zx where ϵ is
the strain field.

3.2.1. Impact: Model Specifications. (emedium considered
is a rod of unit area and unit length. Mass density and elastic
modulus are ρ � 1000 kg/m3 and E � 1 GPa, respec-
tively; hence, the wave speed in this model c � 1000 m/s.
(e rod is fixed at x � 0 and loaded with point load P � 1 at
x � 1 for 0≤ t≤T.

Closed form solution to (1) based on conditions stated
here will be

u(x, t) � 􏽘
n�1,3,...

2e
− β

L􏽢ϵ(m cos (m/2) − 2 sin (m/2))sin (mz/2L) e
cλ + λ + e

c
− 1( 􏼁ηmn( 􏼁

m
2

����������������

n
2 η2m2

− 16EL
2ρ􏼐 􏼑

􏽱 + z􏽢ϵ, (12)

where 􏽢ϵ is the applied strain at the loaded end and

β �
πt(λ + ηmn)

8L
2ρ

c �
πλt

4L
2ρ

,

m � nπ λ �

����������������

π2η2n4
− 16EL

2
n
2ρ

􏽱

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
.

(13)

3.2.2. Site Response Model: Model Specifications. In seismic
numerical simulations of wave propagation, it is very im-
portant for us to consider surface topography and attenu-
ation, which both have large effects (e.g., wave diffractions,
conversion, amplitude/phase change) on seismic imaging
and inversion. An irregular free surface provides significant
information for interpreting the characteristics of seismic
wave propagation in areas with rugged or rapidly varying

topography, and viscoelastic media are a better representa-
tion of the earth’s properties than acoustic/elastic media [35].

In this model, L � 10m, elastic modulus E � 7.5 MPa,
and weight density ρg � 20kN/m3, where g � 9.81m/s2. (e
model is at rest prior to imposition of harmonic displace-
ment at x � 0. Boundary and initial conditions can be stated
as, u(0, t) � A sin (ωt) and zu/zx(L, t) � u(x, 0) � zu/zt

(x, 0) � 0.(e displacement condition u(0, t) has amplitude
of A � 0.01 m and frequency of ω � 2πf, with
f � 10 Hz. Furthermore, since C1 finite elements are
employed in studying (5), the stress free boundary condition
zu/zx|(x�L,t) � 0 is imposed explicitly; a feature that is not
available in computations based on theC0-dGa formulation.
A closed form solution of (1) subjected to boundary and
initial conditions stated here, may be found through sepa-
ration of variables technique, yielding

u(z, t) � A sin (ωt) + 􏽘
n�1,3,...

4αA (−1)
n

− 1( 􏼁sin (mz/2L)e
− β

λm E
2
m

4
− 8αEm

2ω + ω2 16α2 + η2m4
􏼐 􏼑􏼐 􏼑

me
c 2E
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m

2
n + ω2 ηm(ηmn − λ) − 8EL
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−2E
2
m

3
n + 2λωe

β sin (ωt) 4αω − Em
2

􏼐 􏼑 + ηm
2ω cos (ωt)􏼐 􏼑 − mω2 ηm(λ + ηmn) − 8EL

2
nρ􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

(14)

where α � L2ρω and the remaining parameters are as defined
in (13).

3.2.3. Damping Ratio. All studies are carried out by con-
sidering damping ratio ξ � η/ηc, where critical damping for
a homogeneous axial rod is
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ηc �
4

���
ρE

􏽰
L

π
. (15)

Values of ξ considered here are ξ ∈ 0.01, 0.1, 0.5, 1.0{ }.

3.2.4. Solution Characteristics and Profiles. In definition of
the impact problem (Imp.), a constant force is applied at the
free end of a relatively stiff rod, producing a constant-stress
wave which reflects from the fixed boundary and interacts with
the incoming imposed wave. (e result is an oscillating
rectangular wave with sharp temporal gradient, the sharpness
of which depends on the amount physical damping present in
the system. Numerical simulation of undamped impact case
[31] shows that the dominant error is dispersive in nature and it
is most significant at the fixed boundary, as shown in
Figure 1(a). Fictitious oscillations observed here decrease
naturally with increase in system damping; i.e., depending on
amount of damping present in the system, the square profile of
the stress wave will assume smoother corners, thereby reducing
the oscillatory overshoots. In definition of the base motion
(Bms.) test case, medium is relatively flexible and low frequency
harmonic displacement is imposed at the base of a long rod.
(e overall motion is harmonic with smooth gradients in time.
In this setup, the dominant numerical error is of diffusive
nature; and it increases with increase in system’s damping.
Figure 1 shows the diffused profile of computed displacement
from a study using 384-element mesh with R � 1.

