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Recently, in the literature, microscopic simulation is one of the most attractive methods in impact assessment of automated vehicles (AVs)
on tra�c �ow. AVs can be divided into di�erent categories, each having di�erent driving characteristics. Hence, calibrating microscopic
simulators for di�erent AV categories could be challenging in AVs’ impact assessment. �e PTV Vissim microscopic tra�c simulation
software has been calibrated for simulating diverse types of AVs in a large body of literature. �ere are two main streams of studies in
literature adapting AVs' driving behaviors in Vissim following either internal (i.e., adjusting the parameters of the Vissim's default driving
behavior models) or external (i.e., adapting AVs' behavior through external VISSIM interfaces) modeling approaches. �e current paper
investigates how the PTV Vissim has been internally calibrated for the simulation of di�erent types of AVs and compares the calibrated
values in the literature with default values introduced in the recent version of PTV Vissim. In the present paper, the reviewed studies are
partitioned into two main categories according to the characteristics of the studied AVs, the studies focused on autonomous automated
vehicles (AAVs) and the ones focused on cooperative automated vehicles (CAVs). Our �ndings indicate that the literature expects a lower
value for parameters including standstill distance (CC0), headway time (CC1), following variation (CC2), the threshold for entering
“following” (CC3), negative/positive following thresholds (CC4/CC5), speed dependency of oscillation (CC6), oscillation acceleration
(CC7), safety distance reduction factor (SDRF), and minimum headway front/rear (MinHW) for AVs than conventional vehicles (CVs).
Besides, the literature expects higher values for parameters including standstill acceleration (CC8), acceleration at 80km/h (CC9), looking
distances, andmaximumdeceleration for cooperative braking (MaxDCB) forAVs.When cautiousAVs are introduced, deterring e�ects are
expected in the literature (e.g., higher CC0). Moreover, CAVs can have higher looking distance values compared with AAVs.

1. Introduction

Recently, the impact assessment of automated vehicles (AVs)
on tra�c �ow has become a popular research topic due to their
potential mobility bene�ts to overcome the challenges linked
with conventional vehicles (CVs) [1, 2]. Based on how the
driving task is executed by the human driver and the vehicle
system, the Society of Automotive Engineers has classi�ed

AVs into six levels of automation. Conventional vehicles are
those without automation and referred to as Level 0, Level 1 is
driver assistance, Level 2 is partial automation, Level 3 is
conditional automation, Level 4 is high automation, and Level
5 is full automation.�e primary driving task is carried out by
the human driver in the �rst three levels of automation. In
contrast, the vehicle system handles the majority of the dy-
namic driving task for the following three levels [3].
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Automated driving systems are often referred to as
“autonomous” (e.g., [4–6]) and “automated” (e.g., [1, 7, 8]).
*e term “autonomous” refers to completely automated
vehicles that do not need any assistance from a human
driver. However, the term “automated vehicle” implies a
vehicle system that may be controlled at several levels and
does not necessarily need to be fully automated with no
human driver interaction under all circumstances [9].
Furthermore, the study by Sala and Soriguera [10] consid-
ered “connected autonomous” to describe to vehicles that
are fully automated and can communicate with their en-
vironment, while studies [11, 12] used “autonomous auto-
mated vehicles” and “cooperative automated vehicles.”*us,
looking at the large body of works of literature (e.g.,
[10, 12–13]), the two types of fully automated vehicles are
autonomous (without communication capabilities), auto-
mated vehicles (AAVs), and cooperative/connected auto-
mated vehicles (CAVs). AAVs merely use their own sensors
to gather information, but CAVs combine all AAV features
with vehicle-to-vehicle and vehicle-to-infrastructure com-
munication to augment the data from their sensors.

AVs are predicted to hit the market soon and will bring
both opportunities and challenges to the road transportation
system. According to a recent study by Beza et al. [14], the
technology has become capable of traversing urban road-
ways such as roundabouts and pedestrian crossings; how-
ever, their operational speed is too low (less than 20 km/h),
which is not sufficient for commuters. Furthermore, Zhang
andWang [15] demonstrated that level 4 AVmarket share in
the US cities might reach 34% in 2030 and 75% in 2040. In
the form of shared use, AVs are anticipated to significantly
penetrate urban roads by the 2030s [16]. Beginning in 2040,
AVs will become more affordable; by 2045, it is predicted
that AVs will account for 50% of all new vehicle sales [17].
Regarding public acceptance of AVs, studies (e.g., [18–20])
that focused on user attitudes after pilot project experiences
revealed that there are positive intentions towards the
technology, despite the fact that lower operation speed,
inaccessibility to mobility-impaired individuals, and inter-
action of AVs with pedestrians and cyclists remains the
concerns for their large-scale deployment.

*ere are different methods used in the literature to
assess the impacts of AVs including field test experiments
[4, 21] and simulation [10]. Microscopic simulation is one of
the most popular methods in AVs’ impact assessment on
traffic flow in the literature. Calibrating the microscopic
traffic simulation software for different types of AVs is one of
the most challenging steps in AVs’ impact assessment using
the microscopic simulation method.

*e PTV Vissim microscopic traffic simulation software
has been calibrated for the simulation of different types of
AVs in a large body of literature to assess the impacts of AVs
on traffic flow. In the literature, PTV Vissim has been
calibrated based on different methods including the use of
field data [22–24] and summarization of preceding pub-
lished studies [5, 25, 26]. According to the characteristics of
the investigated AVs, the evaluated studies are grouped into
two categories: those that focused on CAVs and those that
focused on AAVs. AAVs depend on their onboard sensors,

whereas CAVs can intensify onboard sensor information via
communicating with other entities such as roadside infra-
structures, vehicles, cloud, and/or pedestrians [11, 27, 28]. In
literature, PTV Vissim has been mostly calibrated only for a
single type of AVs in each study, either AAVs or CAVs;
however, in the study [27], both AAVs and CAVs are
considered. *e investigated scenario in the literature in-
cludes the impacts of AVs on urban road intersections and
freeway segments. Whereas, some studies assessed the im-
pacts of AVs on a large road network. Even though the
majority of works in the literature looks for fully AVs, some
studies ([29, 30]) considered level 4 AVs.

*e choice of algorithms and parameters for AVs has
significant implications for the impact assessments of this
disruptive transport technology; the assumed simulation
parameters and their calibrations can change the simulation
output. *us, the results might change significantly as well
and lead to a different conclusion. More importantly, dif-
ferent Vissim calibration values have been considered in the
works of literature as the driving behaviours of AVs are still
under investigation. *is paper attempts to fill this gap by
thoroughly reviewing the works in the literature and
summarising the calibrated values for different types of AVs
and roadways that could be used for the calibration phase of
the AVs simulation studies. To the best of the authors’
knowledge, the current review will be unique in its type of
microscopic simulations of different types of AVs using PTV
Vissim.

*e main contribution of the current paper is to carry
out the following:

(1) Explore how PTV Vissim car-following, lane-
changing, and lateral parameters have been cali-
brated in the literature for simulating different types
of AVs.

(2) Compare the values of AVs’ car-following, lane-
changing, and lateral parameters that are calibrated
in the literature with the ones introduced in PTV
Vissim 2020.

*e rest of the paper is structured as follows. Section 2
presents the methodological framework. *e calibrated car-
following, lane-changing, and lateral parameters in the lit-
erature are studied in Sections 3 and 4, respectively. Section 5
discusses on the findings of the literature review. Lastly,
Section 6 provides conclusions and future research
directions.

2. Methodological Framework

A thorough literature review was carried out to map out
currently available information and pinpoint knowledge
gaps.*e literature reviewmethodology in the current paper
followed the one proposed by Massar et al. [31], which is the
most widely applied methods that includes a number of
phases, including designing a review methodology, locating
and choosing relevant research, extracting and synthesizing
data, and ultimately summarising the findings. *e Scopus
and Web of Science databases were used to extract the
relevant literature. For Scopus search, the combination of
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the keywords, “TITLE-ABS-KEY (Vissim AND simulation
AND (automated OR autonomous) AND vehicles)” was
used. On the other hand, the combination of keywords,
“ALL� ((automated OR autonomous) AND vehicle AND
Vissim AND simulation)” is considered for extracting rel-
evant studies from the Web of Science. To extract the rel-
evant articles, articles published in English, accessible, and
published not earlier than 2016 has been considered. *us,
48 and 53 articles are retrieved from the respective databases
and 61 papers are found after removing outputs that were
duplicated in the two databases.

Furthermore, in the literature, two primary streams of
studies use Vissim to replicate the driving behaviours of AVs
using either internal or external modelling techniques. *e
first stream (e.g., see [7, 12, 25, 32]) uses the internal
modelling, and modifies the default Wiedemann driving
logic (car-following) and lane-changing parameters to
simulate the desired driving behaviours. *e second stream,
which uses the external Vissim interfaces and the external
modelling methodology, sends user-defined algorithms to a
dynamic link library to imitate the driving logic of AVs (e.g.,
see [33, 34]). *e present study follows the first stream of the
literature. *erefore, further analysis of the search output
resulted in 16 relevant studies. Besides, a snowballing
technique has been used for additional searches and a total of
32 articles have been reviewed in the current study.

