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Pressure �uctuations are a critical phenomenon that can endanger the safety and stability of hydraulic structures, especially stilling
basins. Hence, the accurate estimation of the dimensionless coe�cient of pressure �uctuations (CP′) is critical for hydraulic
engineers. ­is study proposed predictive soft computing models to estimate CP′ on sloping channels. ­erefore, three robust soft
computing methods, including extreme learning machine (ELM), group method data of handling (GMDH), and M5 model tree
(M5MT), were used to estimate CP′. ­e results revealed that ELM was more accurate than GMDH and M5MTmethods when
comparing statistical indices, including correlation coe�cient (CC), root mean square error (RMSE), mean absolute error (MAE),
scatter index (SI), index agreement (Ia), and BIAS values. ­e performance of ELM was found to be more accurate (CC= 0.9183,
RMSE= 0.0067, MAE= 0.0051, SI = 11.88%, Ia = 0.9569) when compared with the results of GMDH (CC= 0.8818, RMSE= 0.0078,
MAE= 0.0058, SI = 13.89%, Ia = 0.9361) and M5MT (CC= 0.6883, RMSE= 0.0120, MAE= 0.0090, SI = 21.28%, Ia = 0.7905) in the
testing stage. In addition, the BIAS values revealed that ELM slightly overestimated the values of CP′, especially at the peak point
compared with GMDH and M5MTresults. Overall, the suggested soft computing techniques worked well for predicting pressure
�uctuation changes in the hydraulic jump.

1. Introduction

Stilling basins are the most widely used dissipation hy-
draulic structures of large dams. Energy dissipation in
stilling basins is related to hydraulic jumps with high
turbulent �ow. Hydraulic jump is the common phe-
nomenon for �ow energy dissipation in the stilling basins.
­is phenomenon transforms the supercritical �ow into a
subcritical �ow at a short distance. ­is is also accom-
panied by large-scale turbulence, surface waves, air en-
trainment into the �ow, an increase in �ow depth, and
considerable energy dissipation in the water �ow [1, 2].

­e turbulent �ow within stilling basins is related to the
movement of large-scale vortices and severe pressure
�uctuations, which may cause signi¢cant damage in
stilling basins through cavitation, erosion, lifting force,
and material fatigue [3]. ­e importance of pressure
�uctuations in hydraulic jumps was revealed after the
destruction of the Karnafoli and Malpaso dams in Ban-
gladesh and Mexico, respectively [4]. ­erefore, pressure
�uctuations in hydraulic structures have included a
considerable volume of hydraulic engineers’ investiga-
tions. Hydraulic models are standard tools for measure-
ments of pressure �uctuations. Experimental studies were
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carried out for the analysis of characteristics of pressure
fluctuations at the flip buckets and stilling basins.

Soft computing methods are alternative tools com-
pared with traditional regression approaches and ana-
lytical solutions for modeling complicated problems and
systems [5]. Moreover, soft computing techniques are
much more cost-effective and have less run time than
experimental studies. It is noteworthy that soft computing
models are newer tools than experimental studies. ,e
capability of different soft computing approaches has been
proven for modeling CP

′ in the hydraulic jump [6–8].
,ese models were developed and assessed using exper-
imental data. ,e suggested soft computing methods were
more accurate than conventional regression schemes for
predicting CP

′ during the hydraulic jump. Moreover,
Samadi et al. [9] modeled dynamic pressure distribution
in flip bucket spillways using a variety of soft computing
approaches and provided simple, high-precision mathe-
matical expressions for estimating it.

According to the literature review’s assessment, there
were few investigations into the performance of soft com-
puting techniques for estimating pressure fluctuations in
hydraulic structures. In addition, the applications of ELM,
GMDH, and M5MTmethods have not yet been reported in
estimating pressure fluctuations. However, the results
mentioned above show that soft computing methods are a
desirable alternative to model pressure fluctuations in hy-
draulic structures.

,e ELM algorithm is an advanced method that is
constructed on a single hidden layer feed-forward neural
network (SFLN) [10]. ,e ELM improves training time
and accuracy by transforming training data into fixed-
length batches and only updating the weight without
retraining the trained samples. ,e ELM approach has
been successfully reported for longitudinal dispersion
coefficients in water pipelines [11], compressive strength
concrete estimation [12], and predicting total dissolved
gas [13].

,e group method of data handling is a set of induction
techniques that can be used to make mathematical modeling
of multi-parametric datasets. GMDH algorithm uses an
inductive approach to sort and order more complex poly-
nomial models, with an external criterion selecting the best
result. ,e application of GMDH has been widely and
successfully carried out in scour depth estimation and water-
related engineering problems [14–16].

