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Transverse reinforcement of reinforced concrete (RC) columns contributes greatly to the ductility deformation capacity of RC
structures. Te existing models to predict the amount of transverse reinforcement required are all empirical models with low
accuracy and large dispersion and have not considered the real ductility demand of individual components. Tis paper proposes
a ductility design method of RC structure based on component drift ratio demand obtained from nonlinear structural dynamic
analysis. To establish the best transverse reinforcement ratio predictionmodel for RC columns, based on an experimental database
consisting of 498 columns, 12 machine learning (ML) models are trained. To solve the over-ftting problem caused by the current
situation of “few samples and big errors” of the experimental database, feature engineering aiming at dimension reduction is
systematically carried out through an iterative process. Trough comprehensive performance evaluation on the testing set, an
XGBoost model is selected. To interpret the “black box” ML model, the SHAP method and partial dependence plots are used to
analyse the correlation between the input parameters and the transverse reinforcement ratio. Te interpretation results are
consistent with mechanical laws and engineering experience, which prove the reliability of the selectedMLmodel. Compared with
two existing empirical models, the proposed XGBoost model shows higher accuracy and smaller deviation. After safety probability
analysis, the trained XGBoost model is transformed into C code and integrated into seismic design software for productive
practice. An open-source data-driven model to predict the transverse reinforcement ratio required for RC columns is provided
worldwide, with the fexibility to account for additional experimental results.

1. Introduction

Ductility refers to the ability of a structural member to bear
large deformation without obvious reduction of bearing
capacity in inelastic stage [1], which contributes greatly to
the collapse resistance of reinforced concrete (RC) struc-
tures. Te ductility of columns, which plays an important
role in the ductility deformation capacity of RC structures, is
mainly ensured by a sufcient number and arrangement of
transverse steel bars in the potential plastic hinge zone.
Generally, transverse reinforcement has three main func-
tions [2], namely, (1) preventing the longitudinal bars from
buckling, (2) avoiding shear failure, and (3) confning the
concrete core to provide sufcient deformability ductility.
Tis study mainly focuses on confnement requirements.
Design codes such as the Chinese code (GB 50010-2010),

American code (ACI 318-11), European code (Euro Code 8),
New Zealand code (NZS 3101), and Canadian code (CSA
2004) have made detailed provisions on transverse re-
inforcement, such as the minimum transverse reinforcement
ratio (or transverse reinforcement characteristic value),
maximum transverse reinforcement spacing, and length of
potential plastic hinge zone. Some codes further provide
empirical formulas for calculating the minimum transverse
reinforcement ratio, but few codes consider the real ductility
demand of individual component. Te amount of code-
required transverse reinforcement can be reduced in many
cases, while insufcient in other cases.

To quantify the amount of transverse reinforcement
required for RC columns, many empirical models [2–10]
have been proposed based on the basic principles and
mechanics of RC components. For example, based on
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a numerical study using cyclic analyses performed on a large
set of columns, Watson et al. [3] derived refned design
equations to determine the quantities of transverse re-
inforcement required for specifed ductility levels, which
were adopted by New Zealand Standard. Considering the
limitations of ACI 318M-11 that the transverse requirements
do not account for the axial load level and confnement
demand, which has been proven to signifcantly afect the
confnement efectiveness and the column behaviour, Sheikh
et al. [4] proposed a design procedure to determine the
amount of lateral steel required considering the column
ductility performance, the level of axial load, and the steel
confguration. Generally speaking, an empirical method
usually starts with the assumed form of an equation and then
carries out regression analysis, in which the assumed vari-
ables are linearly related and the unknown coefcients are
determined by using experimental data so that the equation
will ft the data. However, due to the complicated consti-
tutive material relationships and the coupling of external
seismic loads, the real relationship between the input var-
iables and the transverse reinforcement required is highly
nonlinear. Te chosen equation may not be able to ade-
quately represent complex nonlinear relationships. Besides,
empirical formulas are always developed based on a narrow
data range, and the diversity of sample results is limited. All
these factors lead to poor accuracy and large dispersion of
empirical models [2, 7, 8, 10]. For example, the coefcient of
variation of the ratio of the calculated amount to the ex-
perimental amount of transverse reinforcement is as high as
0.616 [10].Terefore, a newmethod to predict the amount of
transverse reinforcement needed covering a wide range of
parameters; for example, normal strength and high strength
of concrete and reinforcement, with high accuracy and low
dispersion, should be developed.