As illustrated in Figure 1, the reviewed studies comprised
AAVs and CAVs over different roadway types such as urban
road nodes as well as freeway segments. It is also worth
mentioning that some studies consider a network-wide
simulation.

In its latest version, PTV Vissim 2020 includes three
different driving models designed for automated vehicles
(AVs) based on field data: AV aggressive, AV normal, and
AV cautious. AV cautious implement a safe driving be-
haviour that absolute braking distance is enforced, and
vehicles keep large headways in the course of lane changing.
AVnormal performs similar to a human driver with the
further capability of determining speeds and distances of
nearby vehicles within its sensor range, whereas, in AV
aggressive, cooperative characteristics, superficial atten-
tiveness, and predictive abilities are anticipated that could
lead to smaller headways [35]. Besides, in PTV Vissim 2020,
new driving characteristics including platooning, enforcing
absolute braking distance, implicit stochastics, number of
interaction objects, and vehicles are incorporated. *e
software default values are also indicated in Tables 1 and 2,
which shows the suggested simulation parameters for AV
cautious, AV normal, and AV aggressive in the recent
version of the software in addition to the default values for
conventional vehicles (CV).

3. Car-Following Parameters

*is section investigates the PTV Vissim car-following
parameters including standstill distance (CC0), headway
time (CC1), following variation (CC2), threshold for en-
tering “following” (CC3), negative/positive following
thresholds (CC4/CC5), speed dependency of oscillation

(CC6), oscillation acceleration (CC7), standstill acceleration
(CC8), acceleration at 80 km/h (CC9), and look settings that
have been calibrated for different types of AVs in the lit-
erature. *e summary of the calibrated values in the liter-
ature is also presented in Table 1.

3.1. CC0: Standstill Distance (m). CC0 is the average desired
distance between two consecutive stopped vehicles. It de-
termines the jam density of road infrastructure and is in-
versely proportional to capacity.*e default value is 1.50 [36].

In 2016, for CAVs, Aria [37] considered a CC0 value of
1.5 for basic freeway and 2.5 for both merging and diverging
freeway segments based on the values proposed by Leyn and
Vortisch [22]. Similarly, Motamedidehkordi et al. [38] as-
sumed 1.0 for simulating CAVs in the freeway network
proclaiming the absence of data in this research topic at the
time. In 2021, Rao et al. [39] considered 5 feet (1.52m) for
AAVs in freeway segments with various geometric and
traffic conditions.

In 2015, Bohm and Häger considered a CC0 value of 1.0
based on the values proposed in by Bierstedt et al. [40] for
assessing AAVs’ impact on the Swedish traffic system that
comprises diverse geometric arrangements [41]. Similarly,
Deluka Tibljaš et al. [6] simulated AAVs in roundabouts
with a CC0 value of 1.0 adopted from preceding published
articles. In 2018, Morando et al. [42] adopted two sets of CC0
values that are 0.50 and 0.75 for AAVs in both a signalized
intersection and roundabout from related works in the
literature to study how this emerging technology impacts the
road segments examined. For simulating AAVs onmultilane
freeways, El-Hansali et al. [43] calibrated the CC0 value to
0.75, and a value of 0.5 was considered for the simulation of
AAVs on merging freeway segments by Lee et al. [44].

In the studies that analyse the environmental effects of
AAVs on urban roads, a CC0 value of 1.47 was adopted
[5, 26]. For measuring AAVs’ impact on a congested road
network with different segments including freeway inter-
changes and arterial corridors, Stanek et al. [32] proposed a
value of 1.25 based in the study by Bierstedt et al. [40] that is
dedicated to adaptive cruise control. Likewise, after inves-
tigating related literature, He et al. [25] designated a CC0
value of 1.25 for simulating CAVs in a weaving freeway
segment.

Types of AVs

CAV:
1. Cautious
2. Agressive

AAV:
1. Cautious
2. Agressive

Types of roadway:

Urban road:
1. (un) signalized intersection
2. Roundabout
3. Urban road network

Freeway:
1. Basic freeway segment
2. Merging segment
3. Diverging segment
4. Weaving segment
5. Freeway network

Figure 1: Studied scenarios.
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In 2019, Stogios et al. [7] considered the most cautious
and aggressive driving behaviour of AAVs in signalized
intersections and freeway networks consisting of different
geometric arrangements including on-ramp, lane drop, and
off-ramp; by reviewing the works in the literature, they
considered a CC0 value of 2.50 for cautious AAVs and 0.50
for aggressive AAVs. Moreover, Rezaei and Caulfield [45]
recommended a value of 0.38 in their study that analysed the
impacts of AAVs on motorways.

It is worth mentioning that AVs can have cautious or
aggressive driving behaviours depending on their level of
automation and their driving logic. *us, Song et al. [46]
calibrated the CC0 value to 2.17 and 0.5 for caution CAVs
and aggressive CAVs, respectively, for different roadway
networks consisting of expressways and secondary motor-
ways. Furthermore, Boualam [47] assumed 1.5 and 1.0 for
simulating AAVs with cautious and aggressive driving be-
haviour on roundabout, respectively. *e same values of 1.5
and 1.0 were also considered by Postigo et al. [48] for the
simulation of AAVs in freeway networks. On the other hand,
Tafidis et al. [49] considered 1.0 and 0.5 CC0 values for
AAVs with cautious and aggressive driving behaviours,
respectively. Besides, Szimba and Hartmann [29] assumed a
value of 0.50 for both level 4 (cautious) and level 5 (ag-
gressive) CAVs in a road network comprised of freeways,
arterials, and collectors.

In 2016, Atkins [50] considered a CC0 value in the range
of 2.50 to 0.50 for driving behaviour ranging from the most
cautious to the most aggressive CAVs in a wide road net-
work that includes urban roads and freeway segments.
Correspondingly, Lee et al. categorized CAVs in a four-lane
freeway segment into 9 levels of aggressiveness level, adopted
from the study by Atkins [50]. Hence, Lee et al. considered it
in the range from 2.50 to 0.50, where the first and second
values stand for the most cautious and most aggressive
driving behaviour of CAVs, respectively [51]. Similarly,
Asadi et al. [52] assumed that the value of CC0 in urban
roads with (un)signalized intersections and roundabouts can
range from 1.50 for the most cautious CAVs to 1.00 for the
most aggressive CAVs. Using a genetic algorithm, Liu and
Fan [53] calibrated the value of CC0 to 0.65 for CAVs in
four-lane basic freeway segments. Another study by Khattak
et al. [33] considered a higher value of CC0, 2.64 for CAVs in
a multilane freeway compared to other studies. Besides,
Budan et al. [54] assumed a value ranging from 1.0 to 0.5 for
the simulation of CAVs on urban road intersections.

In 2018, Rossen [27] used a value of 1.00 for both AAVs
and CAVs to assess the impacts of these vehicles on the
capacity of different freeway segments (basic freeway,
merging, diverging, and weaving) using a comprehensive
survey of related works in the literature. What is more, 1.0 is
used for CAVs in urban road intersections [55–57] and in
network-wide simulations [58].

3.2. CC1: Headway Time (s). CC1 is the desired time dis-
tance a driver wants to keep; this parameter controls the time
distribution of the speed-dependent part of the desired
safety distance. In the high volume of traffic, CC1 is the most

significant parameter influencing capacity and safety dis-
tance. *e default value is 0.90 [36].

For AAVs in a signalized intersection and roundabout,
Morando et al. adopted a CC1 value of 0.50 and 0.45 for each
road type considered from the preceding published litera-
ture to assess the impact of two sets of AAVs’ driving be-
haviour [42].

In 2015, Bohm and Häger, adopting from the study [40],
considered a value of 0.50 for the simulation of AAVs in a
network-wide traffic system [41]. *e studies [6] assumed
0.50 for simulating AAVs in urban road intersections,
adopted from preceding published articles. Furthermore,
Lee et al. [44] calibrated the value to 0.6 for the simulation of
AAVs on merging freeway segments.

After looking over the existing literature, He et al.
simulated CAVs with a CC1 value of 0.50 in their study to
assess CAVs’ impact on a freeway weaving segment [25]. In
the same way, Tomás et al. considered a value of 0.50 in their
study targeted at the investigation of the environmental
impacts of AAVs on urban roads [5]. Besides, Motamedi-
dehkordi et al. used a CC1 value of 0.50 for simulating
connected highly AVs in a freeway network after comparing
several values in the literature [38].

Some studies considered a slightly smaller CC1 com-
pared to the above-cited literature. *us, the studies [37, 59]
considered 0.30 for the simulation of CAVs in an urban
traffic system based on the proposed value from an exper-
imental study [60]. Likewise, in 2018, Stanek et al. assumed a
CC1 value of 0.25 to estimate AAVs’ impact on congested
road networks to attain a headway (front bumper to front
bumper) of 0.50 seconds between consecutive vehicles at a
speed of 80 km/h [32].

