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Wave responses of the rectangular barge in variable bathymetry are investigated by combining the Boussinesq-type equations and
the step method. �e highly accurate Boussinesq-type equations in terms of velocity potential are adopted for simulating the
evolution of waves along the inclined beach. Hydrodynamic coe�cients of a rectangular barge �oating on the inclined bottom are
calculated by the step method in the frequency domain. Based on the impulse response function method, the motions of the barge
can be predicted in the time domain. �e Haskind relation is used to reform the wave exciting forces, and the mean o�set in the
sway motion is also given based on the mean drift force. �e wave responses of the barge at di�erent locations along the inclined
beach are measured in the experiments. Compared with experimental results, the solutions of the Boussinesq-step method present
an overall good agreement.

1. Introduction

Predicting wave responses of a �oating body in restricted
water depth has been the subject of extensive e�ects over the
years. With the development of LNG (lique�ed natural gas)
consumption, projects of LNG o�oading terminals and
LNG �oating storage units are continually carried out.
O�oading terminals or FSRUs (�oating storage regasi�-
cation units) would be located in exposed shallow water area.

�e major challenges of predicting wave responses of a
�oating body in variable bathymetry are the nonlinearities of
wave propagation in the coastal zone and the wave-structure
interactions considering the e�ects of the seabed. A variety of
numerical models have been developed to solve the complex
problem. With the increase of computational powers, various
computational �uid dynamic (CFD) models have been ap-
plied, such as models based on Reynolds-averaged Navier-
Stokes (RANS) equations (Stern et al. [1]; Rijnsdorp and
Zijlema [2]) and models based on smoothed particle hy-
drodynamics (SPH) methods (Bouscasse et al. [3]; Ren et al.
[4]). However, computational limitations restrict the appli-
cation of such highly detailed models to relatively small scales,
spanning only a few wavelengths and wave periods.

Potential �ow theory has also been a popular approach to
solve the wave-structure interactions. Both the boundary
element method (BEM) (Belibassakis [5]; You and Faltinsen
[6]; Xiong et al. [7]) and the �nite element method (FEM)
(Yan and Ma [8]; Ma and Yan [9]) have been developed to
simulate wave responses of a �oating body in o�shore and
coastal regions.

Coupled approaches including wave propagationmodels
and wave-ship interaction models have been built (Bingham
[10]; Pinkster and Naaijen [11]; Wim van der and Ivo [12];
Dobrochinski [13]). Following Bingham [10], the Boussi-
nesq-type equations in terms of velocity were used to predict
the transformation of waves from the deep water into the
harbour where the ship was moored. Linear wave radiation
and di�raction forces were computed using a constant-
strength panel method in the frequency domain. �e
equation of motions in the time domain was used for
simulating the motions of a moored ship. Di�erent from
Bingham [10], a time-domain panel method was applied to
determine the scattering of incident waves in Wim Van der
and Ivo [12].

In this paper, wave responses of a rectangular barge
moored at di�erent positions along an inclined beach are
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studied based on the hybrid Boussinesq-step method. Wave
propagation along the inclined beach is simulated by highly
accurate Boussinesq-type equations in terms of velocity
potential which is proposed in Bingham et al. [14]. Hy-
drodynamic coefficients of the barge in variable bathymetry
are obtained based on the step method where the effects of
the seabed can be considered. )e motions of the barge in
waves are calculated by the impulse response function ap-
proach. Here, the wave exciting forces are reformed by the
Haskind relations which include the incident wave quan-
tities and solutions to the radiation problem. )e mean
offsets of sway motions are given based on the mean drift
force. )e solutions of the Boussinesq-step method present
an overall good agreement with the experimental results.