Recently, the merits of alternative approaches, e.g.,
nonparametric modelling in engineering research have been
widely recognized [11, 12]. Artifcial intelligence (AI)
techniques have attracted great scientifc interest in felds
with sufcient experimental data and complicated phe-
nomena. Machine learning (ML) has been successfully used
to classify the failure mode of RC columns [13], RC beam-
column joints [14], RC shear walls [15], and RC frames with
inflls [16], predict the shear strength of RC deep beams [17],
squat RC Walls [18], RC beam-column joints [14, 19],
precast concrete joints [20], steel fber-reinforced concrete
beams [21], and slender RC structures with steel fbers [22],
predict the drift capacity of RC columns [23, 24], forecast the
backbone curve and hysteresis loop of RC columns [25–27],
predict the compressive strength of concrete [28], predict the
compressive and fexural strengths of steel fber-reinforced
concrete [29], estimate the fexural capacity of ultrahigh-
performance concrete beams [30], predict the punching
shear capacity for fber-reinforced concrete slabs [31], and
predict the lateral strain in transverse reinforcements [32].
Although progress has been made in applying the ML
technique to interpret the experimental data and predict the
component-level structural properties, the data-driven
method for predicting the transverse reinforcement needed
for columns has not yet been studied. It is recognized that

the ML methods can (1) capture the complex nonlinear
relationships between the input and output variables, (2)
deal with a large number of input variables without
neglecting potentially important variables, and (3) gain
insights from big data and take into account the diversity of
massive specimens. In view of these advantages, ML
methods are adopted to predict the amount of transverse
reinforcement required for RC columns in this paper.

Te general objectives of this research are as follows: (1) to
propose a ductility design method of RC structure based on
real drift ratio demand of individual components; (2) to
establish ML models to predict the amount of transverse
reinforcement required for columns and choose the best one;
(3) to interpret the prediction of theMLmodel and ensure the
credibility of the proposed model; (4) to create an open-
source data-driven ML model that can be used in seismic
ductility design worldwide, with fexibility to account for
additional experimental results. Te paper begins by pre-
senting a new ductility design method of RC structure based
on real component drift ratio demand in Section 2. Ten, ML
model training, performance evaluation, and model in-
terpretation are presented in Section 3. Comparisons of the
proposedMLmodel with empirical models, safety probability
analysis, and ML model deployment are presented in Section
4. Te conclusions are given in Section 5.

2. Methods

To predict the transverse reinforcement of RC columns,
frstly, nonlinear structural dynamic analysis under specifed
earthquake ground motion is carried out to get the com-
ponent deformation in the response history. Secondly, the
component drift ratio demand is calculated based on com-
ponent deformation. Tere are three following reasons for
choosing drift ratio instead of curvature ductility as the input
ductility demand: (1) drift ratio includes bending deformation
and shear deformation and is suitable for fexure critical,
fexure-shear critical, and shear critical columns; (2) drift ratio
does not depend on the defnition of yield displacement or
yield curvature; (3) drift ratio is a routine record of all
specimens and can be directly related to drift limits specifed
in building codes. Finally, component drift ratio demands
along with other component features (for example, geometric
dimensions, longitudinal reinforcement arrangements, and
material properties, which will be elaborated in Section 3.2)
are input into the trained ML model to predict the transverse
reinforcement ratios required for individual columns. Te
work fow is shown in Figure 1.

Te model establishing steps of the transverse re-
inforcement ratio predictionmodel are as follows: (1) we collect
sufcient experimental data covering a wide range of pa-
rameters; (2) we carry out feature engineering to select the right
features forMLmodels; (3) we split the data set into training set
(80%) and testing set (20%) randomly; (4) we select appropriate
ML methods and train the models on the training set; (5) we
adopt grid search and the 10-fold cross-validation method to
optimize the hyper-parameters; (6) we train ML models using
the optimal hyper-parameters on training set and evaluate the
performance on testing set through four typical quantitative
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metrics; (7) we interpret the established model results through
the SHAPmethod and partial dependence plot (PDP) to verify
the reliability of the trained ML model; (8) we choose the best
ML model as the fnal model to predict the transverse re-
inforcement ratio of RC columns.