In 2018, Rossen [27] designated a CC1 value of 0.90 for
AAVs and 0.50 for CAVs for different categories of freeway
configuration covering basic freeway, merging, diverging,
and weaving segments after investigating diverse works in
the literature. In 2020, Rafael et al. [26] simulated AAVs on
urban roads with a CC1 value of 1.0, citing previously
published research articles. Studies [43, 45] suggested a CC1
value of 0.45 in their study on the impacts of AAVs on
motorways while studies [55–58] assumed a value of 0.5 for
simulating CAVs’ impact on urban roads. Moreover, Tafidis
[49] calibrated the value to 0.5 for both cautious and ag-
gressive AAVs on the urban road network.

In some studies, CC1 has been considered differently.
Researchers considered it based on the aggressiveness
level of AAVs and CAVs. *ey revealed that aggressive
AVs have a lower CC1 value than cautious AVs. Ac-
cordingly, a CC1 value in the range of 1.80 for the most
aggressive CAVs to a minimum of 0.60 for the most
cautious was considered for CAVs for a road network with
diverse geometric elements in the study [50]. In 2019,
adopting from the study [50] but with a wider range, Lee
et al. used corresponding CC1 values that range from 2.10
to 0.50 for assessing CAVs with nine categories of ag-
gressiveness level on a four-lane freeway [51]. Likewise,
Asadi et al. adjusted the value of CC1 and can range from
1.50 for the cautious to 0.50 for the most aggressive CAVs
in urban roads consisting of (un)signalized intersections
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and roundabouts [52]. Recently, in 2022, Boualam et al.
[47] used a range of 1.5 to 0.6 for AAVs on roundabouts,
while Postigo et al. [48] considered 1.5 to 0.7 for simu-
lating AAVs on a motorway. Besides, Budan et al. [54]
assumed a value ranging from 0.8 to 0.5 for the simulation
of CAVs on urban road intersections.

In 2019, Stogios et al. [7] simulated AAVs in a road
network comprised of a freeway and signalized urban streets
with a CC1 value of 2.10 for the most cautious and 0.50 for
the most aggressive driving behaviour adopted from pre-
ceding published articles. In the same way, Szimba and
Hartmann [29] assumed a value of 0.90 and 0.50 for level 4
and level 5 CAVs, respectively, in the study area that in-
cludes freeways, arterials, and collectors. *e study by
Khattak et al. [33] considered a value of 1.54 for CAVs for a
multilane freeway. In 2020, Liu and Fan [53], using a method
of genetic algorithm, found a calibrated value of 1.2 for
CAVs in four-lane basic freeway segments. In 2021, Song
et al. calibrated the CC1 value to 1.70 and 0.5 for caution
CAVs and aggressive CAVs for roadway networks consisting
of arterial highways and secondarymotorways in China [46].
Above and beyond, Rao et al. adjusted CC1 to 1.20 for
simulating AAVs in freeway networks with different geo-
metric characteristics [39].

3.3.CC2:FollowingVariation (m). CC2 is the parameter that
limits the longitudinal oscillation; it determines how much
more distance than the desired safety distance a driver allows
before intentionally moving closer to the vehicle ahead. *e
default value is 4.0, which results in a moderately steady
following [36]. Motamedidehkordi et al. considered the
default value for connected highly AVs in a freeway, em-
phasizing the absence of related works in the literature [38].
Besides, in 2021, Rao also used the default value for simu-
lating AVs in different freeway geometry [39].

In 2016, based on the value proposed in the study [22],
Aria simulated CAVs with a CC2 value of 4.00 in basic
freeway and merging segments of a freeway, while con-
sidering 5.00 for CAVs in a diverging freeway segment [37].
In 2018, Stanek et al. assumed 3.00 for AAVs in a congested
road network that includes freeway interchanges and arterial
corridors after reviewing related works in the literature [32].
Moreover, after broadly investigating related works in the
literature, He et al. adjusted CC2 to 3.00 for CAVs simulated
in a freeway weaving segment [25]. In 2021, Rezaei and
Caulfield [45] suggested a value of 2.00 for AAVs on the
motorway networks. Liu and Fan [53] also calibrated the
value to 3.35 for CAVs in four-lane basic freeway segments
via genetic algorithms.

Table 2: Values of lane-changing and lateral behavior parameters calibrated in the literature.

Ref. AV type Road
type

MinHW
(m) SDRF (−) MaxDCB

(m/s2)

CLC: maximum speed
difference (km/h) and

collision time (s)

OSL: minimum lateral distance
standing and driving at 50 km/

h (m)
Default CV — 0.50 0.60 −3.00 Unchecked Unchecked
Default AV cautious — 0.50 1.00 −2.50 Unchecked Unchecked
Default AV normal — 0.50 0.60 −3.00 Checked: 10.8 and 10 Unchecked
Default AV aggressive — 0.50 0.75 −6.00 Checked: 10.8 and 10 Unchecked
[32] AAV NetW 0.375 0.45 −4.00 Checked: — Checked: 0.15 and 0.75

[7] Cau/Agg
AAV NetW 0.80/0.20 0.70/0.10 — — —

[25] CAV WFS 0.37 0.45 −4.00 Checked: 3 and 10 Checked: 0.75 and 0.75
[5] AAV NetW 0.70 0.21 — — —
[27] AAV/CAV NetW — 0.60/0.60 — Unchecked/checked Unchecked/unchecked

[37] CAV
BFS/
DFS/
MFS

— 0.60/0.85/
0.80

−3.0/−9.0/
−6.0 Yes: 3 and 10 Yes

—

[50] CAV NetW 0.80–0.20 0.90–0.30 — — —
[38] CAV NetW — 0.75 3.50 — —
[33] CAV BFS — — −7.06 — —

[46] Cau/Agg
CAV NetW 0.50 0.60 −3.00 — —

[39] AAV NetW — — −4.40 — —
[52] CAV NetW 0.70–0.20 0.80–0.30 — Yes: 10.8 and 10.0 —
[62] CAV NetW 0.375 0.45 −4.00 Yes:— Yes: 0.15 and 0.50
[51] CAV BFS 0.80–0.20 0.90–0.30 — — —
[30] AAV NetW 0.2 0.3 — Yes: 10.0 and 10.0 —
[48] AAV NetW 1.0–0.5 1.0–0.6 −2.5–−6.0 — —
[44] AAV MFS 0.2 0.3 — — —
[58] CAV NetW 0.50 0.75 −6.0 Yes: 10.8 and 10.0 No

[49] Cau/Agg
AAV NetW 0.5/0.2 — — — —

NetW: network-wide; RAB: roundabouts; WFS: weaving freeway segment; BFS: basic freeway segment; DFS: diverging freeway segment; MFS: merging
freeway segment; SiI: signalized intersections; Cau: cautious; Agg: aggressive; and Nor: normal.
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After reviewing the related literature, Rossen designated
CC2 with 2.00 for AAVs and 1.00 for CAVs simulated in
different freeway segments comprising basic freeway,
merging, diverging, and weaving [13, 27]. Based on the
values proposed for adaptive cruise control in the study [40],
Bohm and Häger used a value of 1.00 for the simulation of
AAVs in the Swedish traffic system [41]. Furthermore,
Deluka Tibljaš et al. [6] and Giuffre et al. [55, 56] simulated
CAVs in roundabouts with a CC1 value of 1.00.

Different from the above-cited research works, some
studies considered CC2 with a value of 0.0, expecting that
AVs would have no variation while following. Adopted from
the preceding published literature, CC2 value was adjusted
to 0.0 for AVs in urban roads [26, 47, 54, 57, 58], AAVs on
freeway [44, 48], CAVs in urban roads [52], and CAVs in a
four-lane freeway in the study [51]. Similarly, Szimba and
Hartmann modified CC2 to 0.0 for both level 4 (cautious)
and 5 (aggressive) CAVs in a road network covering free-
ways, arterials, and collectors [29]. In addition, Morando
et al. adopted two sets of CC2 values for simulating AAVs in
a roundabout and signalized intersection. Hence, they used
both 0.0 and 2.0 for both road types they considered [42].
Tafidis [49] considered 2.0 and 0.0, respectively, for cautious
and aggressive AAVs on a network-wide simulation study.

Song et al. considered a CC2 value of 1.00 for both
caution CAVs and aggressive CAVs in different road net-
works comprised of arterial highways and secondary mo-
torways [46]. Besides, the value was set to 2.0 for assessing
the safety impacts of AAVs on multilane freeway segments
[43].