2. Numerical Methods

2.1. Boussinesq-Type Equations. )e potential theory which
assumed inviscid, irrotational, and incompressible flow is
adopted. A Cartesian coordinate system is adopted here, with
the origin located on the still water plane and the z-axis
pointing vertically upwards. )e boundaries of the fluid do-
main are given by the bottom at z � −h(x) and the free surface
at z � η(x, t) with x � [x, y]. Following Zakharov [15], the
following free surface boundary conditions are written in
terms of the velocity potential 􏽥Φ � Φ(x, η, t) and the vertical
velocity 􏽥w � (Φz)z�η defined directly on the free surface:

ηt + ∇η · ∇􏽥Φ − 􏽥w(1 + ∇η · ∇η) � 0,

􏽥Φt + gη +
1
2
(∇ 􏽥Φ)

2
−
1
2
􏽦w

2
(1 + ∇η · ∇η) � 0,

(1)

where ∇ � [z/zx, z/zy] is the horizontal gradient operator,
and g is the gravitational acceleration.

)e Laplace equation in the fluid domain and the kine-
matic boundary condition on the bottom are given as follows:

∇2Φ +Φzz � 0,

w + ∇h · ∇Φ � 0,

z � −h(x).

(2)

Following Bingham et al. [14], Taylor series expansion of
the solution Φ(x, z, t) about an arbitrary vertical position
z � ẑ(x) is given by

Φ(x, z, t) � Φ̂ +(z − ẑ(x))ŵ +
1
2
(z − ẑ(x))

2Φ̂
(2)

+ · · · , (3)

where

Φ̂ � Φ̂
(0)

� Φ(x, ẑ(x), t),

ŵ � Φ̂
(1)

�
zΦ(x, ẑ(x), t)

zz
,

Φ̂
(n)

�
znΦ(x, z, t)

zzn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�ẑ(x)

, n � 2, 3, · · · ,∞.

(4)

Substituted into the Laplace equation, a recursion re-
lation of different order vertical derivatives of velocity po-
tential Φ̂(n)

can be obtained.

Φ̂
(n)

�
−∇2Φ̂

(n− 2)
+ 2∇ẑ · ∇Φ̂

(n− 1)
+ ∇2ẑ · Φ̂

(n− 1)

1 + ∇ẑ
2 . (5)

)e recursion relation can be simplified based on as-
suming a small bottom slope that is ẑ(δx) where δ≪ 1.
Collecting terms at each order of δ and keeping terms up to
δ, we get

Φ̂
(n)

� −∇2Φ̂
(n− 2)

+ 2δ∇ẑ · ∇Φ̂
(n− 1)

. (6)

Successively solving for n � 2, 3, · · · ,∞, Φ can be
expressed in terms of Φ̂ and ŵ. In order to improve the
accuracy of the truncated approximation, an enhancement
operator with new expansion variables Φ̂∗, ŵ

∗ is adopted.

Φ̂ � Lp(ẑ∇)Φ̂
∗
, ŵ � Lw(ẑ∇)ŵ

∗
. (7)

Finally, the Taylor series expansion of velocity potential
can be reformed and expressed in terms of velocity potential
and vertical velocity defined on an arbitrary vertical position.

Φ(x, z, t) � J01 +δ∇ẑ · J11p∇􏼐 􏼑Φ̂
∗

+ J02 +δ∇ẑ · J12p∇􏼐 􏼑ŵ
∗
.

(8)

)e same procedure can be applied to the horizontal and
vertical velocities

u(x, z, t) � J01∇ + δ∇ẑJ11u􏼐 􏼑Φ̂
∗

+ J02∇ + δ∇ẑJ12u􏼐 􏼑ŵ
∗
.

w(x, z, t) � −J02∇
2

− δ∇ẑ · J12w∇􏼐 􏼑Φ̂
∗

+ J01 + δ∇ẑ · J11w∇􏼐 􏼑ŵ
∗
.

(9)

Here, Φ̂∗ and ŵ
∗ are unknown variables, and J01, J02,

J11p, J12p, J11w, J12w, J11u, J12u are known operators defined
by Bingham et al. [14].