M5MT is a common decision tree method that uses
piecewise multiple linear regression equations to approxi-
mate nonlinear functions. ,eM5MTwas applied to predict
drought events [17], scour depth [15, 18], alga growth in
reservoirs [19], the capacity of shallow foundations [20], and
groundwater modeling [21].

,e major goal of this study is to investigate the use-
fulness and capability of ELM, GMDH, and M5MT for
predicting CP

′ is taking place during the hydraulic jump on
sloping channels. ,e author’s knowledge indicated that
ELM, GMDH, and M5MT applications had not been in-
vestigated yet for prediction CP

′. ,erefore, the current

research in the first study evaluates the ability of ELM,
GMDH, and M5MT to predict CP

′ occurring in hydraulic
jumps on sloping channels.

2. Materials and Methods

,e data description and soft computing methods, including
ELM, GMDH, and M5MT, are briefly explained in the
following subsections.

2.1. Data Description. Data were collected from reliable and
published experimental results of Gunal [22]. During the
hydraulic jump phenomenon in the laboratory, pressure
fluctuations occurred on the sloping channel. Gunal’s [22]
experiments were conducted in a 91 cm wide and 320 cm
long rectangular flume. ,e inclined angles of the sloping
channel were set to 10, 20, and 30 degrees. ,e cross-sec-
tional representation of the hydraulic jump downstream of
the sloping channel is displayed in Figure 1.

Guven [7] determined the relationship between
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where P(x, y) is the mean pressure, P(x, y, n∆t) is the value
instantaneous of pressure, N is the number of data collected
in a discrete-time series, and ∆t is the sampling time step.

In (1), yt is the depth of tail-water downstream of the
stilling basin; y1 is the gate opening of sluice gate; V1 is the
velocity issuing from the gate; x is the distance between the
horizontal and inclined parts’ intersection; g is the accel-
eration of gravity; ρw is water’s mass density; and θ is the
angle of the sloping section of the flume. Finally, the di-
mensional analysis provided the dimensionless functional
form of (1) as follows [7]:
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,
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are the dimensionless coefficient of pressure fluctuations and
inflow Froude number, respectively. CP

′ is an important
factor used to describe pressure fluctuations.

2.2. Data Preparation for the Development of the Soft Com-
putingApproaches. Overall, 112 values were obtained for CP

′
under different flow conditions by recording pressure data.
,e statistical indices in the testing and training data sets
should be similar; otherwise, we will be unable to test our
models under certain hydrodynamic conditions that are
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designated for the train set [23]. ­erefore 80% of all data is
randomly chosen for training, and the rest is used to assess
the created models. ­e major statistical parameters of the
testing and training data set are shown in Table 1. As seen in
Table 1, the statistical parameters for testing and training
subsets were close.

2.3. Extreme Learning Machine (ELM) and Model
Development. Although the standard backpropagation
neural network has several advantages, it also has some
limitations, including tuning the parameter settings by
selecting the number of hidden layers, momentum co-
e�cient, and learning rate values. It su¦ers from the it-
erative learning process used to determine the weights,
which takes an extended period. In addition, there is a
possibility of a local minimum. By contrast, ELM provides
it with the advantages of rapid convergence, fewer pa-
rameters to tweak, and a high degree of generalization
[24].

­e ELM comprises a single hidden layer that contains L
nodes. ­e following equation is valid for N arbitrarily
separate samples (xi, ti), with an activation function g(x),
randomly distributed weights (wi), randomly distributed
biases (bi), and output weights (βi).

∑
L

i�1
βig wixj + bi( ) � Oj, j � 1, . . . .N, (4)

where β � [β1, . . . . . . , βI]
T is a vector containing the output

weights of the hidden layer of L nodes and the output node.
It is possible to approximateN samples with zero error using
typical SLFN with L hidden nodes and activation function
g(x). ­is means that

∑
N

j�1
‖Oj − tj‖ � 0. (5)

In other words, there are βi, wi, and bi such that

∑
L
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And

T � tT1 . . . t
T
L]
T
.[ (8)

­en,

Hβ � T. (9)

H is referred to as the neural network’s hidden layer
output matrix. Huang et al. [24] prove L≤N hidden neurons
as necessary for in¢nitely di¦erentiable activation functions.
H remains unchanged once the biases and weights of hidden
nodes are established, and only β needs to be estimated. ­e
least-squares solution with a minimum norm for (9) is as
follows:

min H w1 wL, b1 bL( )β − T
����

����. (10)

H is square if the neurons in the hidden layer equal the
training set (N), and β may be calculated by inverting H.
Nevertheless, to obtain higher generalization, the number of
hidden nodes is modi¢ed, and it may be less than N. ­en,
the Moore–Penrose generalized inverse of H must be uti-
lized in this case.

