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Ground penetrating radar (GPR) has been widely applied in the assessment of railway ballast conditions (fouling, moisture) by
using the spectrum of the tested GPR signal. However, the drawbacks of the low time-frequency resolution and mode mixing
prevent the traditional spectrum methods from a wide application. This paper uses the advanced time-frequency analysis of GPR
signal based on optimized variational mode decomposition to extract the features of ballast. The new approach overperforms the
conventional frequency spectrum methods of GPR signal processing by giving a clear and quantitative assessment of ballast
signals. Experimental results of GPR with dry and wet fouled ballasts demonstrate that, by comparison with the feature extraction
method of conventional spectrum methods such as spectrogram and wavelet, the feature extraction method based on the
optimized VMD has much better separability and quantitative identification capability.

1. Introduction

The structure of a railway track typically consists of a su-
perstructure and a substructure. The load of the track needs
support. Ballast, which is part from the substructure, is the
key element to support and transfer the load. Ballast typically
consists of angular aggregate that is uniformly graded to
provide enough structural capacity and air voids. In practice,
rails and sleepers need a relatively dry environment to
maintain its maximum performance, and air voids can re-
duce water drainage and keep the rails and sleepers away
from moisture. Over time, general steps to produce ballast
were gradually fouling fine materials when filling the air
voids; however, the strength and drainage capabilities were
compromised. The moisture in the fouling material tends to
exacerbate the decrease in strength [1-4]. Ground-pene-
trating radar (GPR) has been used as a viable technique for
quick and nondestructive inspection of the actual condition
of railway ballasts [4, 5]. GPR has the ability to produce
geophysical images in the following ways. Firstly, GPR

measures reflected electromagnetic (EM) waves transmitted
in the form of radar pulses in the microwave band of the
radio spectrum. Then, a transmitting di-pole antenna ra-
diates EM pulses into the ground, and a receiving dipole
antenna measures variations in the reflected signal in a time-
domain profile. Finally, the structural properties of the
ballast can be inferred from the responses given by those
interface reflections. Particularly, using GPR can estimate
and monitor the track stiffness indirectly by detecting the
ballast layer which is the most important and dominant
component in track stiffness. The research has demonstrated
the relationship between the parameter of track stiffness with
ballast layer and subgrade condition, which shows the
promising future use of GPR to estimate the track load
carrying capability [1-5]. GPR has been used to quantify the
ballast fouling. If the fouling procedure is contaminated by
other fines, the mechanical properties of the ballast will be
degraded, which will finally lead the railway track into an
unstable condition. The research presents the results of
experimental studies on the strong relationship between
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ballast stiffness and clay fouling. The ballast stiffness is
decreased with the increased severity of fouling. GPR time-
domain signal of ballast has been used to generate an as-
sessment index for fouling evaluation. Time-domain analysis
does not consider the frequency-dispersive properties of
ballast media and the signal phase; however, it is easy to filter
out electromagnetic interference in the frequency domain.
Many attempts used the frequency spectrum analysis to
detect the fouling level of ballast, thanks to the Fourier
transform, and time-domain GPR data can be successfully
converted to the frequency domain. Silvast et al. [6] showed
that in a clean ballast, the area of a signal spectrum in the
frequency domain is bigger than that of fouled ballast. Leng
and Al-Qadi [7] used the short-time Fourier transform
(STSF) to investigate the time variation of the frequency
spectrum of the GPR signal. They graphically demonstrated
the variation of the frequency energy with the ballast depth
under different fouling conditions and used the STFT ap-
proach on GPR data to quantify railroad ballast fouling, and
the result showed that the time-frequency technique was
able to reveal changes in ballast fouling over depth. Shao
et al. [8] used GPR to evaluate the track ballast conditions at
the network level [8]. They proposed a method that used the
maximum peak of the spectrum of the frequency domain to
automatically assess the condition of ballast and developed
an algorithm that can extract magnitude spectra at salient
frequencies and classify ballast conditions by support vector
machines. Al-Qadi et al. [9] interpreted GPR data and
evaluated the fouling of the ballast by a wavelet transform
(WT) technique invented by themselves. Then, they sum-
marized and compared processing techniques for time-
frequency GPR signal that can be used to evaluate the level of
railway ballast fouling. Bianchini Ciampoli et al. [10] ana-
lyzed the spectral data of GPR and assessed the geometric
properties of the ballast. Fontul et al. [11] investigated and
assessed the railway track condition at the network level in
the frequency domain using GPR data. They quantified the
shift and deformation of the frequency spectrum with
changing ballast parameters such as aggregate size and then
illustrated the maximum shift of frequency spectrum, re-
garding them as a function of the dimension of the aggregate
particles. The above methodologies revealed a good reli-
ability and effectiveness in monitoring the ballast health. The
possibility of characterizing the ballast stiffness can also be
proved. Recent related work can be found in [12].