In general, numerical error from any computational model
is a combination of both diffusive and dispersive types.
Convergence characteristics and computational time of both
formulations for each dominant error type are examined next.

3.3. h- and R-Convergence. As noted earlier, the dominant
numerical error is of dispersive type in case of impact and of
diffusive type in case of base-motion disturbance. Numerical
studies indicate that regardless of the framework employed,
increasing damping has contradictory effects on dispersive

and diffusive errors. For impact loading, note from Figure 2
that, given the same computational resources, errors are
much smaller in cases that have higher damping values.

Note that physical viscosity reduces dispersive error; this is
because the sharp corners of the rectangular pulse in undamped
case, shown in Figure 1(a), which are responsible for solution
dispersion, are smoothened in direct proportion to physical
damping present in the system, hence reducing the dispersion.
On the other hand, since viscosity is diffusive in nature, it in-
creases the numerical error of diffusive type; i.e., given the same
computational resources, in thecaseofbase-motiondisturbance,
where diffusive-type numerical error is dominant, increase in
damping increases the computational error (Figure 3).

Comparing cLs and dGa h-curves in sub-figures of Fig-
ures 2 and 3 shows a difference of at least an order of mag-
nitude in numerical error. (e R-convergence curves
demonstrate that dGa solutions can be improved upon when
smaller time increments are employed; however, as can be
noted from Figures 2(a) and 3(a) for dGa:n12 curves, insuf-
ficient spatialmeshing, and, as will be shown later, insufficient
global continuity inhibit the R-convergence process.

3.3.1. h- and R-Convergence Rates. Effectiveness of h and R
refinements can be assessed bymeasuring the rate at which such
refinements reduce the computational error. h-convergence
rates based on mesh refinements defined in (8) and (9) are
computed by comparing the ratio of errors from two con-
secutive refinements to the ratio of their corresponding degrees
of freedom. Similarly, in computing R-convergence rates, in
accordance to (10) and (11), the ratio of numerical errors from
two R-refinements is compared to the ratio of corresponding R-
values. It is found that except for the computed stresses in Bms.
case, rate of h-convergence for all other cases is at most linear in
dGa and at most quadratic in cLs frameworks; i.e., by halving h
the accuracy will at most double in dGa and quadruple in cLs
computations. Furthermore, R-convergence rate in dGa studies
is also at most linear; i.e., halving time increment’s size will at
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Figure 1: Solution profiles for impact and base-motion test cases. (a) Imp. strain profile at the boundary. (b) Bms. displacement profile at the
free end.
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most double the accuracy.R-convergence in cLs framework will
be discussed separately. For all Imp. studies presented in Fig-
ure 2 except the critical damping case (2d) the convergence rate
varies between 3.3 and 4.4 for cLs and between 1.3 and 2 for dGa
cases. Errors in Bms. studies are high and di�cult to reduce.
Uniformmesh re�nements and time increment reduction seem
to yield at most a linear convergence rate in both dGa and cLs
studies. A closer look at the solution reveals the error’s source in
each case (Figure 4).

As can be seen from Figure 4(a), the error in cLs
computations is con�ned to the starting cycle, which dis-
appears quickly as time passes. �is error is due to incon-
sistency between the zero initial velocity and the nonzero
velocity condition at time zero coming from the imposition
of displacement function A sin (ωt) at x � 0. Since the error
is spatially and temporally con�ned, uniform space-time
mesh re�nement is not the best approach for removing this
error; a simple mesh grading that re�nes the region close to
the disturbed boundary resolves the issue, as shown in
Figure 5(a). Considering dGa test cases presented in