3.4. CC3:1reshold for Entering “Following” (s). CC3, with a
default value of −8.00, is the number of seconds before
reaching the safety distance, and it controls the start of the
deceleration process. At this stage, the driver perceives a
preceding slower vehicle [36]. In 2016, Motamedidehkordi
et al. used the default CC3 value for assessing the impacts of
connected highly AVs on a freeway congestion pattern,
stating the absence of related works in the literature at the
time [38]. Besides, Deluka Tibljaš et al. used the same value
for simulating the introduction of AAVs in a roundabout
[6]. Researchers also recommended using the default value
of CC3 regardless of driving behaviour in their simulation
study, comprising AAVs on motorways [45] and CAVs on
urban roads [52].

In 2020, He et al. designated a CC3 value of −12.0 for
simulating CAVs in a freeway weaving segment from a
review of related works in the literature [25]. Adopted from
formerly published literature, for AAVs in urban roads,
−13.50 was considered in the study [26] and −13.54 in the
study [5]. Likewise, Stanek et al. assumed a CC3 value of
−12.0 for simulating AAVs in a congested road network
[32]. Besides, recently in 2022, Boualam et al. [47] assumed a
value ranging from −10.0 to −6.0 for AAVs on a roundabout.

In 2018, Rossen reviewed the suggested values in the
existing literature and set the CC3 value to −12.0 for AAVs
and −16.0 for CAVs in freeway segments that include
merging, diverging, and weaving [27]. For basic freeway

segments, Liu and Fan [53] calibrated the value to −13.0 for
CAVs. Besides, the value was set to −6.0 for microscopic
traffic simulation CAVs on roundabout [55, 56] and net-
work-wide simulation [57, 58]. Furthermore, Budan et al.
[54] assumed a value of -8.0 for the simulation of CAVs on
urban road intersections.

In 2019, Stogios et al. adopted a CC3 value of −16.0 for
cautious and −4.0 for aggressive AAVs that were adopted
from the review of related works in the literature in their
simulation-based study comprised of signalized urban
corridors and freeways [7].

El-Hansali et al. [43] considered a value of −8.0 for AAVs
on multilane highways. Recently, in 2022, Postigo et al. [48]
assumed a narrower range, which is from −10.0 to −6.0 for
simulating AAVs impacts on motorway traffic. Similarly,
Song et al. considered a CC3 value to −3.33 caution CAVs
and −1.00 for aggressive CAVs in different road networks
comprised of arterial highways and secondary motorways
[46]. Quite different from the abovementioned studies, Lee
et al. set the CC3 value to 0.0 for CAVs in a four-lane freeway
[44, 51].

3.5. CC4/CC5: Negative/Positive Following 1reshold (m/s).
Negative and positive following threshold define the nega-
tive and positive speed difference, respectively, during the
following process. When the value of these thresholds is
lower, the drivers’ reaction to the acceleration or deceler-
ation of the preceding vehicle will be more sensitive. *e
default value is −0.35/0.35 for the respective following
thresholds [36]. *e studies [27, 32, 45] used the software
default irrespective of vehicle automation categories.

Lower CC4 and CC5 values were considered in the
literature for AVs (AAVs and CAVs) due to the expectation
that these vehicles are more sensitive to reacting to the
preceding vehicle than human drivers are. In 2015, Bohm
and Häger adopted the values proposed for adaptive cruise
control in the study [40], used a value of −0.10/0.10 for AAVs
in a network-wide study conducted in the Swedish traffic
system [41]. Studies also calibrated CC4/CC5 values to
−0.10/0.10 for AAVs in roundabouts, adopting from pre-
ceding published articles [6, 47]. Likewise, a value of −0.10/
0.10 for AAVs and CAVs in the freeway segment in the
studies [25, 48].

In 2020, for AAVs in urban roads, the studies [5, 26]
calibrated it to −0.13/0.13 by adopting from related works in
the literature. For CAVs, a CC4/CC5 value of −0.10/0.10 was
considered [38, 43, 55–58]. In 2018, Budan et al. [54] as-
sumed a value −0.05/0.05m for the simulation of CAVs on
urban road intersections. In the studies [51] for CAVs in a
four-lane freeway and the studies [29, 44, 46] that simulated
CAVs in a roadway with diverse geometric configuration
and traffic conditions, CC4/CC5 was adjusted to 0.0/0.0.

In 2019, Stogios et al. considered a value of -0.10/0.10 for
aggressive AAVs while considering −0.60/0.60 for cautious
driving behaviour of AAVs based on the values proposed in
formerly published articles [7]. Moreover, Morando et al.
adopted a CC4/CC5 value of 0.00/0.00 and −0.10/0.10 from
related works in the literature for simulating two sets of
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AAVs’ driving behaviour in roadways covering roundabouts
and signalized intersections [42].

Differently from the aforementioned works in the lit-
erature and Vissim default, Aria used CC4 and CC5 values
with different magnitudes, highlighting that the driver re-
sponse is faster in deceleration than in acceleration. *us,
−0.30 for CC4 for a basic freeway segment with a corre-
sponding CC5 value of 0.35 while considering −0.35/0.35 for
CC4/CC5 value for both merging and diverging segments
[37]. Similarly, in 2020, Liu and Fan [53] calibrated the value
to −0.24/0.4 for CAVs in basic freeway segments. What is
more, Tafidis [49] assumed a respective value of −0.1/1.0 for
cautious AAVs and 0.0/0.0 for aggressive AAVs in an urban
road environment with diverse geometric configuration.

3.6. CC6: Speed Dependency of Oscillation (1/(m/s)). CC6
defines the impact of distance on speed fluctuation during
the following process. Larger values lead to greater speed
oscillation with increasing distance, while a value of 0.00
points out that speed oscillation is independent of distance.
*e Vissim default value is 11.44. [36].

Because of the nature of automated driving systems,
the literature expects that there will be no significant
speed variation in AAVs and CAVs. Given that, several
studies considered a CC6 value of 0.00
[6, 25, 27, 32, 38, 41–44, 46–49, 51, 52, 54, 57, 58].
However, some studies considered the default (11.44)
(e.g., [37] for CAVs in freeway segments consisting of
basic freeway diverging and merging segments). More-
over, other studies adopted a CC6 value of 11.40 for
simulating CAVs on urban roads [26] and AAVs on
motorways [45]. In contrast to the above-cited works of
literature, a value of 1.0 was considered for the simulation
of CAVs [55, 56].

3.7. CC7: Oscillation Acceleration (m/s2). CC7 is the mini-
mum value for absolute acceleration or deceleration a driver
uses when following another vehicle. *e default value is
0.25 [36]. Some studies [25, 32, 37, 38, 45] considered the
default value.

Based on the values suggested in the study by Bierstedt
et al. [40], Bohm and Häger [41] considered a CC7 value of
0.40 for AAVs in the Swedish traffic system. Recently in
2022, Postigo et al. [48] assumed a value of 0.1 for studying
AAVs’ impact on motorway traffic. A value of 0.4 was used
for AAVs in the studies by Deluka Tibljaš et al. [6] and Lee
et al. [44] to investigate the impacts of AAVs on a round-
about and a merging freeway segment, respectively. Like-
wise, Rossen calibrated CC7 to 0.10 for both AAVs and
CAVs simulated in freeway segments that comprise merg-
ing, weaving, diverging, and basic freeway segments after
reviewing related works [27]. In the studies [5, 26], 0.08 was
for AAVs simulated in urban roads adopted from related
works in the literature. *e studies [47, 55–57] set the CC7
value to 0.1 for the impact assessment of AVs on urban road
environment. Moreover, Hurtado-Beltran and Rilett [58]
calibrated the value to 0.1 for network-wide assessment of
CAVs’ impact.

Studies also highlighted the importance of considering
both cautious and aggressive driving characteristics of AVs
in the calibration process of microscopic simulation in PTV
Vissim. Accordingly, for the simulation of CAVs in road
networks including urban corridors and freeways, Atkins
used a value in the range from 0.10 to 0.40 where the first
value stands for the most cautious driving behaviour [50].
Adopting from the values proposed in Atkins [50], Lee et al.
also considered a CC7 value ranging of 0.05 to 0.45 for CAVs
in a four-lane freeway with 9 categories of aggressiveness
level ranging from most cautious to most aggressive driving
characteristics where the first value stands for most cautious
CAVs [51]. Likewise, Asadi et al. assumed a value ranging
from 0.15 for caution to 0.45 for aggressive CAVs in urban
road networks [52].

In 2019, for simulating AAVs on freeways and signalized
urban roads, Stogios et al. adjusted the CC7 value to 0.05 for
cautious and 0.45 for aggressive driving behaviour for each
road type considered, based on the suggestions in the
preceding published literature [7]. In 2021, Song et al.
considered a CC7 value of 0.12 for caution CAVs and 0.45
for aggressive CAVs in different road networks comprised of
arterial freeways and ancillary motorways [46]. Liu and Fan
[53] calibrated the value to 0.46 for CAVs in basic freeway
segments. Furthermore, Budan et al. [54] assumed a range of
values from 0.3 to 0.45 for the study of CAVs at urban road
intersections.