β̂ � H†T, (11)

whereH† can be used to validate the algorithm because it is
the Moore–Penrose generalized inverse of H. ­e ELM
model that has been constructed has the following simple
general form for the prediction of CP′:

CP′ �
1

(1 + exp (In W × In V + BHI))[ ]
T

× OutW, (12)

where InV is the input variables, InW is the input weight
matrix, BHI is the hidden neuron vector’s bias, and OutW is
the output weight vector.­e following relations were obtained
for the ELM model to calculate CP′.

Water level

V1
y1

yt

θ

Figure 1: ­e cross-sectional representation of a hydraulic jump downstream of a sloping channel.
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. (13)

2.4. Group Method of Data Handling (GMDH) and Model
Development. ,e GMDH polynomial neural network in-
troduced by Ivakhnenko [25] is a feed-forward neural
network. ,is algorithm is a self-organizing system that is
used to search progressively for the optimal solution to
complicated nonlinear problems. ,is algorithm approxi-
mates the relationship between input and output based on
quadratic polynomials. ,erefore, GMDH creates new
neurons in each layer by connecting pairs of neurons with
quadratic polynomials. ,e goal of a mathematical model
problem of GMDH is to discover a function (􏽢f) that can be
used to approximate an original function (f) in order to
estimate the model’s output (􏽢y) for an assumed input vector
X including n input variables [26]. For this, given n data
instances of multi-input single-output data pairs, the fol-
lowing results are obtained:

y
i � f X) � f(xi1, xi2, xi3, . . . , xin( 􏼁; (i � 1, 2, . . . , M).

(14)

A mathematical formulation describes the general
equation between input-output variables. ,e goal now is to

Table 1: ,e main statistical parameters of training and testing data set for developing the proposed soft computing methods.

Dataset Variables Parameter Min Max Avg St. dev.

Training Input

Fr1 4.944 8.662 6.712 1.473
x/y1 0.750 31.875 11.993 7.761
yt/y1 6.750 11.111 8.992 1.721
θ 10 20 20.333 8.670

Output CP
′ 0.027 0.096 0.056 0.017

Testing Input

Fr1 4.944 8.662 6.325 1.357
x/y1 0.750 28.333 12.550 8.731
yt/y1 6.750 11.111 8.509 1.613
θ 10 30 18.636 8.888

Output CP
′ 0.028 0.090 0.057 0.018

,e variables of Fr1, x/y1, yt/y1, and θ are considered as input variables of soft computing methods for the prediction of CP
′.
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design a GMDHnetwork in such a way that the square of the
deviation output and the estimated output is as little as
possible, which means:

􏽘

M

i�1
’ 􏽢f xi1, xi2, xi3, . . . , xin( 􏼁 − yi􏽨 􏽩

2
⟶ min . (15)

,e mathematical expression between input and output
variables can be described by a sophisticated discrete variant
of the Volterra function called the Kolmogorov–Gabor
polynomial. ,is series is presented in the following forms.

yw0 + 􏽘
n

i�1
wixi + 􏽘

n

i�1
􏽘

n

j�1
wijxixj + 􏽘

n

i�1
􏽘

n

j�1
􏽘

n

k�1
wijkxixjxk + · · · . (16)

It is employed in this study to calculate the GMDH
network’s quadratic polynomial, which can be represented
as [27]:

􏽢y � G xi, xj􏼐 􏼑 � w0 + w1xi + w2xj + w3xixj + w4x
2
i + w5x

2
j . (17)

,emathematical expression (18) shows how neurons in
a GMDH network are linked together to create the equation
between input-output variables. Using the least-squares
regression method, the weighting coefficient values of (17)
are determined. ,is means that the deviation output, y, and
the one that is calculated, 􏽢y, for each pair of xi and xj input
variables are as minimal as possible. ,us, the weighting
coefficients values of the quadratic function Gi are deter-
mined in order to optimize the fit of the output throughout
the entire number of sample data pairs, that is [27].