In this study, 12 MLmodels are used to establish the best
prediction algorithm of transverse reinforcement ratio as
follows: (1) Ordinary Least Squares (OLS), (2) Lasso re-
gression, (3) Ridge regression, (4) K-Nearest Neighbors
(KNN), (5) Support Vector Regression (SVR), (6) Multilayer
Perceptron (MLP), (7) Decision Trees (DT), (8) Random
Forests (RF) [33], (9) AdaBoost [34], (10) XGBoost [35], (11)
LightGBM [36], and (12) CatBoost [37]. Tey can be clas-
sifed into two categories, namely, single models and en-
semble models. Models (1)–(7) belong to single models, and
models (8)–(12) belong to ensemble models. Ensemble
techniques can be divided into two categories, namely,
parallel ensemble techniques (bagging methods) and se-
quential ensemble techniques (boosting methods). Com-
bining the predictions of several single models, ensemble
models increase the accuracy of the results signifcantly.

Linear regression models, including Ordinary Least Squares,
Lasso regression, and Ridge regression, are the simplest and
most commonly applied form of regression techniques used
for the prediction of continuous variables and are used as the
basic model for comparison. Te ML models are developed
using Scikit-learn [38], a machine learning package in the
Python programming language.

3. ML Model Training

3.1. Experimental Database. Te experimental database
consists of 326 rectangular column tests and 172 circular
column tests for a total of 498 tests, involving cyclic and
monotonic lateral loading, with or without axial load
[39–41]. Te test confguration and experimental data of RC
columns were reduced to the cast of an equivalent cantilever
to consistently compare the column behaviour for a wide
range of testing confgurations [39].

Tere are many variables in the database which can be
classifed into fve categories, namely, geometric dimensions,
reinforcement arrangements, material properties, applied
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Figure 1: Flow chart of ductility design method based on ML techniques.
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loads, and extracted displacement data. Te ultimate drift
ratio θu � Δu/L × 100 was extracted from the force-dis-
placement hysteresis curves for each column [39], where L is
the distance between point of maximum moment and point
of zero moment, also called shear span, and Δu is the lateral
displacement during loading at which the column experi-
enced a 20% reduction in maximum applied lateral load
VMax. If a 20% drop in shear capacity occurred because of
cycling at constant deformation rather than through in-
creasing deformation demands, then the displacement at 0.8
VMax was obtained through interpolation by drawing a line
connecting tips of hysteresis loops before and after the
horizontal line at 0.8 VMax, as can be seen in Figure 2. If there
was no drop in lateral load to 0.8 VMax, then Δu was taken as
the maximum lateral displacement the column test achieved.
A lower bound estimate on the lateral displacement at shear
failure was obtained with the procedure.

Based on the background knowledge of civil engineering,
all the features related to ductility and transverse re-
inforcement of RC columns are extracted. Since the trans-
verse reinforcement ratio Ash/sbc is the target variable to be
predicted, features directly related to the transverse re-
inforcement ratio, such as bar diameter and spacing of
transverse bars, cannot be used as input features.

3.2. Feature Engineering. Diferent from databases in other
industries, civil engineering test databases are characterized
by limited number of samples and large errors, especially for
concrete component test databases, owing to that the test is
expensive and the dispersion of material properties is large,
which may lead to overftting of ML models. In view of the
difculty of increasing the number of samples, feature en-
gineering, aiming at dimensionality reduction, is particularly
important.

Feature engineering is an essential phase to improve
performance by selecting the right features for the model,
ensuring that the maximum relationship with the target
variable is captured. It is worth noting that feature engi-
neering is an iterative process, which takes a lot of efort.
While there is no formula for efective feature engineering, 4
steps are used in this study:

3.2.1. Data Transformation. To handle data with diferent
units avoiding scale efect, data standardization is used to
convert the data into a uniform format (zero mean and unit
standard deviation), while the tree-based model does not
need data standardization. For features with distribution
skewed to the right, logarithmic transformation is also tried,
while the performance improvement is not obvious.

3.2.2. Feature Extraction. To reduce the number of input
features, new features are extracted from the existing at-
tributes by grouping multiple variables into a feature that
measures the average of these variables, such as section
depth-width ratio h/b, gross area to core area ratio Ag/Ac,
shear span to efective depth ratio L/d, longitudinal re-
inforcement ratio ρl, and axial load ratio P/Agfc′.