For classifying the ballast, results from existing experi-
ments showed that many approaches are efficient enough to
represent and analyze GPR signals. Furthermore, when it
comes to the classification of patterns, typical and important
features can be extracted from those approaches. Therefore,
it can be concluded that GPR is an effective and efficient tool
to evaluate the thickness and fouling levels of ballast.

Correlations between GPR parameters, such as the di-
electric permittivity and the area of the frequency spectrum
as well as the fouling level, have been concluded and assured
by previous studies and experiments. However, it is difficult
to find efficient methods or specifications to quantify the
level of fouling of the ballast. In one word, it is still
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challenging to determine the level and type of the fouling of
the ballast layer from GPR analysis.

With the help of joint time-frequency analysis (JTFA),
interpretation of GPR data was no longer a heavy task.
However, a lot of traditional JTFA methods, including STFT
and WT, were limited in application because low time-
frequency (TF) resolution and mode mixing cannot be
solved perfectly. Although the most popular tools for JTFA
are based on the Fourier transform method, under the
limitation of the uncertainty principle, however, these
methods cannot be used to analyze the GPR signal because
they failed to show the information about the local frequency
variations.

Recently, the variational mode decomposition (VMD),
which encompasses multiple adaptive Wiener filter groups,
has been widely used to process GPR signal, because it
showed a good robustness in overcoming the disadvantages
of mode aliasing, small end effects, and pseudocomponents
when compared to other traditional TF analysis algorithms
for GPR [13, 14]. This innovative VMD method also has a
solid theoretical foundation in decomposing the adaptive
and quasiorthogonal signals [15]. In solving problems, such
as mode-mixing, noises, and samplings, VMD successfully
shows its advantages in effectiveness and robustness com-
pared to the conventional time-frequency methods. For
time-frequency resolution, the VMD-based spectrum can
provide a higher resolution, which also performs better than
conventional JTFA methods. Sensitivity to data is another
feature of the VMD method. In other words, the decom-
position parameters, which include the number of extracted
modes and are a critical factor for the performance of the
method, were determined mainly through the engineering
experience. Those inaccurate operations will cause a low
method performance, and thus, the accuracy of the outcome
will be compromised. Therefore, it is crucial to find an ef-
fective and accurate way to determine the parameter. Liu
et al. [16] proposed a new approach to choose the parameter
and analyze the signals. In his research, he firstly found out
the eddy current signal and the frequency spectrum of it, and
then, he chooses the number of extracted modes based on
the peak point of the spectrum. Next, he analyzed the
correlation coefficient between the original and rebuilt signal
in mechanical rotor system diagnosis. Shi and Yang [17]
developed a revised VMD method for the vibration signals
of a wind turbine, and they optimized the number of
extracted modes [17]. Isham et al. reviewed a variety of
improved VMD and wide applications in rotating ma-
chinery diagnosis [18]. Particularly, Li et al. [19] developed a
genetic algorithm-based VMD and applied it in fault di-
agnosis recently [19], and they developed an advanced
optimization method for system diagnosis and recognition
[20]. Ni et al. [21] developed a fault information-guided
VMD (FIVMD) method for extracting weak signals to
minimize the effects of background noise and/or interfer-
ences [21].