E �
􏽐

M
i�1 ’ yi − Gi( 􏼁

2

M
⟶ min . (18)

In its ordinary form, the GMDH method considers all
possible combinations of two input variables from a total of
n input variables in order to generate the regression poly-
nomial in the form of (17) that fits the dependent data (yi, i �

1, 2, . . . ,M) the best in a least-squares scheme. As a con-
sequence, the initial layer of the GMDH network’s archi-
tecture will be selected with C2

n � n(n − 1)/2 input neurons
for the creation of the quadratic polynomial based on ob-
servations (yi, xip, xiq); (i � 1, 2, . . . , M)􏽮 􏽯 for varied
p, q ∈ 1, 2, . . . , n{ }. To put it another way, it is currently
possible to generate M data triples

(yi, xip, xiq); (i � 1, 2, . . . , M)􏽮 􏽯 from observations by uti-
lizing such p, q ∈ 1, 2, . . . , n{ } in the following way:

x1p x1q y1

x2p x2q y2

xmp xmq ym

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

By replacing the quadratic sub-expression in the shape of
(17) for each row of M data triples, the matrix equation
shown below is simple to construct.

AW � Y, (20)

where W and Y are the vectors of unknown quadratic
polynomial weighting coefficients in (17) and a vector
containing the observed values of outputs, respectively.

W � w0, w1, w2, w3, w4, w5􏼈 􏼉
T
,

Y � y1, y2, y3, . . . , yM􏼈 􏼉
T
.

(21)

,e superscript Tdenotes the matrix’s transposition. It is
self-evident that:

A �

1 x1p x1q x1px1q x
2
1p x

2
1q

1 x2p x2q x2px2q x
2
2p x

2
2q

1 xmp xmq xmpxmq x
2
mp x

2
mq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

To solve regression analysis problems, we employ the
least-squares approach.

W � A
T
A􏼐 􏼑

− 1
A

T
Y. (23)

,is returns the vector with the best quadratic (17)
weighting coefficients for the entire set ofM data triples. It is
worth noting that this technique is replicated for each
neuron in the subsequent hidden layer, depending on the
network’s connectivity structure. Using the GMDH algo-
rithm, the following GMDH network was obtained for the
prediction CP

′ (see Figure 2).
With respect to Figure 2, the following equations were

obtained for the prediction CP
′ using the GMDH approach.

,e first layer output:

(C
′∗
P 􏼓

1

1
� 0.1101 − 0.0110

yt

y1
􏼠 􏼡 + 3.6904(θ) + 6.2904 × 10− 4 yt

y1
􏼠 􏼡

2

+ 8.3932 × 10− 5
(θ)

2
− 3.0321 × 10− 4 yt

y1
􏼠 􏼡(θ),

(C
′∗
P 􏼓

1

3
� 0.1253 − 0.0180 Fr1( 􏼁 − 5.5504 × 10− 4

(θ) + 0.0013 Fr1( 􏼁
2

+ 9.1284 × 10− 5
(θ)

2
− 3.02542 × 10− 4

Fr1( 􏼁(θ),

(C
′∗
P 􏼓

1

4
� 0.0979 − 0.0079 Fr1( 􏼁 + 0.0014

x

y1
􏼠 􏼡 + 8.1446 × 10− 5

Fr1( 􏼁
2

− 6.6223 × 10− 5 x

y1
􏼠 􏼡

2

+ 5.4575 × 10− 5
Fr1( 􏼁

x

y1
􏼠 􏼡,

(C
′∗
P 􏼓

1

6
� 0.0109 + 0.01502

yt

y1
􏼠 􏼡 + 0.0011

x

y1
􏼠 􏼡 − 0.0011

yt

y1
􏼠 􏼡

2

− 6.2790 × 10− 5 x

y1
􏼠 􏼡

2

+ 5.8831 × 10− 5 yt

y1
􏼠 􏼡

x

y1
􏼠 􏼡.

(24)
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­e second layer output:

(C′∗P )
2

1
� 0.1382 − 2.6925(C′∗P )

1

4
− 1.7543(C′∗P )

1

6
− 1.3848 × 103 (C′∗P )

1

4
( )

2

− 1.3189 × 103 (C′∗P )
1

6
( )

2

+ 2.7568 × 103 (C′∗P )
1

4
( ) (C′∗P )

1

6
( ),

(C′∗P )
2

2
0.1671 − 0.7202(C′∗P )

1

1
− 4.8455(C′∗P )

1

6
+ 31.2869 (C′∗P )

1

1
( )

2

+ 70.9947 (C′∗P )
1

6
( )

2

− 41.3749 (C′∗P )
1

1
( ) (C′∗P )

1

6
( ),

(C′∗P )
2

3
0.1845 − 1.1091(C′∗P )

1

3
− 5.1238(C′∗P )

1

6
+ 36.6985 (C′∗P )

1

3
( )

2

+ 75.5852 (C′∗P )
1

6
( )

2

− 45.3275 (C′∗P )
1

3
( ) (C′∗P )

1

6
( ).