Figure 3, the nonconvergent h-re�nement at R � 1 would
have actually diverged if the unconditionally stable New-
mark-βmethod was not employed for evolving the solution.
Source of this error in dGa simulation is due to lack of
boundary conditions at the free end. Figure 4(b) displays the
violation of free-stress condition at x � L; which increases
with mesh re�nement. Error plots also indicate that using
higher values of R, i.e., smaller time increments along with
su�cient spatial meshing reduce the errors signi�cantly, as
shown in Figure 3. However, the �ctitious strain pro�les
shown in Figure 4(b) can be suppressed if similar to cLs
computations; C1 �nite elements are employed in dGa study
of this ill posed problem. Figure 5(b) shows the h- and R-
convergence curves from dGa:C1 computations and h-
convergence curves from dGa:C0 and cLs:C1 computations.
Among test cases considered here, Bms. has shown the
slowest rates of convergence, especially in cLs computations.
However, comparing Figures 3(b) and 5(b) clearly shows
that imposition of stress-free condition yields convergence
rates that are consistent with other dGa studies.
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Figure 2: Decrease in computational errors with increase in damping ratio for Imp. disturbance. (a) Imp. stress convergence, ξ � 0.01.
(b) Imp. stress convergence, ξ � 0.1. (c) Imp. stress convergence, ξ � 0.5. (d) Imp. stress convergence, ξ � 1.
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Figure 3: Increase in computational errors with increase in damping ratio for Bms. disturbance. (a) Bms. stress convergence, ξ � 0.01.
(b) Bms. stress convergence, ξ � 0.1. (c) Bms. stress convergence, ξ � 0.5. (d) Bms. stress convergence, ξ � 1.
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Furthermore, usingC1 elements, the errors are pushed down
signi�cantly through R-re�nement.

3.3.2. CPU Usage. �e two formulations of cLs and dGa
studied here pass through di�erent sets of computational
steps; a meaningful comparison of the two would be ac-
curacy versus cost; with cost being the CPU time used in
each study. Furthermore, since highest errors in Imp. studies
occur at lower damping and in Bms. studies at higher
damping values, two representative graphs, one for Imp. and
one for Bms., are presented in Figure 6. Each dGa curve
shows the relative computational time spent in each R-
convergence study and the cLs h-convergence study.

It can be noted that cLs produces least error for least
amount of CPU used, regardless of the error type.

3.4. p-Convergence. Minimum polynomial order required
by dGa formulation is one and for cLs, it is three. Increasing
p is known to increase computational accuracy in boundary
value problems. In studies conducted here, increasing p in
spatial interpolation is found to a�ect R-convergence of
stress away from the re�ecting boundary in dGa case, which
could also be realized at lower number of degrees of freedom
if C1 elements are used.

Comparison of Figures 7(a) and 7(b) to Figure 2(a) shows
that error in stresses computed away from the re�ecting
boundary cannot be reduced through R-re�nement; i.e., re-
ducing time increment’s size does not reduce the error.
However, this issue can be remedied by increasing the order
of polynomial, p, from one to three, as shown in Figure 8(a) or
simply using C1 �nite elements at p� 3, which requires less
Dofs for the same accuracy, as shown in Figure 8(b).
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In cLs studies, increasing p in space does not change the
error present in computations, regardless of space-time
meshing used. However, increasing p in time’s direction can
make the evolution divergent.�e issue is best demonstrated
by Figure 9. Here, for R � 0.1, i.e., large time increment of
Δt � 10Δ̂t, the cLs:h-convergence curve shows hyper-
convergence, whereas increasing p in either direction (x or t)
has no bene�t to the process and in fact can cause divergence
in case of crude spatial meshing when polynomial’s order is
increased in time.

3.5. R- and τ-Convergence in cLs Framework. In the space-
time least squares process duration of each time increment is
equal to the space-time slab’s size in temporal direction.
Duration of the time increment Δt is controlled by R, i.e.,

Δt � Δ̂t/R. When R � 1 mesh speed equals the undamped
wave speed; and in dGa studies, solutions were found to
improve forR> 1, i.e., �ner meshing in time. Obviously when
R< 1, the error increases and h-convergence in dGa would
have higher error compared to R � 1 curve. However, the
coupled nature of space and time in cLs formulation allows
for hyper-h-convergence to take place for large time steps.

Furthermore, since over each time increment the space-
time slab can be meshed in the temporal direction, a series of
studies into bene�ts of temporal meshing are also presented.
Here, Δt is meshed uniformly to study τ-convergence in cLs
formulation.

3.5.1. R-Convergence. Based on R-values listed in (11), cLs:R-
convergence for both test cases was investigated. Figure 10
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Figure 7: Imp. stress convergence at points away from boundaries: C0-p � 1, ξ � 0.01. (a) Imp. H- and R-stress convergence @x � 0.25.
(b) Imp. H- and R-stress convergence @x � 0.75.
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indicates that for values of R> 1, i.e., smaller time incre-
ments, little if any improvement is seen for the extra
computational e�ort spent in stepping through the extra
number of time increments. �is is in contrast to R-con-
vergence in the dGa-framework, which shows linear rate of
convergence in most cases.