In this research, we choose the optimized VMD-based
TF analysis method for ballast GPR signal processing, be-
cause it performs better than the conventional JTFA and WT
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methods. In other words, the method we choose can accu-
rately capture the spectral features; thus, the TF resolution can
be higher, and the TF spectrogram of the GPR signal based on
optimized VMD can be much smoother and sparser. The
implemented optimized VMD algorithm was chosen to cal-
culate the modes of the original nonlinear GPR signal of
railway ballast collected in Huntington, WV in Feb. 2022 by
400 MHz air-coupled antennas, and the Hilbert transform was
chosen to compute the instantaneous frequency of the
decoupled modes. The instantaneous frequency of the GPR
signal was established based on the optimized VMD. The
spectra of GPR signal based on optimized VMD method were
applied to evaluate dry and wet fouled ballast in field test and
compared the conventional TF spectrum methods and il-
lustrated the superiority. The experimental results of GPR with
dry and wet fouled ballasts demonstrate that, by comparison
with the feature extraction method of conventional spectrum
methods such as spectrogram and wavelet, the feature ex-
traction method based on the optimized VMD has much
better separability and quantitative identification capability.

The rest of this paper is structured as follows. Section 2
presents the theoretical background of the optimized VMD
algorithm and introduces the specific steps of the optimized
VMD algorithm. Section 3 presents the field experiment
details, including GPR equipment, test site, materials/real
ballast in railway, and main steps of the proposed fault
feature extraction method. Section 4 carries out the signal
processing and compares the results of the optimized VMD
algorithm with spectrogram and wavelet results. Section 5
gives the conclusion of this paper.

2. Theoretical Background

2.1. Basic Theory for the Variational Mode Decomposition
(VMD) Method. VMD is a method for the decomposition of
the nonrecursive signal. This method can decompose a real-
valued input nonlinear signal into a series of modes [15].
Through the VMD method, the signal f (f) can be decom-
posed into #n number of intrinsic mode functions (IMF).

FO =) u ). (1)
k=1

Each mode can be defined by the following equations
(the amplitude-frequency modulation signal):

u; (t) = A; (t)cos[g; (1)], (2)

where u; (t) represents the ith mode; A; (f) represents the
instantaneous amplitude; ¢; (f) represents the instantaneous
phase. Define w; (t) = ¢ () as the instantaneous frequency.
Both A; (t) and w; () vary much slower than g; (#). Thus, over
a sufficiently long interval [t—#, t+ 5], where 1 =27/w; (t),
the mode u; (t) can be considered as a pure harmonic signal.
The amplitude of that is A; (f), and the instantaneous fre-
quency is w; (). The core function of VMD is to calculate the
center frequency and bandwidth of the extracted modes to
display different components in the signal. Each mode is
closely surrounded the center pulsation w;, and its band-
width can be calculated by the squared L2-norm of the

gradient. VMD can be expressed by following equations that
are solving the solution of a constrained variational problem:
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where K represents the number of modes; {u;} = {u,,
U,, ... ,u;} represents the set of estimated modes; {w;} = {w,
w,, ..., wy} represents the set of center frequencies that
corresponds to the estimated modes; 0t represents the gra-
dient function; & (f) represents the Dirac distribution.
Through the Lagrangian multiplier A and the quadratic
penalty factor «, the constrained variational problem degraded
into an unconstrained problem which can be described by the
augmented Lagrangian function presented as follows:
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This problem can be solved by searching the saddle point
of the above equation. The way to find that point is using the
alternate direction method of multipliers. From (3), we can
summarize the modes in the frequency domain by updating
each mode u; and its center frequency w; constantly:
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where n represents the number of iterations. The operator A
of the Lagrange algorithm is represented as follows:
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The above equation will not terminate until the following
equation is true:
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The four parameters, which are the noise tolerance 7, the
convergence error & the modal component number K, and
the quadratic penalty factor «, must be prepared firstly
before using the VMD method. Since the parameter K
represents the number of modes and « represents the
bandwidth and the center frequency, they have much more



influence on the result of decomposition; therefore, it is
crucial to optimize these two parameters. As for the other
two parameters 7 and ¢, they can be set according to fixed
default values.