Furthermore, Morando et al. considered two sets of CC7
values for assessing AAVs’ impact on a signalized inter-
section and roundabout. Accordingly, they adopted 0.45 and
0.25 from related works in the literature for each of the
considered roadways [42]. Besides, El-Hansali et al. [43] set
the value to 0.25 for studying the safety impacts of AAVs in
highway network. Different from other literatures, the recent
study by Rao et al. considered a higher value of CC7, 0.91, for
AAVs in freeway networks [39]. Above and beyond, Tafidis
[49] calibrated the CC7 value to 0.25 for cautious AAVs and
0.4 for aggressive AAVs in urban road environments with
different geometric alignments.

3.8. CC8: Standstill Acceleration (m/s2). CC8 is the desired
acceleration of a vehicle when starting from a stopped
condition. *e default value is 3.50 [36]. Studies also con-
sidered the default value in simulating CAVs in a freeway
weaving segment [25], AAVs in congested road networks
with different geometric arrangements [32], AAVs in mo-
torways [45], and CAVs in diverse roadway configurations
including merging, diverging, and straight segments [37].
Similarly, Motamedidehkordi et al. [38] considered the
default value for simulating CAVs in a freeway network.

In 2018, Rossen considered a CC8 value of 3.50 for AAVs
and 4.00 for CAVs in freeways containing basic freeway,
merging, diverging, and symmetrical weaving segments after
exploring the formerly published literature [27]. In the
studies that assessed the impacts of AAVs on urban road
networks, the CC8 value was calibrated to 3.72, adopted
from related works in the literature [5, 26]. A CC8 value of
4.00 was considered in the studies that investigated AAVs’
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influence on the road network with different road segments
that comprise both urban roads and freeway segments [41],
roundabouts [6], and network-wide simulation [58]. Re-
cently, in 2022, Elawady et al. [57] calibrated the value to 3.5
for studying the impacts of CAVs on urban road traffic. *e
studies [55, 56] calibrated the value to 3.0 for the simulation
of CAVs on urban road setting with roundabout. Lee et al.
[44] calibrated the value to 3.8 for the impact assessment of
AAVs on a merging segments, while El-Hansali et al. [43]
assumed 3.5 for analysing the safety impacts of AAVs on a
highway network. Furthermore, Budan et al. [54] assumed a
range of values from 3.6 to 3.9 for the simulation of CAVs on
urban roads.

In contrast to the above-cited literature, Atkins used a
CC8 value in the range of 3.20 to 3.80 for CAVs on roadways
that comprises both urban and freeway segments, where the
first value stands for the most cautious driving behaviour
[50]. Considering the proposed range of values in the study
by Atkin [50], Lee et al. used a value of CC8 in the range of
3.10 to 3.90 for simulating the corresponding CAVs’ ag-
gressiveness level in a four-lane freeway [51]. Furthermore,
Asadi et al. used a value ranging from 3.30 to 3.90, re-
spectively, for caution and aggressive CAVs in urban roads.
On the other hand, Song et al. considered a value of 3.5 for
both caution CAVs and aggressive CAVs for road segments
comprising freeways with various traffic levels [46].

In 2019, Stogios et al. modified CC8 to 3.10 for cautious
AAVs and 3.90 for aggressive AAVs in road segments that
contain signalized urban corridors and freeway segments
based on the related works in the literature [7]. Moreover,
Morando et al. simulated AAVs in roundabouts and sig-
nalized intersections with two sets of CC8 values that are
3.90 and 3.50 for each roadway type adopted from the lit-
erature [42]. Above and beyond, Tafidis [49] calibrated the
CC8 value to 3.5 for cautious AAVs and 4.0 for aggressive
AAVs on urban road. Different from the abovementioned
works of literature, studies [47, 48] assumed a wider range of
values, which is from 3.0 to 4.0 for AAVs.

3.9. CC9: Acceleration at 80 km/h (m/s2). CC9 is the desired
acceleration of a vehicle at a speed of 80 km/h. *e default
value is 1.50 [36]. Researchers considered the default CC9
value for CAVs in freeways ([37, 38]). Stanek et al. also used
the default value for AAVs in congested road networks
comprising diverse geometric arrangements [32] and mo-
torways [45]. Similarly, the default value was considered in
He et al. [25] for CAVs in a freeway weaving segment and in
Elawady et al. [57] for CAVs on urban road environment.
For freewaymerging segments, Lee et al. [44] assumed a CC9
value of 1.8 for AAVs.

In 2018, Rossen used 2.00 for both AAVs and CAVs in a
diverse freeway segment covering basic freeway, merging,
diverging, and weaving segments [27]. Besides, for AAVs, a
value of 2.00 was considered in the studies that focused on
network-wide traffic systems [41, 58], and roundabouts [6]
adopted from preceding published articles. In 2020, re-
searchers designated a CC9 value of 1.60 for simulating
CAVs in an urban roads adopting from the related literature

[5, 26]. Recently in 2021, Song et al. considered a value of
1.50 for both caution CAVs and aggressive CAVs for road
segments comprising of freeway with various traffic levels
[46]. Furthermore, Budan et al. [54] adopted a range of
values from 1.6 to 1.9 for the simulation of CAVs on urban
roads.

In contrast to the above-cited works of literature, Atkins
used in the range of 1.20 to 1.80 for CAVs with a driving
behaviour extending from most cautious to most aggressive,
respectively [50]. Adopting the values from the study by
Atkins, Lee et al. considered a value of CC9 in the range of
1.10 to 1.90 for the corresponding CAVs’ driving behaviour
in a four-lane freeway [51]. A range from 1.30 to 1.90 is also
considered for CAVs in urban roads in the study by Asadi
et al. [52]. Similarly, Stogios et al. considered a CC9 value of
1.10 for cautious and 1.90 for aggressive AAVs for assessing
its influence on signalized urban roads and freeway traffic
based on the values proposed in the preceding published
literature [7]. Besides, studies [47, 48] assumed a value
ranging from 1.2 to 2.0 for AAVs. Compared to the
abovementioned studies, for CAVs on roundabout, Giuffrè
et al. [55] and Severino et al. [56] calibrated CC9 to a smaller
value, which is 0.5.

3.10. Look Settings. Look settings define the minimum and
maximum distances that a vehicle can see to react to other
vehicles. It includes look ahead and look back distances.
Advanced vehicle communication technologies like vehicle-
to-vehicle, vehicle to infrastructure, and vehicle to cloud can
extend looking distances to several kilometres.

3.10.1. Look Ahead Distance (m). “Look ahead distance” is a
parameter that defines the minimum and maximum dis-
tances that a vehicle can see forward within the same link to
react to other vehicles in front or aside from it. *e default
values are a minimum of 0 and a maximum of 250 [36].

In 2016, Aria adopting from the study [61], used 150 and
200, respectively, for minimum and maximum values for
CAVs in different freeway segment configurations that in-
clude autobahn, merging, diverging, and weaving [37].
Recently, in 2022, Postigo et al. [48] assumed a minimum
and maximum value of 0 and 300, respectively, for studying
the potential effects of AAVs on motorway traffic.

In 2015, Bohm and Häger doubled the maximum look-
ahead distance for AAVs. Hence, they considered minimum
and maximum look-ahead distances of 0 and 500, respec-
tively, for simulating AAVs in a Swedish traffic system [41].
Besides, Stanek et al. adopted the values suggested in the
study [41] for simulating AAVs on congested road links
covering both freeway segments and roundabouts [32]. *e
study by Tafidis et al. also used a value of 0.00 and 500 for
CAVs in intersections for the respective look ahead distances
adopted from related studies [62]. In 2020, He et al. reviewed
related works in the literature and calibrated the values to 0
and 500, respectively, for minimum and maximum values in
simulating CAVs in a freeway weaving segment [25]. In
2021, Park et al. also adjusted the minimum value to 0 and
the maximum to 500 in simulating AAVs in an urban road
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environment with different traffic conditions and geometric
configurations, including single lane, multilane, and inter-
sections [30]. Furthermore, Giuffrè et al. [55] and Severino
et al. [56] calibrated the minimum and maximum values to
20 and 200, respectively, for the simulation of CAVs in
urban road settings with roundabouts.

For simulating AAVs in a roundabout, Deluka Tibljaš
et al. [6] adjusted the corresponding values to 0 and 105,
specifically based on a calibration conducted for CVs in the
study [63]. Furthermore, Rossen adopted respective mini-
mum and maximum values of 150 and 200 for AAVs and
5000 and 5000 for CAVs from the related preceding pub-
lished literature to assess the impacts of this emerging
technology on freeway traffic consisting of merging, di-
verging, weaving, and straight segments [27]. *e study by
Asadi et al. recommended a shorter look ahead distance
(800) for CAVs on urban roads [52].

3.10.2. Look Back Distance (m). “Look back distance” de-
fines the minimum and maximum distances that a vehicle
can see backward within the same link to react to other
vehicles behind. *e default values are minimum of 0 and a
maximum of 150 [36].

In 2015, Bohm and Häger doubled the largest lookback
distance for AAVs. Hence, they considered a minimum and
maximum look ahead distance of 0 and 300, respectively, for
simulating AAVs in a Swedish traffic system [41].