(25)

­e output layer:

(C′∗P )
3

1
0.0337 − 0.4779(C′∗P )

2

1
+ 0.1849(C′∗P )

2

2
+ 6.7083 (C′∗P )

2

1
( )

2

+ 5.1880 (C′∗P )
2

2
( )

2

− 0.2282 (C′∗P )
2

1
( ) (C′∗P )

2

2
( ). (26)

Finally, the value of CP′ is calculated from the above
formulations of GMDH. As seen with replacing the input
variables with the GMDH formulation, the (C′∗P )

3
1 approxi-

mate the outcome GMDH network for prediction of CP′.

2.5. M5 Model Tree (M5MT) and Model Development.
M5MT is one of the most widely used decision tree tech-
niques in data-driven modeling. In the M5MT, the entire
input domain is recursively partitioned into subdomains,
with each subdomain being predicted using a multiple linear
regression model. ­e graphical M5MT is constructed from
a root node, the number of binary branches, a group of inner
nodes (splits), and a number of terminal nodes (leaves) [28].
For this reason, the resulting tree model has a clear decision
structure and is understandable for everyone.

­e constructing, pruning, and smoothing of the tree are
the three main components of the M5MT algorithm. ­e
splitting criterion is used to construct the primary tree. ­e

expected reduction in error resulting from evaluating each
attribute at the node is calculated using this splitting cri-
terion. A measure of the error at a node is de¢ned as the
standard deviation of the class values that reach the node.
After that, the attribute with the highest anticipated error
reduction is chosen. ­e following formula is used to get the
standard deviation reduction (SDR) for M5MT:

SDR � s d(T) −∑
i

Ti
∣∣∣∣
∣∣∣∣

|T|
× s d Ti( ), (27)

where Tdenotes the set of instances that reach the node, Ti is
the result of separating the node according to the attribute
chosen, and s d denotes the standard deviation [29]. To stop
splitting, either only a few examples remain, or their class
values are less than 5% of the initial instance set’s standard
deviation. It is possible to encounter an over-¢tting problem
based on training data during the creation tree process.
Pruning is a technique that has been employed in trying to
alleviate this di�culty in the past. It decreases the size of the

Input layer First layer Second layer Output layer

Fr

yt/y1

x/y1

θ

(Cʹ*)P 1
1

(Cʹ*)P 3
1

(Cʹ*)P 4
1

(Cʹ*)P 5
1

(Cʹ*)P 5
1

(Cʹ*)P 5
2

(Cʹ*)P 1
3(Cʹ*)P 2

2

(Cʹ*)P 1
2

(Cʹ )P 2
1

Output

Figure 2: ­e GMDH network for prediction CP′.
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model tree by deleting splits that don’t meaningfully en-
hance prediction.

For the test data, the pruning algorithm uses an estimate
of the predicted error at each node. To begin, the absolute
deviation between the observed and estimated output values
for each of the training cases entering the node is averaged.
Due to the fact that the trees were constructed speci¢cally for
this dataset, the average will underrate the predicted error for
new instances. ­is is compensated for by multiplying the
output value by the factor (n+ v)/(n− v). where n denotes the
size of the training instances received at the node [30]. In
addition, v is the number of model attributes that signify the
output value at that node. ­e leaf node can be omitted if the
estimated error is lower at the parent. As a result, this
multiplication is done to make sure that new data, rather than
training data, don’t get underestimated by the multiplication.

Quinlan [31] describes a smoothing approach that em-
ploys the leaf model to determine the estimated value during
the smoothing phase.­e value is then smoothed bymerging it
with the linear model’s estimated value for each node along the
path back to the root. ­is requires the following calculation:

P′ �
np + kq
n + k

, (28)

P′ is a prediction that exceeds the upper node; p is a pre-
diction from below that is passed to the current node; q is the
model’s predicted value at the node; n represents the number
of training instances that havemade it to the preceding node,
and Wang and Witten [28] constant is denoted by k. Using
the M5MT created, the graphical tree, is shown in Figure 3.

­e decision rules concerned with Figure 3 are as follows:

LM(4) � CP′ � −0.0041 × Fr1 + 0.0792. (29)

As seen, four linear rules were obtained for the pre-
diction CP′. Concerning the values of Fr1, the appropriate
rule was selected then CP′ was calculated.