An important point to note here is that errors in
computations with values of R close to one are almost the
same as those computed using R � 1. Also, note that for
R � 0.1 signi�cant error exists when crude spatial-mesh is
employed, however, h-convergence shows hyper-rates that
reduce the error quickly. Convergent process for R< 1 is a
signi�cant characteristic of cLs framework since it reduces
the computational cost signi�cantly by taking large time
increments. Convergence for R< 1 is not necessarily
monotonic, as shown in Figures 10(a) and 10(c), but for the
signi�cantly low value of R � 0.1h-convergence is mono-
tonic and hyper and requires ten times less number of
evolution steps as compared to Dof-equivalent R � 1
computations.

3.5.2. τ-Convergence. Over the space-time domain, h-re-
�nement means increasing the number of divisions in spatial
direction. Similarly, τ-re�nement implies an increase in the
number of divisions in temporal direction over a given time
slab with Δt duration. �ree uniform temporal divisions of
τ ∈ Δt/ 1, 2, 4{ } were considered for τ-convergence study.

As can be observed from Figure 11(a), τ-re�nement does
not improve the solution if R � 1. For R< 1, the τ-re�ne-
ment shows hyper-convergence in improving a crude so-
lution, as shown in Figure 11(b). However, note that
τ-re�nement applied to spatial meshes with R � 0.1 cannot
improve the solution beyond the accuracy o�ered by R � 1
for the same spatial meshing. �erefore, τ-re�nement does
not o�er any advantage in cLs framework; in fact, far more

resources would be needed when more than one division is
used in temporal direction of space-time slab.

4. Discussion

Accurate simulation wave propagation through media is an
important issue. Test cases simulating impact (Imp.) and
base motion (Bms.), with respective dominance in dispersive
and di�usive error types, were employed to investigate
convergence characteristics of dGa and cLs weak formula-
tions of damped wave (1). To this end, standard re�nements
were applied and numerical errors were plotted against the
degrees of freedom (Dofs) used by re�ned models. Fur-
thermore, since dGa and cLs pass through completely dif-
ferent sets of computational steps, graphs of error versus
total CPU time were also generated. Based on these studies,
several general remarks can be made with regard to accuracy
and convergence characteristics of cLs and dGa computa-
tional frameworks.

Depending on the numerical error type, being dispersive
or di�usive, mechanical damping present in the system
a�ects computational accuracy di�erently. Dispersive errors
are higher for lower damping values and di�usive errors are
higher for higher damping values. �is characteristic is true
for both dGa and cLs.

�e Bms. problem is ill posed in dGa-C0 framework as
shown in Figures 3 and 4(b); employment of C1 �nite el-
ements removes the issue and increases the accuracy in
dGa-R convergence signi�cantly as shown in Figures 5(b)
and 8. Rate of h-convergence is at most linear for dGa and at
most quadratic for cLs. A quadratic rate predicted by [23]
can not be realized in dGa because of its decoupled con-
stitution. Rate of R-convergence is at most linear for dGa
and is hyper h-convergence for small values of R in cLs
framework.
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Figure 11: Bms. cLs: h- and τ-displacement convergence—ξ � 0.1. (a)τ-convergence at R� 1. (b)τ-convergence at R� 0.1.

100

50
%

 E
rr

or
 in

 S
tre

ss
 @

 x
=0

 &
 0

≤t
≤1

10

5

0 100 200
Number of Dofs

300

R=0.1

R=0.25

R=0.5

R=0.75

R=0.8

R=0.9

R=1

R=2

R=4

(a)

1
0.500

%
 E

rr
or

 in
 S

tre
ss

 @
 x

=0
 &

 0
≤t

≤0
.0

1

0.100
0.050

0.010
0.005

R=0.1

R=0.25

R=0.5

R=0.75

R=0.8

R=0.9

R=1

R=2

R=4

60 10080 140120
Number of Dofs

180160

(b)

1000

100

%
 E

rr
or

 in
 D

isp
la

ce
m

en
t

@
 x

=1
0 

&
 0

≤t
≤1

10

1

0.1

0 100

R=0.1

R=0.25

R=0.5

R=0.75

R=0.8

R=0.9

R=1

R=2

R=4

200
Number of Dofs

300

(c)

1
0.500

%
 E

rr
or

 in
 D

isp
la

ce
m

en
t

@
 x

=1
 &

 0
≤t

≤0
.0

1

0.100
0.050

0.010
0.005

R=0.1

R=0.25

R=0.5

R=0.75

R=0.8

R=0.9

R=1

R=2

R=4

60 10080 140120
Number of Dofs

180160

(d)