2.2. Instantaneous Amplitude and Frequency. The next step is
to apply the Hilbert transform to all IMFs u;(f) which is
expressed as

Huw] =~ [ Lt”_(";) dr,

00 (t
H|u; ()] =% Jm%(:dr,

where 7 represents time. The complex signal can be
expressed as

Z;(t) = u;(t) +iH [u;(1)] = a (D). 9

(8)

In (9), which expresses a signal, the amplitude and phase
can be expressed as

a;(t) = \/[u]-(t)]z +Hu;(1)],

Hlu;(t)
¢;(t) = arctan{%},

(10)

where a i (t) is the amplitude, and ¢ : (t) is the phase of the
signal. Then, the instantaneous frequency of the signal w ()
can be expressed as

0 (1) :%. (11)

Then, f () can be expressed as
f®) =) a;(Bexplio; (1)]. (12)
=1

The formula (12) can be extended so that the Hilbert
instantaneous frequency H (t,w) can be expressed as

H(t,0) = Re iaj(t)exp[ijwj(t)dt] RNGE)
i1

where t and w represent time and frequency, respectively.

Due to mean zero and the local symmetry property, the
IMFs obtained from the equations above are able to assure
the physical meanings of the instantaneous frequencies.
Instantaneous attributes of GPR data can be extracted from
the IMF and its Hilbert transform.

2.3. Optimization of VMD. Selecting the suitable parameters,
especially the number of decomposed components for VMD
is a critical task. GPR signals are vulnerable to be con-
taminated by interferences such as background noise and
electromagnetic factors. These interferences can smear the
fault-related features contained in the signals. Therefore, it is
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crucial and essential to minimize undesirable influences. The
optimization of the number of modes for reaching such a
purpose has been investigated [16, 17]. Considering the fact
that the magnitude of the frequency spectrum of these in-
terferences is often smaller compared to that of valid fre-
quency components, a method based on spectrum envelope
has been used to identify the valid frequency components
contained in the signal, by which the optimum number of
modes of the VMD is determined [12, 17]. This method can
be expressed by applying the Fourier transform to the GPR
signal.

H(w) = rooo F e dr, ”

Aax =|H@)|.G = 1,2,...]),

where [ represents the integer equal to half amount of data.
Then, search the local maximum and local minimum
magnitudes Aax, and finally, generate the envelope curve of
the filtered spectrum by using an interpolation method to
calculate appropriate thresholds Th.

Th = Al+ r(Ah - Al), (15)

where Ah and Al respectively, represent the maximum and
minimum magnitudes obtained from the spectrum; r rep-
resents the ratio for the control of the level of the threshold;
in other words, the variation trend of the value r is the same
as that of the threshold.

Finally, frequency components whose magnitude is
smaller than the threshold will be picked out, and the op-
timum number of modes from the resultant envelope curve
for optimized VMD analysis will be identified.

3. Field Validation

The above technique is validated for the GPR signal of
ballasts using field data collected in a railway depot in
Huntington WV in Feb 2022. The experiment contains
two different fouling cases, which are dry and wet,
respectively, for the ballast. The test site was investi-
gated using a 400 MHz frequency GPR horn antenna
system which was towed along the rail sections through
a dedicated cart that allowed the antenna works. Spe-
cifically, a 100 feet-long railway section was used. The
GPR data collected were analyzed to validate the
aforementioned method. For comparison, we also
conduct JTFA and wavelet transforms of the tested GPA
signal, with the corresponding calculated frequency
spectra for the case of dry and wet fouled ballast
conditions.

3.1. Test Site. The test item is a 100 feet-long section of the
railway. The location and schematic characteristics of the
test site are shown in Figures 1(a) and 1(b). The super-
structures are composed of steel rails with the distance
between the rails on a running line being 4’ 8.5". The
railway fastened to wood sleepers with the crosstie spacing
of mainline railroad 19”.
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FIGURE 1: (a) Location of the test site. (b) Schematic characteristics of the railway. (c) Test equipment GPR.