3. Results and Discussion

Statistical indices such as correlation coe�cient (CC), root
mean square error (RMSE), mean absolute error (MAE),
index of agreement (Ia), scatter index (SI), and BIAS index
was employed to assess the qualitative evaluation of the
developed suggested models.

CC � ∑ni�1 xi − x( ) yi − y( )												
∑ni�1 ’ xi − x( )2
√ 												

∑ni�1 ’ yi − y( )2
√ ,

RMSE �

													
∑Ni�1 ’ xi − yi( )2

N

√

,

MAE �
1
N
∑
N

i�1
xi − yi
∣∣∣∣

∣∣∣∣,

Ia � 1 − ∑ni�1 ’ xi − yi( )2

∑ni�1 ’ xi − x
∣∣∣∣

∣∣∣∣ + yi − y
∣∣∣∣

∣∣∣∣( )
2 ,

SI �
RMSE

x
× 100, BIAS � y − x,

(30)

where xi and yi denote measured and predicted values, x
and y represent the average of measured and predicted
values, andN denotes the number of the dataset. In Table 2,
the statistical index values for the proposed soft computing
methods in the training and testing stages for the prediction
of CP′.

Table 2 shows that the ELM model performed CP′ pre-
diction with the lowest errors (RMSE, MAE, and SI) and
higher coe�cient correlation (CC) and index agreement (Ia)
than the GMDH andM5MTmodels in both the training and
testing stages. As observed in Table 2, the ELMmethod with
CC� 0.9183, RMSE� 0.0067, and MAE� 0.0051 has the best
prediction accuracy compared with GMDH and M5MT. On
the other hand, it can be deduced from Table 2 that GMDH
(CC� 0.8818, RMSE� 0.0078, and MAE� 0.0058) and
M5MT (CC� 0.6883, RMSE� 0.0120, and MAE� 0.0090)
have the second and third level of accuracy for the prediction
CP′ in the testing stage. Furthermore, the scatter index
(SI� 11.88%) for the ELM method is smaller than the SI for
GMDH (SI� 13.89%) and M5MT (SI� 21.28%). It is note-
worthy that the BIAS values of ELM for training and testing
data are 0.0008 and 0.0020, respectively, indicating a slightly
overestimated CP′. However, the BIAS values of GMDH in
training and testing were −0.0005 and 0.0016, and for
M5MT, they were −0.0003 and 0.0014 for the training and
testing stages, respectively. ­erefore, it can be concluded
that, overall, ELM was more conservative for prediction CP′
than GMDH and M5MT.

By comparing two soft computing approaches, including
the ELM (as the best model) and the M5MT (as the worst
model) in the testing stage, it can be shown that the ELM
produced signi¢cantly lower errors in predictionCP′ than the
M5MT. ­e values of RMSE and MAE obtained via ELM
showed that they decreased by about 79.10% and 76.47%
compared with the M5MT in the testing stage, respectively.

Besides, the CC and Ia values for ELM increased by
33.42% and 21.05% compared with M5MT. ­e error values

Fr

Fr

Fr

LM (1) LM (2)

LM (3)

LM (4)

≤ 6.31

≤ 5.65

> 5.18

> 5.65

> 6.31

≤ 5.18

Figure 3: M5MT created the regression tree to predict CP′.
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of RMSE and MAE from GMDH in the testing stage showed
that these values improved by about 53.85% and 55.17%
compared with those obtained from M5MT, respectively.
Moreover, the CC and Ia values of GMDH increased by
about 28.11% and 18.42% compared with M5MT. Based on
error measures, it is clear that the ELM model was better
than the GMDH and M5MT in terms of accuracy.

,e mathematical expressions for the prediction CP
′

were formulated from the proposed soft computing
models. It seems the M5MT result was more transparent
and easier to use than ELM and GMDH. M5MT provided
four multivariate linear models for the prediction of CP

′.
Although the derived rules from M5 had less accuracy than
ELM and GMDH, these rules are more straightforward for
predicting CP

′. On the other hand, GMDH presented
complex mathematical formulations for the prediction of
CP
′. ,e GMDH used two hidden layers of neurons for the

prediction of CP
′. ,e GMDH utilized the quadratic

polynomial of input variables and the combination of the
best neurons in each layer to predict CP

′. ELM generated the
coefficients matrixes for the prediction of CP

′. It seems the
ELM mathematical shapes were simple compared with the
GMDH equations.