)e numerical solution of the above-described Boussi-
nesq-type model has been implemented based on the finite
difference method. )e details of the method can be found in
Jamois [16]. A structured grid of Nx by Ny points is dis-
tributed over the rectangular still water plane. Homogeneous
Neumann boundary conditions at the side walls of the domain
are imposed by reflecting the finite difference coefficients for a
function that is symmetric about the boundary, and thus, all
schemes are effectively centred. Free surface boundary con-
ditions are evolved forward from initial conditions using the
classical explicit fourth-order Runge–Kutta scheme (Quar-
teroni et al. [17]). )is linear system of equations is solved
using GMRES iterative scheme (Saad and Schultz [18]) pre-
conditioned by an incomplete LU factorisation.

2.2. StepMethod. In the framework of potential flow theory,
the hydrodynamic coefficients of the barge with the inclined
bottom are solved by the step method in the frequency
domain. )e variable bathymetry region is decomposed as a
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series of horizontal steps and defined as a succession of
rectangular subdomains in Figure 1.

Eigen-function expressions are used to express the ve-
locity potential in each subdomain. For the first-order
diffraction problem, the velocity potential in each sub-
domain j on the left and right sides of barge can be written as
follows (Liu et al. [19]):

ϕj(x,z) �
cosh kj0 z + hj􏼐 􏼑

cosh kj0hj

Bj0e
ikj0 x−xl( ) + Cj0e

− ikj0 x−xr( )􏼔 􏼕

+ 􏽘
∞

m�1
cos kjm z + hj􏼐 􏼑

· Bjme
−kjm x−xl( ) + Cjme

kjm x−xr( )􏼔 􏼕.

(10)

Also, for the subdomains j below the barge, the velocity
potential can be written as follows:

ϕj(x, z) � Bj0 + Cj0
x

L
,

+ 􏽘
∞

m�1
cos λjm z + hj􏼐 􏼑

· Bjme
− kjm x− xl( ) + Cjme

kjm x− xr( )􏼔 􏼕.

(11)

)e wave numbers kjm and λjm satisfy the following
equations:

ω2
� gkj0tanhkj0hj � −gkjm tan kjmhj,

λjm �
mπ

hj − d
.

(12)

Here, L is the length and d is the draft of the barge. xl and
xr are the left and right horizontal coordinates of each
subdomain, respectively. hj is the depth of each subdomain.
ω is the circular frequency of the incident wave. Bjm and Cjm

are unknown coefficients that can be solved based on the
continuity of velocity potential and horizontal velocity along
the connected lines:

ϕj � ϕj+1
zϕj

zx
�

zϕj+1

zx
. (13)

)e radiation potential φj can be given by adding up a
particular solution to the results obtained from the fixed
barge. For the heave and roll motions, the particular solu-
tions are expressed as follows:

z + hj􏼐 􏼑
2

− x
2

2 hj − d􏼐 􏼑

x − xg􏼐 􏼑

2 hj − d􏼐 􏼑

x − xg􏼐 􏼑
2

3
− z + hj􏼐 􏼑

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (14)

where xg is the horizontal coordinate of the center of gravity.
Moreover, hydrodynamic coefficients are calculated by in-
tegrating radiation potential along the wetted surfaces of
barge.

For the irregular wave, a superposition of first-order
wave components with different amplitudes and frequencies
can be adopted. )e second-order approximation produces
the wave loads oscillating with the sum and difference
frequencies. )erefore, second-order loads, even though
much smaller than first-order ones, cover a much wider
range of frequencies. Difference frequency second-order
loads are responsible for much behavior as the slow drift
motion of moored structures (Molin [20]). Here, the mean
offsets of the barge are considered based on the mean drift
force in irregular waves computed by Liu et al. [19].