3.2. Equipment of the Test. Different EM responses from
different configurations were investigated by towing a
pulsed GPR system equipped with high-frequency horn
antennas manufactured by RT Clark Company along the
test site. The central frequency of the antennas is 400 MHz.
The surveys were conducted through a hand-towed cart
shown in Figure 1(c). The GPR antennas were suspended in
the air at a height of 1 cm beyond the ballast surface through
a plastic support laying on a hand-towed cart for railway
track study.

3.3. Materials. Based on the inspection, the existing ballast
in the site is attributed to be a kind of highly fouled type. Two
types of ballasts were arranged in the test samples, namely,
the existing railway dry ballasts and then the wet ballasts that
were generated by applying 3-gallon water into existing dry
ballasts enclosed by two rails and two sleepers in the test site.
Data collection was carried out two times when the ballasts
are dry and wet, respectively. All the collections are operated
by towing the GPR system along the full test-site area.

4. Results and Discussion

The raw data of GPR signal are processed through Fourier
transform, short-time Fourier transform method, and dis-
crete wavelet transform method. Figure 2 illustrates the GPR
signal of dry ballast and the FFT spectrum.

Figure 3 shows the spectrogram of the GPR signal of dry
ballast and the wavelet spectrum.

In Figure 2(b), FFT spectrum of GPR signal of dry ballast,
there exists wideband, multiple peaks of coupled modes
(four peaks which could be assumed to be four coupled
modes). This indicates the heavily fouling condition.

It is noted that based on existing research, the clean fresh
ballast usually exhibits a spectrum with one peak with a
relatively much wider band than fouled one [18]. The
existing research also demonstrated that the highly fouled
ballast or ballast with highly different-sized aggregates
usually exhibits a spectrum with multiple peaks [10].

The time-frequency analysis, which is depicted in Fig-
ure 3, demonstrates that most of the energy is focused on a
short arrival time, approximately 5 ns, followed by a gradual
attenuation ending up around 20 ns.

The influence of wet condition on the spectrum of the
ballast is shown in the following figures.

Figure 4 shows the GPR signal of wet ballast and the FFT
spectrum. Figure 5 shows the spectrogram of the GPR signal
of wet ballast and the wavelet spectrum.

For comparison, the following figure puts the GPR signal
and FFT spectra of dry and wet ballast together, respectively.
Figure 6 shows GPR signals of dry ballast vs wet ballast and
the FFT spectra of GPR of dry ballast vs wet ballast.

From the GPR signals recorded over the dry and wet
cases in Figure 6(a), it is clear that the wet condition in-
fluences the overall responses. On the other hand, it is
noticed that wet condition causes big differences in the
signals in the frequency domains in Figure 6(b), as reported
in previous studies in the literature.

In Figure 6(b), there exist the complex features of wet
ballast spectrum compared with dry ballast spectrum: a. peak
frequency shift of specific frequency component or specific
mode; b. attenuation of the peak of a specific mode; c. the
area changes of the spectrum of a specific mode. It is noted
that the above changes in the peak shift/attenuation/area are
not consistent for different four modes.

Comparison of the peak shifts of the modes in the
spectrum, the peaks of the first three modes of the wet ballast
shift to a lower frequency end, whereas the peak of the last
mode of the wet ballast is identical to its dry case.

Comparison of the peak attenuations of the modes in the
spectrum, the peaks of the first two modes of the dry ballast
are higher than their wet cases, respectively, whereas the
peaks of the last two modes of the dry ballast are lower than
their wet cases, respectively.