Based on the values suggested in the study by Bohm and
Häger [41], Stanek et al. [32] considered it to be 0 and 299m
(980 feet), respectively. For simulating AAVs on a congested
road link. Besides, recently in 2020, He et al. reviewed related
works in the literature and calibrated the values to 0 and 500,
respectively, for minimum and maximum values in simu-
lating CAVs in the freeway-weaving segment [25]. For AAVs
in roundabouts, Deluka Tibljaš et al. adjusted the corre-
sponding values to 0 and 280 specifically based on a cali-
bration conducted for CVs in the study [6, 63]. Recently, in
2022, Postigo et al. [48] adopted a minimum and maximum
values of 0 and 150, respectively, for simulating the effects of
AAVs on motorway traffic. Furthermore, Giuffrè et al. [55]
and Severino et al. [56] calibrated the minimum and
maximum values to 20 and 200, respectively, for the sim-
ulation of CAVs on urban road settings with roundabouts.

In 2016, Aria adopting from the study [61], considered
150 and 200, respectively, as minimum and maximum values
for CAVs in different freeway segments that include auto-
bahn, merging, diverging, and weaving [37]. *e study by
Tafidis et al. adopted a value of 0 and 300 for CAVs in in-
tersections to the respective look back distances adopted from
related studies [62]. *e study by Asadi et al. also recom-
mended a look back distance of 800m for CAVs in urban
roads [52]. Likewise, Rossen adopted respective minimum
and maximum values of 150 and 200 for AAVs and 5000 and
5000 for CAVs from related works in the literature to assess
the impacts of these vehicles on freeway traffic consisting of
merging, diverging, weaving, and straight segments [27].
Furthermore, Park et al. set the minimum value to 0 and the
maximum to 500 for AAVs in urban road networks [30].

3.10.3. NOV: Number of Observed Vehicles (−). *is pa-
rameter defines how well the vehicles within the link can
predict other vehicles’ movements and react accordingly.
*e default value is 2 in the Wiedemann 99 car-following
model [36].

Several studies considered a value of 10 for this simu-
lation parameter. It might be from the fact that the maxi-
mum number of vehicles possibly added was limited to 10 in
the earlier version of the PTV Vissim software. In 2015,
Bohm and Häger assumed 10 for simulating AAVs in the
Swedish traffic system [41]. *e study by Stanek et al.
considered the values proposed by Bohm and Häger for
investigating AAVs’ impact on congested road segments
consisting of diverse geometric configurations [32]. Besides,
in 2018, Morando et al. used two sets of values that are 10
and 2 for AAVs in both a signalized intersection and a
roundabout to study how this disruptive technology affects
the road sections examined [42]. Lee et al. [44] also assumed
a value of 10 for AAVs on merging freeway segments.

A thought-provoking study conducted by Lee et al.
assumed NOV to be 10 for simulating CAVs at a different
aggressiveness level in a four-lane freeway [51]. Studies also
considered a value of 10 for CAVs in urban roads com-
prising different geometric configurations
[49, 52, 55, 56, 62].

In 2018, Rossen investigated the impacts of AVs on
freeway segments containing merging, diverging, weaving,
and straight sections. *ey considered a number of observed
vehicles of 8 for AAVs and 10 for CAVs adopted from the
review of related works in the literature [27].

4. Lane-Changing and Lateral Parameters

*is section investigates the PTV Vissim lane changing and
lateral parameters, including minimum headway (MinHW),
safety distance reduction factor (SDRF), maximum decel-
eration for cooperative braking (MaxDCB), cooperative lane
change (CLC), and overtaking on the same lane (OSL), that
have been calibrated for different types of AVs in the lit-
erature. Table 2 presents a summary of the calibrated values
from the literature.

4.1. MinHW: Minimum Headway (Front and Rear) (m).
It defines the minimum distance between two vehicles that
should be available after a lane change so the change can take
place. A greater headway might be required in normal traffic
flow conditions to keep the speed-dependent safety distance.
*e default value is 0.50 [36]. In 2021, Hurtado-Beltran and
Rilett [58] assumed the default value for simulation of CAVs
on roadways with diverse geometric configurations.

In 2018, Stanek et al. assumed a MinHW value of 0.375
for simulating AAVs in congested road links encompassing
different geometric configurations [32]. In 2019, Tafidis et al.
also used the value assumed by Stanek et al. to assess the
impacts of CAVs on urban road intersections [62].

In 2020, Tomás et al. used a value of 0.70 for AAVs in
urban freeways based on the proposed values in preceding
published articles [5]. Besides, after investigating the existing
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literature, He et al. adjusted MinHW to 0.37 for CAVs in a
freeway weaving segment [25].

In 2016, Atkins used a value in the range of 0.80 to 0.20
for CAVs on a roadway that comprises both urban and
freeway segments where the first value stands for the most
cautious driving behavior [50]. For simulating CAVs in a
four-lane freeway, Lee et al. also considered the same range
of MinHW values suggested by Atkins for the corresponding
aggressiveness [51]. *e study by Asadi et al. considered a
smaller range compared to preceding studies. Asadi et al.
assumed a value ranging from 0.70 for caution CAVs to 0.20
for aggressive CAVs in urban road environments [52]. In
2021, Park et al. [30] set the value of MinHW to 0.20 for
AAVs in urban road environment, while Lee et al. [44]
considered the same value for AAVs in merging freeway
segments. Recently in 2022, Postigo et al. [48] considered a
value in the range of 1.0 to 0.5 for AAVs in motorways.

In addition, Stogios et al. considered a minimum
headway of 0.80 for cautious AAVs and 0.20 for aggressive
AAVs in a road network comprising urban signalized
corridors and freeways [7]. However, Song et al. considered
the same value, 0.50, for both caution CAVs and aggressive
CAVs in different roadway geometries [46]. In addition,
Tafidis [49] calibrated the value to 0.5 for cautious AAVs and
0.2 for aggressive AAVs in an urban road environment.

4.2. SDRF: Safety Distance Reduction Factor (-). “SDRF”
reflects a reduction in the safety distances associated with
vehicles involved in the lane-changing manoeuvre. When
the lane change is accomplished, the original safety distance
is considered once more. A smaller value results in more
aggressive lane-changing behaviour. *e default value is
0.60, which results in a 40% reduction in safety distances
[36]. Rossen used the Vissim default SDRF value for both
AAVs and CAVs simulated in different freeway segments,
including merging, diverging, weaving, and straight seg-
ments [27]. Besides, recently in 2021, Song et al. considered
the same value, 0.60, for both caution and aggressive CAVs
in a road network with different geometric settings [46].

In 2016, Aria considered an SDRF value of 0.60 for a
basic freeway, 0.80 for merging, and 0.85 for diverging
segments for CAVs based on the proposed value in the study
[22, 37]. *e study by Tafidis et al. considered 0.45 for CAVs
in urban intersections, adopting from preceding published
articles [62]. Besides, studies assumed a value of 0.75 to
simulate CAVs in diverse roadway configurations [38, 58].

In 2020, Tomás et al. simulated AAVs on urban roads
considering an SDRF value of 0.21 based on the values
proposed by preceding published research works [5].
Moreover, He et al. designated a value of 0.45 for CAVs in
freeway weaving segments after reviewing several works in
the literature [25].

Differently from the above-cited literature, Atkins
considered the SDRF in the range of 0.90 to 0.30, where the
first one stands for the most cautious and the second one for
the most aggressive CAVs [50]. In 2019, Lee et al. adopted
the same ranges of SDRF to the study [50] for the respective
driving aggressiveness level of CAVs in a four-lane freeway

segment [51]. Correspondingly, Asadi et al. calibrated the
value in the range of 0.80 to 0.30 for CAVs in urban road
environments [52]. Similarly, Stogios et al. designated a
value of 0.70 for cautious AAVs and 0.10 for aggressive
AAVs in their study that assessed influence of these vehicles
on road links consisting of freeway segments and signalized
urban corridors [7]. Recently, in 2022, Postigo et al. [48]
considered a narrower range, which is from 1.0 to 0.6 for
AAVs in motorways. On the other hand, Park et al. [30] set
the value of SDRF to 0.30 for AAVs in urban road settings,
while Lee et al. [44] assumed the same value for AAVs on
merging freeway segments.

4.3. MaxDCB: Maximum Deceleration for Cooperative
Braking (m/s2). “MaxDCB” is a parameter that defines the
maximum deceleration the trailing vehicle driver will accept
for cooperation to help the lane-changing vehicle perform its
manoeuvre. A higher value means a strong brake and has a
high likelihood of lane changing. *e default value is −3.00
[36].