M5MT method provided four simple equations for the
prediction of CP

′ based on dividing the domain of the
problem. It is worth mentioning that M5MT selected the
appropriate rule concerning only one input variable (i.e.,
Froude number) and used two variables, including Fr1 and
x/y1 in their rules. However, the ELM and GMDH used all
the independent variables to generate the predictive ex-
pressions for estimating CP

′ values. Although M5MT has led
to the creation of simple rules for predicting CP

′, these simple
formulas cause M5MT to be less accurate than ELM and
GMDH expressions. M5MT divided the domain of input
variables into four subdomains and represented four re-
gression equations to estimate CP

′. In fact, separating the
domain of the problem into the local subdomains and
combining their results caused an improvement in the ac-
curacy compared with the single equation.

Figures 4–9 compare observed values of CP
′ versus es-

timated values obtained from ELM, GMDH, and M5MT
during the training and testing stages. As observed in scatter
plots, the predicted CP

′ values from ELM were more con-
centrated around the ideal line (the 45-degree line).

In addition, the variation of CP
′ values obtained by soft

computing methods versus observed CP
′ demonstrated the

capability of estimating CP
′ by the proposed approaches.

,ese figures graphically confirmed the higher ELM accu-
racy than GMDH and M5MT.

,ese figures indicated that ELM performed better in the
training and testing stages than GMDH and M5MT. As
shown, the ELM reasonably estimated CP

′ in the training and
testing stages (bias� 0.0008 and 0.0020). ,e remarkable
point is that in Figures 4 and 5, the peak values of CP

′ by ELM
were estimated well. In contrast, GMDH and M5MTslightly
underestimated the values of CP

′, especially at the peak CP
′

values. From the comparison between Figures 4–9, it can be
deduced that ELM is more skillful and accurate than GMDH
and M5MT in the prediction of CP

′.
,e present study results were compared with earlier

research conducted by Samadi et al. [8]. ,ey used three
data-driven algorithms, such as MARS, GEP, and CART, for
the prediction of CP

′. Samadi et al. [8] indicated that CART
results for the prediction of CP

′ have three and four non-
terminal and terminal nodes, respectively. ,e CART tree
structure used only the Fr1 variable with threshold values of
6.31, 5.18, and 5.65 for the CART tree structure. ,e present
study used another common decision tree technique, namely
M5MT, to predict CP

′.
It is worth noting that M5MT and CART are two

common decision tree algorithms used for regression
problems. In the present study, M5MT, among the four
input variables included, Fr1, x/y1, yt/y1, and θ, only se-
lected the Fr1 variable for prediction of CP

′. As illustrated in
Figure 3, M5MT’s tree structure uses three nonterminal and
four terminal nodes. In addition, the splitting values for
M5MT were 6.31, 5.18, and 5.65. A comparison of the tree
structures of the decision tree (i.e., M5MT) and the proposed
CART presented by Samadi et al. [8] revealed that the two
models have similar structures. ,ey employed a splitting
variable (Fr1) and the same splitting values for the gener-
ation of regression trees. As a result, the graphical structures
of these two decision tree algorithms for selecting the in-
dependent variable (Fr1) and creating four if-then rules are
similar. However, M5MT provided linear regression func-
tions while CART presented constant values in their ter-
minal nodes. ,is was the main distinctive characteristic of
the differences between M5MT and CART concerning the
nature of CART and M5MT. It should be noted that due to
the nature of theM5MTalgorithm, the Fr1 parameter was an
attribute that caused error reduction for the prediction of CP

′
in the regression tree obtained by M5MT. In addition, the
present study’s findings about selecting the Fr1 parameter is
completely consistent with the results of the CART tree
provided by Samadi et al. [8].

Also, the statistical measures indicated the results of
M5MT and CART were more or less the same. M5MT with
RMSE� 0.0120 and MAE� 0.0090, compared with CART

Table 2: ,e statistical indices for ELM, GMDH, and M5MT for the prediction of CP
′.

Approach Data set CC RMSE MAE Ia SI (%) BIAS
ELM Training 0.9770 0.0046 0.0040 0.9841 8.00 0.0008
ELM Testing 0.9183 0.0067 0.0051 0.9569 11.88 0.0020
GMDH Training 0.9135 0.0074 0.0066 0.9512 12.85 −0.0005
GMDH Testing 0.8818 0.0078 0.0058 0.9361 13.89 0.0016
M5MT Training 0.8309 0.0108 0.0090 0.8467 18.81 −0.0003
M5MT Testing 0.6883 0.0120 0.0090 0.7905 21.28 0.0014
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Figure 4: Scatter plots of measured and estimated values of CP′ for ELM during (a) training stage and (b) testing stage.
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Figure 5: Continued.
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Figure 6: Scatter plots of measured and estimated values of CP′ for GMDH during (a) training stage and (b) testing stage.
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Figure 5: Variation of CP′ with ELM during the training stage (a) and testing stage (b).
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Figure 8: Continued.
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Figure 7: Variation of CP′ with GMDH during the training stage (a) and testing stage (b).