3.2.3. Feature Selection. Features with high correlations can
lead to collinearity problem, which will reduce the accuracy
of the ML model by preventing it from learning the in-
teractions between independent features. Terefore, feature
selection is conducted to achieve dimensionality reduction
based on a correlation matrix composed of the Pearson
correlation coefcient of each pair of features in the data-
base. Among the features with strong correlation, the feature
with lower correlation with the target variable will be
eliminated. For example, the clear cover thickness and the
gross area to core area ratio Ag/Ac are a pair of highly
correlated features. Having a lower correlation with the
target variable transverse reinforcement ratio Ash/sbc, the
clear cover thickness is removed.

Selected features are the section shape (S for short, 0 for
rectangle and 1 for circle), section depth h, longitudinal bar
diameter dl, yield strength of longitudinal barsfyl, yield strength
of transverse bars fyt, and concrete compressive strength at
28daysfc′.Te descriptions and statistical attributes of the input
and output variables, such as the mean, standard deviation,
minimum, 25%, 50%, 75%, and maximum value, are given in
Table 1, and their statistical distributions are displayed in Fig-
ure 3. As can be seen, the database covers a wide range of RC
column parameters, including normal-strength and high-
strength concrete and reinforcement, which will increase the
adaptability of the trained ML model.

3.2.4. Feature Iteration. Feature iteration, also known as the
wrapper method of feature selection, is an iterative process
involving four steps as follows: (1) we select a subset of
features; (2) we train theMLmodel with the selected features
(the training process is introduced later); (3) we measure the
model performance; (4) we make a decision to retain or
remove the selected features.

Permutation feature importance [33] is used to rank the
features and identify the most important features. Te
permutation feature importance is defned to be the decrease
in a model score when a single feature value is randomly
shufed, which breaks the relationship between the feature
and the target. Tus, the drop in the model score indicates
howmuch the model depends on the feature. Table 2 lists the
permutation feature importance of the 12 input features for
the 12ML models, in descending order. Although the nu-
merical algorithms of diferent ML models are diferent, the
ranking of feature importance is similar, which also re-
ciprocally proves the reliability of 12 ML models. Ranking
sixth, the section shape is not very important, which proves
the rationality of training rectangular column and circular
column samples together. According to the average per-
mutation feature importance of 12 ML model, four features
of least importance, such as the section depth-width ratio h/b,
section depth h, longitudinal bar diameter dl, and yield
strength of longitudinal bars fyl, are eliminated by trial and
error through an iterative process, and the best performance
on testing set is obtained.

3.3. Model Training. Te database is randomly split into
a training set (80%, 398 samples) and a testing set (20%, 100
samples). Te training set is used to establish the prediction
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Table 1: Statistics summary of input and output variables.

Variable Feature comments Mean St.D. Min. 25% 50% 75% Max.
h (m) Section depth 0.35 0.15 0.08 0.25 0.31 0.41 1.52
h/b Section depth-width ratio 1.07 0.27 0.50 1.00 1.00 1.00 2.01
Ag/Ac Gross area to core area ratio 1.42 0.30 1.07 1.19 1.35 1.52 2.71
L/d Shear span to efective depth ratio 3.93 1.94 1.15 2.50 3.49 5.00 12.50
dl (mm) Longitudinal bar diameter 16.68 5.05 6.00 12.70 16.00 19.40 43.00
fyl (MPa) Yield strength of longitudinal bars 424 62 240 374 436 455 587
ρl (%) Longitudinal reinforcement ratio 2.42 0.99 0.46 1.82 2.22 2.68 6.94
fyt (MPa) Yield strength of transverse bars 451 186 200 352 414 476 1424
fc′ (MPa) Concrete compressive strength at 28 days 43 24 13 28 34 41 118
P/Agfc′ Axial load ratio 0.20 0.17 0.00 0.09 0.16 0.30 0.90
θu (%) Drift ratio at 0.8 VMax 3.82 2.42 0.43 1.98 3.22 5.27 15.63
Ash/sbc (%) Transverse reinforcement ratio 0.71 0.57 0.04 0.27 0.57 0.97 3.47
b is the section width; bc is the cross-sectional core width measured with outside edges of transverse reinforcement; Ag is the gross area of column; Ac is the
section area measured out-to-out with transverse reinforcement; d is the efective depth in primary direction (dimension from compression face to centroid of
outermost layer of tension steel); P is the axial compressive force on column; Ash is the total cross-sectional area of transverse reinforcement (including
crossties) within spacing; and s is the center-to-center spacing of spirals or circular hoops.
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ML model, and the testing set is used to evaluate the ac-
curacy of the training model.