In 2016, Motamedidehkordi et al. assumed a value of
−3.50 for connected highly AVs in freeways [38]. Similarly,
Tafidis et al. adopted −4.00 for simulating CAVs in urban
intersections from related works in the literature [62]. Aria
assigned MaxDCB varying with types of freeway segment
based on the proposed values in the study [22]. Hence, Aria
considered −3.00, −6.00, and −9.00 for CAVs in basic
freeway, merging, and diverging segments, respectively [37].
Furthermore, in 2021, Hurtado-Beltran and Rilett [58]
calibrated the value ofMaxDCB to -6.0 for simulating CAVs’
impact on a roadway with a diverse geometric configuration.

In 2020, He et al. used −4.00 for CAVs in a weaving
freeway segment after reviewing related works in the lit-
erature [25]. Likewise, Stanek et al. considered −4.00 for
AAVs in congested road networks covering both urban and
freeway road segments [32], while a value of −4.40 is used for
AAVs in freeway segments with different geometrical
configurations [39]. Recently, in 2022, Postigo et al. [48] set
the value from the range of −2.5 to −6.0 for studying AAVs’
impact on motorways.

Recently, Song et al. adjusted the value to −3.00 for both
caution and aggressive CAVs in different roadway geome-
tries [46]. *e study by Khattak et al. [33] considered −7.06
for CAVs in multilane freeway segments.

4.4. CLC: Cooperative Lane Change (-). *is parameter
stipulates the circumstances in which the trailing vehicle in
the target lane will try tomove to another side to create room
for the lane-changing vehicle. *e vehicle executes the co-
operative lane change if the defined maximum speed dif-
ference and maximum collision time are not surpassed. *e
default in PTV Vissim is unchecked [36].

In 2016, Aria et al. activated CLC for CAVs with a
maximum speed difference set to 3.0 km/h and a maximum
collision time of 10.0 seconds [59]. Other studies also ac-
tivated this parameter and used the default maximum speed
difference (10.0 km/h) and maximum collision time
(10 seconds). *ese include the study by Stanek et al. to
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evaluate the impacts of AAVs on congested road links [32],
the study by Tafidis et al. to assess the impacts of CAVs on
urban road intersections [62] and Park et al. in the as-
sessment of AAVs’ impact on urban road networks [30]. On
the other hand, studies [52, 58] considered a maximum
speed difference of 10.80 km/h and a maximum collision
time of 10 seconds for CAVs in road environments that
comprise (un)signalized intersections and roundabouts.

4.5. OSL: Overtake on the Same Lane (−). When modelling
traffic that is not lane bound, it is possible to allow vehicles to
overtake within the lane that can be defined via OSL. Ve-
hicles can overtake in the lane to the left or to the right. *e
default is unchecked [36]. Hurtado-Beltran and Rilett [58]
considered the default value for simulation of CAVs in a
roadway network with diverse geometric configurations.

In 2013, Chiang andChan simulated autonomous vehicles
on a java virtual machine using an algorithm that was used to
overtake in the same lane (left and right) when the safety
requirements are fulfilled [64]. Furthermore, Aria et al. ac-
tivated OSL for CAVs in freeway segments including
merging, diverging, and basic freeway, considering 0.15m and
0.50m for minimum lateral distance standing and minimum
lateral distance driving at 50 km/h, respectively [59].

In 2018, Stanek et al. [32] activated OSL with a minimum
lateral distance of 0.15m and a minimum lateral distance of
0.75m, respectively. Similarly, Tafidis et al. activated it and
used 0.15m and 0.50m for the respective distances for CAVs
in urban road intersections, adopted from the preceding
published literature [62]. Above and beyond, in a recent
study in 2020, He et al. used activated OSL for CAVs in
freeway weaving segment with the same value (0.75m) for
both minimum lateral distance standing and minimum
lateral distance driving at 50 km/h adopted after a review of
related works in the literature [25].

5. Discussion

*e microscopic traffic simulators play a crucial role in
modelling complex traffic behaviours while maintaining
computational efficiency. PTV Vissim is one of the most
popular traffic simulators, which is a discrete, stochastic,
time-step-based, microscopic model with the driver-vehicle
unit considered as a single entity. Vissim uses the psycho-
physical car-following model, which is a model that involves
psychological activities (e.g., unconscious car-following and
perception-reaction thresholds) and physical activities (e.g.,
accelerating and decelerating efforts) [65]. Car-following,
lane-changing, and lateral behavior are the most important
constituents of the simulation models that directly affect
vehicle interaction in the network and are vital to mimicking
the real-world traffic stream. *e PTV Vissim software
provides default values for the simulation parameters that
can be used as a basis for the simulation of scenarios that
reflect the actual vehicular traffic on a roadway with diverse
geometric configurations. Nonetheless, the calibrated values
for the simulation of automated vehicles (AVs) varied in
different literature as AVs are not in traffic yet.

In the literature, different driving behaviours of AVs
have been assumed; for example, they can be grouped as
cautious and aggressive [7, 50, 51] based on the levels of
automation, where level 5 represents the most aggressive
AVs. AVs can be further clustered as cooperative/connected
AVs (CAVs) and autonomous (without communication
capability) AVs (AAVs) [12, 11]. What is more, the types of
roadway have a significant impact on the driving charac-
teristics of AVs, as the study [22], for example, showed that
vehicles are more conservative on basic freeways than on
merging and diverging freeway segments. Several types of
roadways have been studied in the literature, including basic
freeway segments [27, 51], merging freeway segment
[27, 44], diverging freeway segment [25], weaving freeway
segment [27, 59], signalized intersections [54, 57], round-
abouts [55, 56, 63], and network-wide simulations that
include a variety of roadway elements [32, 37, 41].

*e comprehensive literature review shows that there is a
variation in the assumptions of car-following, lane-chang-
ing, and lateral behaviour parameters among the works of
the literature as well as the one suggested in the latest version
of PTV Vissim. Over all considering the car-following pa-
rameters CC0 and CC1, the literature assumed that cautious
AVs have a higher values than the conventional vehicles
(e.g., [7, 46, 52]) which means that at lower automation and
uncertain operation design domain AVs perform less than
the conventional vehicle traffic. Furthermore, PTV Vissim
2020 suggests the same value of CC0 for both cautious AVs
and normal AAVs while recommending a lower value for
aggressive AVs. Regarding CC2, which is a parameter that
limits the longitudinal oscillation of a vehicle compared to
the one in front, PTV Vissim suggested a value of 0.0 as
vehicle automation can remove oscillation. Nonetheless,
most of the studies assumed values ranging from 0.0 to 4.0.
In comparison to other car-following settings, the values
proposed for CC3, CC4, CC5, CC6, CC7, CC8, and CC9 vary
relatively slightly across works of the literature and the
default value provided by the software (see Table 1). In terms
of look ahead distance (LAD) and look back distance (LBD),
the literature expected that LAD would be larger for AVs
than for normal cars, but the software assumed that LBD is
independent of vehicle automation. Furthermore, as shown
in Table 2, the literature considered that vehicle automation
and connectivity resulted in a lower minimum headway
(MinHW) for aggressive AVs and a higher value for cautious
AVs despite the fact that the PTV Vissim assumed that they
could have the same value as conventional vehicles. Simi-
larly, the calibration value of safety distance reduction factor
(SDRF) and maximum deceleration for cooperative break-
ing (MaxDCB) varies among the works of literature as well
as with the software default. Above and beyond, cooperative
automated vehicles are assumed to have the capability for
cooperative lane-changing overtaking on the same lane (e.g.,
[12, 27, 37, 59]).

Table 3 shows the types of AVs assessed through the PTV
Vissim internal model along with the corresponding study
area, Vissim parameters, evaluation criteria, and main
findings of the studies included. In this paper, the literature
findings on the potential effects of AVs on traffic flow
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Table 3: Existing studies on simulations of AVs in different types of roadways through the PTV Vissim internal model.

Study Study area Type of AVs Vissim
parameter

Market penetration
(%) Criteria Main findings

[41]

Urban roads,
intersections,

roundabout, and
highway stretches

AAV CF 100 Traffic
performance

Speed is raised by 34%, while
delays and number of stops are
decreased by 56% and 54%,

respectively.

[37, 59] Autobahn, merging,
and diverging CAV CF, LC, LB 100 Traffic

performance

100% AVs enhanced speed by
8.5% while decreasing density and
travel time by 8.1% and 9.0%,

respectively, in congested traffic.

[50] Urban roads and
highways

CAV:
Cautions,
aggressive

CF, LC 100 Traffic flow

Until a high degree of automation
and connectivity features is
attained, automation may not

significantly improve capacity and
traffic performance.

[6] Roundabout AAV CF 10, 25, 50 Safety
Conflicts occur more frequently
when AVs are present; however,
the rate of increase is very mild.

[38] Freeway network CAV CF, LC 5, 10, 20, 50 Capacity

As the market penetration of
CAVs rise, a capacity of the entire
motorway system will increase by

up to 30%.

[42]
Signalized

intersection and
roundabout

AAV CF 25,50,75,100 Safety

AVs can reduce the number of
conflicts at signalized junctions
and roundabouts by up to 65%
and 64%, respectively, with a

100% penetration rate.