Fd � 2􏽚
∞

0
S(ω)fd(ω)dω. (15)

S(ω) is the incident wave spectral density calculated by
the numerical wave tank based on the Boussinesq-type
equations, and fd(ω) is the normalized drift forces by
amplitudes squared in regular waves obtained from the
step method. Two well-known formulations of wave drift
force are as follows: the far-field method based on mo-
mentum considerations introduced by Maruo [21] and
extended by Newman [22]; the near-field method based
on direct pressure integration proposed by Pinkster and
Van Oortmerssen [23]. For the variable bathymetry, the
control contour in the far-field method consists of two
vertical cuts away from the barge and the sea floor in-
between. But the rectangular contour in-between the
barge and varying bottom exhibit poor numerical con-
vergence (Liu [24]). So the near-field method is adopted
here for the values of drift force (Pinkster and Van
Oortmerssen [23]).

2.3. Equations ofMotions. )e general equations of motions
in the time domain can be written as follows (i � 1, . . . , 6):

􏽘
6

j�1
Mij + mij􏼐 􏼑 €xj + 􏽚

t

−∞
Kij(t − τ) _xj(τ)dτ+ Cijxj􏼨 􏼩 � Fi.

(16)

Here, Mij is the inertia matrix, and mij is the infinite
frequency added mass matrix. Kij is the retardation func-
tion, and Cij is the matrix of hydrostatic restoring stiffness.

j j j

0

z

x

Figure 1: Sketch of a succession of rectangular subdomains.
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xj is the motions of the floating body. Fi is the time-varying
exciting forces (Cummins [25]).

A quadratic damping term, nonlinear viscous roll
damping contributions, is added on the right side of the roll
equation of motion:

Cv4 � −
1
2
ρCdB

4
L| _α| _α, (17)

where Cd is drag coefficient and equal to 0.2. B is the beam of
barge, and L is the length. _α is the roll velocity. )e quadratic
viscous damping for drift motion is given by

−
1
2
ρCdLd| _Y| _Y. (18)

)e drag coefficient was taken from still water decay
tests, which gave Cd � 5 at 54 cm depth, Cd � 6 at 29 cm
depth, and Cd � 7 at 21 cm depth. _Y is the sway velocity.

)e retardation functions and the frequency-indepen-
dent added masses are related to the added masses and
damping coefficients which can be calculated by the step
method in the frequency domain.

Kij(τ) �
2
π

􏽚
∞

0
bij(ω) cos (ωτ)dω,

mij � aij(Ω) +
1
Ω

􏽚
∞

0
Kij(t) sin (Ωt)dt,

(19)

where Ω is an arbitrarily chosen value of the frequencies. aij

and bij are the added masses and damping coefficients,
respectively.

)e wave exciting forces Fi can be expressed in various
ways, but it is convenient here to employ the Haskind relations
and write it in terms of incident wave quantities and solutions
to the radiation problem.)e time-varying wave exciting force
can be calculated by the inverse Fourier transforms.

Fi(t) �
1
2π

􏽚
∞

−∞
Fi(ω)e

iωt
dω. (20)

Also, the exciting force in the frequency domain can be
expressed as follows:

Fi(ω) � B
Sb

d x
→

P( x
→

,ω)ni( x
→

),

+ iωρB
Sb

d x
→φi( x

→
,ω)Φn( x

→
,ω).

(21)

Φ is the incident wave velocity potential. A subscript n is
used to indicate the operation n · ∇, with n is the normal
vector to the equilibrium wetted body surface Sb. )e dy-
namic pressure P and the velocity ∇Φ on the free surface can
be given based on the solutions of Boussinesq-type equa-
tions. φi is the solution to the ith-mode impulsive velocity
radiation problem solved by the step method. ni is the
generalized normal vector.

3. Wave Responses of Barge

3.1.Experimental Setup. Experiments were carried out in the
BGO-first offshore tank located in La Seyne-sur-Mer, and

the preliminary researches of experimental data were given
by Liu et al. [19]. )e basin has a total length of over
40meters and a width of 16 meters. In the experiments, the
false bottomwas raised and inclined at a slope of 5%, starting
from a depth of 1.05m by the wavemaker side, and emerging
by 15 cm at its other end (Figure 2).