Figure 10: cLs R-convergence of stress and displacement for Bms. and Imp.—ξ � 0.1. (a) Bms. R-stress convergence. (b) Imp. R-stress
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5. Conclusions

Even though space-time coupled framework has been
promoted by different researchers, the extra dimension of
the computational domain makes it unappealing and hence
not commonly utilized in study of real world problems. (e
focus of this research has been to investigate the compu-
tational characteristics of cLs and compare them to those of
dGa for viscoelastic wave (1). (e first is the space-time
coupled least squares (cLs) formulation, which was recently
employed for solving the undamped wave equation [31].(e
second is the widely utilized space-time decoupled Galerkin
(dGa) formulation along with the unconditionally stable
Newmark-β method. Comparisons were made based on
accuracy versus Dofs as well as accuracy versus CPU time
spent. Two test cases, each susceptible to a particular type of
numerical error, i.e., dispersive or diffusive, were studied and
some general conclusions on computational characteristics
of the methods were made.

R-convergence in cLs has little or no effect for R values
around one and R> 1; however, for small values, e.g., for
R � 0.1 for which the time increments are ten times larger,
h-convergence is of high rate and stable Figure 10. It was
established that for R � 1 numerical errors from dGa
computations are in general one to two orders of magnitude
larger than error in cLs results for the same number of Dofs,
as shown in Figures 2 and 3. Results from dGa studies re-
quire significantly smaller time increments, e.g., R � 32,
yields comparable accuracy to cLs at R � 1. Convergence
rate is not the same for all spatial points; this was seen in Imp.
problem where increasing R has no effect in lowering error
in stress profile predicted by dGa at points away from the
reflecting boundary, as shown in Figure 7. p-convergence in
dGa and cLs has little to no effect on numerical accuracy, as
shown in Figure 8(a). However, it has significant effect in
dGa framework where R-convergence, for points away from
the boundaries, was shown to be inhibited when p � 1. In
the cLs framework, increasing p from its minimum value of
three in the spatial direction has no effect on accuracy.
However, increasing p in temporal direction makes the
evolutionary process divergent as shown in Figure 9.
τ-convergence in cLs, where space-time slabs are refined in
temporal direction, shows no improvement on computa-
tional accuracy as shown in Figures 11(a) and 11(b). CPU
time used by each framework while improving computa-
tional accuracy was constructed for cases with highest nu-
merical error. Comparison shows cLs requires less time than
dGa to reach a certain level of accuracy.

It was found that mechanisms which allow for refine-
ments over the coupled domain in cLs are not necessarily
beneficial to the process; e.g., τ refinement where time in-
crement Δt is meshed was shown to be counterproductive as
shown in Figure 11. Also contrary to dGa, where reducing Δt
(or increasing R) can reduce the error at a linear rate, cLs
shows negligible gain in accuracy for R> 1, as shown in
Figure 10, hence rendering the process costly.

Convergence rates were found to be at most linear in
dGa formulation from the h- and R-convergence studies.
(is rate does not change with higher p-level or higher global

continuity; however, employment of C1 elements was found
to be essential in applying free end condition in base-motion
test case. Except for a meshing issue in study of Bms. case, h-
convergence rates in cLs studies were at most quadratic for
R � 1. While taking smaller time increments, i.e., R> 1 was
found to be without merit, large time steps, in particular
R � 0.1 was found to be stable with hyper-h-convergence
allowing for reasonably refined spatial mesh evolving at R �

0.1 to have comparable accuracy to the 10 times slower
evolution of the same spatial mesh at R � 1. However, it
should be noted that while evolution of the solution over
large time increments of R � 0.1 appears to be stable for
cases considered here, it would most likely fail if disconti-
nuities exist, e.g., multimaterial interface.

Coefficient matrices of dGa formulation are constructed
over the one-dimensional domain x; the resulting system of
equations is then evolved in time according to Δt. (e cLs
coefficient matrix is formed over the two-dimensional do-
main (x, t) which requires relatively more computational
resources than dGa. However, it was observed that the extra
demand by cLs is offset by the need of dGa for very small
time steps; i.e., for comparable accuracy ΔtcLs≫ΔtdG a, i.e.,
dGa requires time steps with more orders of magnitude
compared to cLs to yield the same accuracy. It should be
noted that, for very small time increments, round-off errors
can become a significant source of error. In continuation of
this work, nonlinear models are considered.
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