[27] Freeway segments AAV; CAV CF, LC, LB 8.5, 42.5, 76.5, 85 Capacity

At a low-market share, vehicle
automation is expected to reduce
capacity, but at a 100% market
share, it will enhance capacity by a
range of 10 to 20%, with CAVs

showing the greatest
improvement.

[32]
Freeway, arterial
corridors, and
intersections

AAV CF, LC, LB 10, 30,50,70,90,100 Traffic
performance

With a higher market penetration,
AAVs can reduce delay by

30–33% while increasing speed by
6%–23%.

[62] Urban road
intersections CAV CF, LC 20,40,60,80,100 Traffic

performance

*e performance of uncontrolled
junctions was more significantly
improved by the deployment of

CAVs.

[51] Four-lane freeway CAV CF, LC 10–90 with an
increment of ten

Traffic
performance,

safety

*ese findings show that cautious
CAV manoeuvering might be

detrimental to the traffic stream.

[7]

Freeway with diverse
geometric segments:
Signalized urban

corridor

AAV:
cautions;
aggressive

CF, LC 10, 30, 50, 70, 90,
100

Traffic
performance,
emissions

Cautious AAVs could worsen
traffic efficiency (e.g., at 100%
market share, cautious AAVs

result in an increase in emissions
by 35%, while a 26% reduction is
expected for aggressive AAVs at

100% market share).

[25] Freeway: Weaving
segment CAV CF, LC, LB 1, 3, 5, 7, 10 Speed

At low-market share, CAVs have
no significant impact on the traffic

speed.
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Table 3: Continued.

Study Study area Type of AVs Vissim
parameter

Market penetration
(%) Criteria Main findings

[26] Urban road AAV CF 30 Air quality

*e AAVs encouraged a rise in
both NOx and CO2 emissions
(+1.8% and +0.7%, respectively),

whereas the electric AAVs
scenario resulted in emission
reductions of roughly 30% for

both air pollutants.

[29] Freeway, arterial,
collector

CAV:
cautious,
aggressive

CF 100 Travel time

Travel time can be reduced by in
the range of 20–27%, with the
highest benefit from aggressive

CAVs.

[5] Urban freeway AAV CF, LC 10, 20, 30
Traffic

performance,
emissions

According to a route level
analysis, AAVs can reduce

emissions by 5% while increasing
travel time by up to 13%.

[33] Freeway CAV CF, LC 100 *roughput CAVs led to a throughput
improvement of up to 18.4%.

[53] Four-lane freeway CAV CF 10–100 with an
increment of ten Capacity

If AVs’ market share is less than
40%, it will have a detrimental

effect on the capacity. However, if
the AVmarket share exceeds 40%,

capacity will be increased.

[45] Hypothetical
motorway AAV CF 10–100 with an

increment of ten
Traffic

performance.

With a rise in the share of AVs up
to a certain level, the quality of
traffic improves. For example,

shared lane with 60% AVs may be
just as effective as one with 100%

AV traffic.

[30] Urban road network AAV CF, LC 20, 40, 60, 80, 100 Capacity, travel
time, delay, speed.

As AV penetration increased, the
average delay time was reduced by
up to 31%, and at 100% market
share, capacity could be enhanced

by 40%.

[39] Freeway with diverse
geometric segments AAV CF, LC 10–100 with an

increment of ten
Traffic

performance

*ere is a set of ideal behavioural
patterns for AV flows to cooperate

with CV flows via the V2X
features at each level of AV
penetration to enhance the

capacity and reduce congestion.

[52] Urban road CAV CF, LC 0–25 Traffic
performance

Despite the increase in their
market share, the increased lane
discipline brought on by CAVs

may provide significant
advantages and reduce the

congestion issue.

[46] Arterial and
secondary motorway CAV CF, LC 20, 40, 60, 80, 100

Traffic
performance and
CO2 emissions.

As the rate of CAV penetration
rises, AVs will have a greater
impact on reducing CO2

emissions and traffic efficiency
overall.

[47] Roundabout AAV CF 20, 40, 60, 80, 100 Capacity
*e 20% and 40% AVs in the flow
would raise capacities by around

10% and 20%, respectively.

[48] Freeway network AAV CF, LC 20, 40, 60, 80, 100 *roughput,
delays

AVs with more cautious driving
logic predominate, there is a

considerable influence on delay
times and a drop in vehicle

throughput.
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characteristics, safety, emissions, and energy consumption
are reviewed, and it is concluded that AVs, as their market
penetration increases, promisingly improve road traffic
performance when aggressive driving logic is assumed.
However, the long-term effects of AVs, especially on energy
consumption and emissions, have uncertainty, and they may
have a negative impact in the scenario of heterogeneous and
low-market penetration rates. Nevertheless, the findings
showed that CAVs have better traffic performance than
AAVs.

6. Conclusions and Future Studies

Currently, impact assessment of different types of automated
vehicles (AVs), autonomous automated vehicles (AAVs),
and cooperative automated vehicles (CAVs) on traffic flow
has received immense interest from researchers due to their
potential mobility benefit over conventional vehicles (CVs).
*ere are different methods used in the literature to assess
the impact of AVs. Microscopic simulation is one of the
most popular methods used to investigate the traffic flow
impacts of AVs as these vehicles, currently, are not widely
available within the traffic system. PTVVissim is widely used
in the literature for AVs impact assessment.

*e current paper attempted to investigate how PTV
Vissim has been calibrated for the simulation of different

types of AVs and compare the calibrated values in the lit-
erature with the default values introduced in the most recent
version of this software, PTV Vissim 2020. PTV Vissim 2020
comprises new features including platooning, enforcing
absolute braking distance, implicit stochastics, a number of
interaction objects that helps to model AVs in microscopic
traffic simulation. *is paper considers the car-following,
lane-changing parameters, and lateral parameters.

Our findings write down, in the literature, the calibration
of PTV Vissim parameters centres on assumptions from the
preceding literature and technological expectations. In
general, the literature expects a lower value for the pa-
rameters CC0, CC1, CC2, CC3, CC4, CC6, CC7, SDRF, and
MinHWwhile expecting a higher value from the parameters
including CC8, CC9, looking distances, and MaxDCB for all
types of AVs with a full automation level comparing to
values of parameters for CVs. However, when conservative
AVs with more safety considerations than CVs are intro-
duced to road transportation, deterring effects are expected
in the literature (e.g., a higher CC0 and CC1 while a lesser
CC8 and CC9 values). Moreover, the communication fea-
ture in CAVs can help them to have higher looking distances
compared with AAVs.

In some cases, the literature expects a different setup of
simulation parameters from the one suggested by PTV
Vissim. For example, considering the SDRF value proposed

Table 3: Continued.

Study Study area Type of AVs Vissim
parameter

Market penetration
(%) Criteria Main findings

[55] Turbo roundabout CAV CF, LC 10, 25 Safety

Reduced conflict points by 70%
and 83% are expected for CAVs
with market penetrations of 25%

and 10%, respectively.

[56] Flower roundabout CAV CF, LC 25 Safety
Number of crashes can be

eliminated with the introduction
of CAVs.

[44] Merging freeway
segment Level 4 AAV CF, LC 20, 40, 60, 80, 100 Speed

Up to a market share of 80%, the
traffic performance benefit of

AAVs is negligible and the average
speed was around 33% lower
when a lane was dedicated to

AAVs.

[58] Network-wide CAV CF, LC 10–100 in 10%
increments PCU estimation

Compared to non-CAV trucks,
CAV trucks have PCUs that are,

on average, 34.3% lower.

[43] Multilane freeway AAV CF 100 Safety

Approximately, 12% fewer
accidents occurred at 100% AAVs
compared to conventional vehicle

scenario.

[54] Unsignalized four-
way intersection CAV CF 10,25,50,75,90,100 Traffic flow, fuel

consumption

Average vehicle delays were
reduced by over 96%, and fuel
usage dropped by up to 37%.

[49] Urban road network CAV CF, LC 25,75 Traffic flow
Conflict points and crash severity
were decreased by up to 2.6 times

due to AAVs.

[57] Signalized four leg
intersections CAV CF 25, 50, 75, 100 Delay, safety

CAVs has the potential of up to
35% decrease in accidents and an
8% improvement in travel time.

CF: car-following; LC: lane changing; LB: lateral behaviour; PCU: passenger car unit.
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for aggressive AVs, the literature expects a value smaller than
the default while the PTV Vissim suggested a higher value
for this parameter. Moreover, the suggested values in PTV
Vissim 2020 showed that MinHW is independent of vehicle
automation and aggressiveness level. However, the literature
expects a lesser value of MinHW for aggressive AVs while
expecting a higher value for cautious AVs.

*e results from the current study show that the impact
assessment of different types of automated vehicles is still in
its beginning phase, consisting of various uncertainties. Even
though the literature related to internal Vissim models such
as car-following, lane-changing, and lateral behavior of AVs,
further studies should extend the calibration of different
microscopic traffic simulators and compare the sensitivity of
each simulation parameter.
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