Advances in Civil Engineering 11



0.000

0.020

0.040

0.060

0.080

0.100

0 10 20 30 40 50 60 70 80 90

C'
p

Sample

Observed

M5MT

(a)

0.000

0.020

0.040

0.060

0.080

0.100

0 5 10 15 20

C'
p

Sample

Observed

M5MT

(b)

Figure 9: Variation of CP′ with M5MT during the training stage (a) and testing stage (b).
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Figure 8: Scatter plots of measured and estimated values of CP′ for M5MT during (a) training stage and (b) testing stage.
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[12] with RMSE� 0.012, MAE� 0.009, was similar results.
However, M5 generated multivariate linear regression
equations while CARTgenerated the constant values for the
prediction of CP

′. ,e linear equations by M5MT caused the
flexibility and generalizability of M5 to improve the pre-
diction of CP

′ compared with the constant values of CP
′ that

was yielded by CART. Compared with GMDH in the present
study with GEP [12], both algorithms provided nonlinear
mathematical expressions for the prediction of CP

′. ,e
accuracy of GMDH with RMSE� 0.0078 and MAE� 0.0058
is slightly better than GEP results with RMSE� 0.008 and
MAE� 0.006. Moreover, compared with the formulas pro-
vided by GEP and GMDH, GEP requires more difficult
calculations related to trigonometric and algebraic func-
tional sets appearing in the computing process, including
exp, ln, sin, and atan functions. In contrast, GMDH used
polynomial quadratic equations. From this perspective as
well, it seems the computational effort was less than GEP.
Finally, the comparison results of ELM with MARS indi-
cated that both algorithms had almost identical results.

4. Summary and Conclusions

Stilling basins are used widely as hydraulic dissipation
structures in large dams. An accurate estimation of CP

′
within stilling basins is a critical issue for hydraulic engi-
neering for the design of stilling basins.,is study employed
three soft computing methods, including ELM, GMDH, and
M5MT, to estimate the CP

′ that occurred during the hy-
draulic jump in the sloping channels.

Different soft computing models were developed to
estimate CP

′ according to the dimensionless parameters and
experimental data. ELM showed the lowest error values of
RMSE, MAE, and SI in the training and testing stages. In
addition, ELM has the highest correlation coefficient and Ia
values than those obtained from GMDH and ELM.
,erefore, the proposed soft computing models provided
sufficiently accurate results due to this problem’s complexity.

ELM formulated the matrices of coefficients for the
prediction of CP

′. In addition, GMDH provided mathe-
matical quadratic polynomials and combined input variables
for the prediction of CP

′. M5MTgenerated four simple rules
for the estimation of CP

′. It seems the application of M5MT
was the most straightforward method for the prediction of
CP
′. It is noteworthy that complexity degree equations were

derived from ELM and GMDH for the prediction CP
′ have

been more than M5MT rules.
In summary, the ELM method provided a weight matrix

for predicting CP
′. GMDH generated second-order poly-

nomial equations for the prediction of CP
′. M5MTdeveloped

piecewise multiple linear regression equations for the cal-
culation of CP

′. GMDH and M5MT methods generated
explicit and clear mathematical expressions to estimate CP

′.
In addition, M5MT divided the problem domain into
subdomains and fitted local linear models to compute CP

′. It
seems that in terms of the degree of complexity of the
developed models in estimating CP

′, the ELM model has the
highest complexity, followed by GMDH and M5MTmodels.
However, in contrast to the complexity degree of the

proposed models, their computational accuracy has in-
creased for the estimation of CP

′ so that the ELM model has
the highest accuracy, followed by GMDH and M5MT.

Finally, the comparisons of the results with previous
research revealed that the proposed applications of soft
computing methods have good performance for prediction
CP
′.
Further works can be considered to use pressure field

data for modeling with soft computing methods. It is also
recommended that hybrid data-driven models with evolu-
tionary algorithms be used instead of stand-alone data-
driven models to figure out the coefficient of pressure
fluctuations.
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