)e rectangular barge model has a length of 2.47m, a
beam of 0.6m, and a draft of 0.12m. )e coordinate system
and the dimensions of barge have been marked in Figure 2.
)e center of gravity (CoG) is located at 0.135m above the
keel line, and the roll radius of gyration is equal to 0.19m.
Four aerial lines connected to the barge corners at the CoG
level and terminated at the basin walls.)e top view and side
view of experimental settings are shown in Figures 3 and 4.
Each line was constituted by a steel cable of 1mm in di-
ameter and terminated by springs. )e stiffness of each line
numbered from 1 to 4 was 72.7N/m, 73.7N/m, 72.9N/m,

Figure 2: Barge in the basin.

Line anchored n°1 Line anchored n°2

Line anchored n°4 Line anchored n°3

Wave

Barge

2.47 m
COGX

Y

0.6 m

Figure 3: Aerial lines connected to the barge in the basin (top
view).

Line anchored n°1 Line anchored n°4Barge

0.6 m

0.135 m 0.12 m

Figure 4: Aerial lines connected to the barge in the basin (side
view).
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and 72.1N/m, respectively. )e global sway stiffness was
150N/m yielding the sway natural period of around 10
seconds.

)e irregular waves of Pierson–Moskowitz spectra with
the peak period (Tp) of 1.2 seconds were selected and the
significant wave heights (Hs) were equal to 2, 4, and 6 cm
respectively. Test duration in the irregular waves was 1200 s.
)e water depths of different barge locations were 54 cm
(L1), 29 cm (L2), and 21 cm (L3) (Figure 5).)e motions of
barge were measured by the optical system KRYPTON
RODYMCMM.)e system is a camera-based measurement
system that triangulates the position of the target for con-
tactless measurement and evaluation of six degrees of
freedom motions.

3.2. Numerical Results. )e wave responses of barge in
variable bathymetry can be calculated based on the equa-
tions of motions in the time domain. Hydrodynamic co-
efficients are obtained from the step method where the
variable bathymetry can be considered. It is important to
stress that the incident wave is a long-crested beam wave and
the wavemaker line is parallel to the longitudinal axis of
barge and the inclined bottom plane. )e bottom is not
oriented arbitrarily. Only the sway, heave, and roll barge
motions in the vertical plane are considered. So the hy-
drodynamic coefficients of barge are reasonably simplified as
two-dimensional results of the step method multiplied by
the length of the barge. )e fluid domain is divided into 100
rectangular subdomains and the range of computational
frequencies is set from 0.2 rad/s to 20.0 rad/s with the in-
terval of 0.2 rad/s.)e Haskind relation is used to reform the
wave exciting force in terms of incident wave quantities
given by the Boussinesq-type equations.

)e time histories of sway, heave, and roll motions of
barge calculated by the numerical model are shown in
Figures 6–8. )e significant waveheight is 0.06m, and the
peak period is 1.2 second. )e water depth of barge location
is 21 cm.

As shown in Figures 9–11, the spectral densities of sway
motions at different locations (L1, L2, and L3) are shown
under different incident waves. With the augment of sig-
nificant waveheights, the peak values of spectral densities of
sway motions become higher. Meanwhile, the spectral
densities at locations (L2 and L3) are obviously higher than
at the location L1 under the same incident wave conditions.
)e coupled sway and roll motions can be found in both the
numerical and experimental results, which lead to the
second peak around 6 rad/s. )e significant discrepancy
between the numerical results and the experimental data can
be found at the location L1. )e discrepancy is due to the

viscous damping of coupled motions which should be
studied further.

For the heave motions in Figure 12, smaller peak values
of spectral densities can be found with the lower water depth
due to the effects of the bottom. At location L3, the spectral
densities of numerical results and experimental data are
different (Figure 12(c)). For the shallow-water conditions,

Free surface

bottom

L1 L2 L3

Figure 5: Locations of barge in the basin.
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Figure 6: )e time histories of sway motions at L3. Tp �1.2 s,
Hs � 0.06m.
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Hs � 0.06m.