Comparison of the area changes in the spectrum of the
modes, the areas of the first two modes of the wet ballast are
smaller than that of the dry ballast, respectively, whereas the
areas of the last two modes of the wet ballast are larger than
that of the dry cases, respectively.
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FIGURE 2: (a) GPR signal of dry ballast. (b) FFT spectrum of GPR signal of dry ballast.
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FIGURE 3: (a) Spectrogram of GPR signal of dry ballast. (b), (c) Wavelet spectrum of GPR signal of dry ballast.
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FIGURE 4: (a) GPR signal of wet ballast. (b) FFT spectrum of GPR signal of wet ballast.
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FIGURE 5: (a) Spectrogram of GPR signal of wet ballast. (b), (c) Wavelet spectrum of GPR signal of wet ballast.
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FIGURE 6: (a) GPR signals of dry ballast vs wet ballast (solid line: dry; dotted line: wet). (b) FFT of GPR signals of dry ballast vs wet ballast

(solid line: dry; dotted line: wet).

It is noted that many existing research used the spectrum
area change or peak shift of GPR signal as criteria for ballast
analysis. In the existing research, the spectrum of GPR signal
exhibits a single wide mode for clean ballasts that were well
prepared in the lab, and the spectrum changes toward a
lower frequency end and smaller area for fouled ballast.
However, the real fouled ballast exhibits diversified trends
due to multiple mode interactions. This renders the difficulty
to select criteria to setup the evaluation index in the real
application.

Many existing research used spectrogram and wavelet
spectrum of GPA such as in Figures 3 and 5 to distinguish
the attribute changes of ballast under different condi-
tions. It should be noticed that the energy attenuation can
only be observed qualitatively in the spectrogram and
wavelet spectrum by comparing the color change rate
from the hot color that represents high energy to cool
color that represents low energy. Al-Qadi et al. [9]

proposed to use the spectrogram to analyze the levels of
the fouling conditions for ballast by comparing different
speeds among the energy attenuations [9]. They also il-
lustrated that it is possible to make use of the wavelet
coefficient of wavelet transform to reconstruct the
original signal to distinguish fouling levels, but reliable
criteria need to be established.

Figure 7 shows the Hilbert spectrum of the decoupled
modes GPR with optimized VMD of dry ballast and wet
ballast.

Based on Figure 7, the comparison of the Hilbert
spectrum of optimized VMD GPR from dry and wet
ballast, we can see that there exists a very clear difference
between specific mode frequency of dry and wet ballast. As
such, it is very clear and easy to use specific mode fre-
quency to form an assessment index and use its shift as
reliable and robust criteria to assess the changes in the
properties of ballast, which obviously overperform that of
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Ficure 7: Hilbert spectrum of the modes from optimized VMD GPR of dry ballast (a). Wet ballast (b).

the conventional methods as illustrated in Figures 2-6.
This method can also be extended for quantifying the
water contents in other materials such as sand, soil, and
concrete which had been assessed by using conventional
spectra of GPR signals [22-26]. Moreover, this method
can be further improved by incorporating the advanced
optimization and artificial intelligence methods
[19-21, 26, 27]. It is noted that several advanced ap-
proaches such as EMD, EEMD, CEEMDAN, LMD, and
ITD have been developed and used to process complicated
signals, some of which could be competitive to VMD in
specific applications. However, compared with EMD,
EEMD, CEEMDAN, LMD, and ITD, VMD has a strong
mathematical theory basis [28-30].

5. Conclusion

This paper uses the optimized variational mode decompo-
sition method to decouple the complex nonlinear modes of
the GPR signal of ballast for condition assessment. The
proposed advanced time-frequency analysis overperforms
the conventional spectrum and time-frequency analysis of
GPR signal by giving quantitative evaluation to the as-
sessment of ballast conditions.

The results of the water content effect on ballast GPR
signal spectrum changes in both peaks and areas are con-
sistent with all published research. The decoupled nonlinear
modes of GPR signal from optimized VMD are much easier
to be used to establish a new condition assessment index for
quantifying railway ballast fouling conditions, which is
better than all the previously used spectrum methods. The
works can be further improved by incorporating advanced
optimization algorithms and artificial intelligence algo-
rithms into the VMD for accurate assessment of fouling
ballast in the future.
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