-10
-8
-6
-4
-2
0
2
4
6
8

10

ro
ll 

(d
eg

)

0 50 150 200 250 300 350 400100
time (s)

Figure 8: )e time histories of roll motions at L3. Tp �1.2 s,
Hs � 0.06m.
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the nonlinear interaction between shallow-water waves and
barge should be studied further.

)e spectral densities of roll motions are compared in
Figure 13 with the peak period of incident waves 1.2 second
and the significant wave height of incident waves 0.02meter.
)e numerical results of spectral densities are a little lower
than the experimental data at different barge locations (L1,

L2, and L3).)e quadratic damping term for considering the
viscous roll damping contributions is not very applicable for
shallow-water conditions.

)e mean drift force of the barge in irregular waves is
calculated by equation (19). )e spectral density of the
incident wave is obtained from the Boussinesq-type
equations, and normalized drift force is given by the step
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Figure 9: Comparisons of spectral densities of sway motions: Tp �1.2 s, Hs � 0.02m, L1 (a), L2 (b), L3 (c).
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Figure 10: Comparisons of spectral densities of sway motions: Tp �1.2 s, Hs � 0.04m, L1 (a), L2 (b), L3 (c).
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method and near-field equation. )e mean offset is equal
to the mean drift force divided by the 150 N/m stiffness.
)e following tables (Tables 1–3) show the calculated and
measured mean offsets (normalized by the significant

wave height squared) for different sea states and initial
locations of barge. Viewing from the comparisons in the
tables, the numerical model can predict well the mean
offsets of sway motions.
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Figure 11: Comparisons of spectral densities of sway motions: Tp �1.2 s, Hs � 0.06m, L1 (a), L2 (b), L3 (c).
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Figure 12: Comparisons of spectral densities of heave motions: Tp �1.2 s, Hs � 0.04m, L1 (a), L2 (b), L3 (c).

Advances in Civil Engineering 7



4. Concluding Remarks

)e hybrid Boussinesq-step method was constructed to
predict wave responses of a rectangular barge moored at
different positions along the inclined beach. Highly ac-
curate Boussinesq-type equations in terms of velocity
potential were used for simulating the propagation of
waves. Hydrodynamic coefficients of barge with inclined
bottom were calculated by the step method in the frequency

domain. )e motions of the barge in the irregular waves
were computed based on the impulse response function
approach, and the wave exciting forces were reformed by
the Haskind relations.

)e hybrid Boussinesq-step method accounts for the
most important physical processes involved in the floating
body in restricted water while keeping the computational
burden modest. )e spectral densities of sway, heave, and
roll motions of barge with different water depths were
studied, and the numerical results coincided with the ex-
perimental data. )e mean offsets of sway motions also
present an overall agreement with the results measured in
the experiments. )e flexibility of this combination of
methods is attractive. Different geometrical bottom, oblique
waves, and hydroelasticity of the floating body can be
suggested as a topic of further research based on the
computational model.
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Figure 13: Comparisons of spectral densities of roll motions: Tp �1.2 s, Hs � 0.02m, L1 (a), L2 (b), L3 (c).

Table 2: Mean offsets in Tp � 1.2 s, Hs � 4.0 cm.

Tp � 1.2 s, Hs � 4.0 cm L1 L2 L3

Measured (m− 1) 8.5 9.7 12.7
Calculated (m− 1) 7.8 9.0 11.2

Table 3: Mean offsets in Tp � 1.2 s, Hs � 6.0 cm.

Tp � 1.2 s, Hs � 6.0 cm L1 L2 L3

Measured (m− 1) 8.4 9.5 11.8
Calculated (m− 1) 7.8 8.9 11.1

Table 1: Mean offsets in Tp � 1.2 s, Hs � 2.0 cm.

Tp � 1.2 s, Hs � 2.0 cm L1 L2 L3

Measured (m− 1) 8.6 9.8 13.5
Calculated (m− 1) 7.9 9.1 11.2
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