After feature engineering and dimensionality reduction,
eight features, namely, concrete compressive strength fc′,
drift ratio demand θu, axial load ratio P/Agfc′, gross area to
core area ratio Ag/Ac, yield strength of transverse bars fyt,
section shape S, shear span to efective depth ratio L/d, and
longitudinal reinforcement ratio ρl are selected as input
parameters. Te output parameter is the transverse re-
inforcement ratio.

To establish the best transverse reinforcement ratio
prediction model, 12 ML models, including Ordinary Least
Squares, Lasso regression, Ridge regression, K-Nearest
Neighbors, Support Vector Regression, Multilayer Percep-
tron, Decision Trees, Random Forests, AdaBoost, XGBoost,
LightGBM, and CatBoost are trained on the training set.

For the best output of each model, grid search is applied
for tuning hyper-parameters. ML Models of every combi-
nation of various hyper-parameters are built and evaluated,
and the model with the highest accuracy wins. To alleviate
the inherent randomness in selecting training and testing
samples, a 10-fold cross-validation process is employed. Te
training set is randomly divided into 10 folds, each fold is
used as a testing set in turn and the remaining 9 folds are
used as the training set. Several rounds of 10-fold cross-
validation are performed and the results from all the rounds
are averaged to estimate the accuracy of the ML model. We
can see the Jupyter Notebook python code on GitHub for the
grid search hyper-parameters ranges and the fnal hyper-
parameters of each ML model. After efective feature en-
gineering, most ML models even using default hyper-pa-
rameters can achieve good performance.

3.4. Training andTestingResults. Temodel performance on
training set and testing set is evaluated through four typical
quantitative metrics, namely, coefcient of determination
(R2 � 1 − 􏽐

m
i�1 (Pi − Ti)

2/􏽐
m
i�1 (Pi − T)2), root mean square

error (RMSE �

���������������

􏽐
m
i�1 (Pi − Ti)

2/m
􏽱

), mean absolute error
(MAE � 􏽐

m
i�1 |Pi − Ti|/m), and weighted average percentage

error (WAPE � 􏽐
m
i�1 |Pi − Ti|/􏽐

m
i�1 |Ti|), where Ti is the

actual value of the transverse reinforcement ratio and Pi is

the predicted value, i is sample index, m is the number of
samples, and T is the mean value of all the samples in the
database. Te reason for using weighted average percentage
error (WAPE) instead of mean absolute percentage error
(MAPE) is that the MAPE exaggerates the importance of the
percentage error at low transverse reinforcement ratio,
which is not important in engineering practice. Generally,
when the predicted transverse reinforcement ratio is low, the
confnement transverse reinforcement does not play a con-
trolling role in the fnal amount of transverse reinforcement.

Te performances of these 12models are evaluated based
on the testing set by comparing the predicted results with the
experimental data, as shown in Table 3 and Figure 4. Te
diagonal line (y= x) represents that the prediction is iden-
tical to the experimental data. In general, ensemble models
show higher performance than single models. Statistically,
a model with high value of R2 and corresponding low values
of error measures is considered to have a high performance.
Among the 12ML models, the XGBoost model shows the
best performance (R2 = 0.873, RMSE= 0.239, MAE= 0.161
and WAPE= 0.212) on testing set and is chosen as the fnal
prediction model of transverse reinforcement ratio.

3.5. Model Interpretation. Te established ML model may
have good prediction performance; however, it is still
a “black box” model which cannot give an explicit expla-
nation of the underlying physical or mechanical mechanism.
An ML model whose explanation violates the mechanical
law cannot be used in production practice even if it has good
performance. To obtain a better understanding of the pre-
dictions and verify the reliability of the proposed XGBoost
model, the SHAP method [42] and partial dependence plot
(PDP) [43] are used to interpret the results.

3.5.1. SHAP Method. Te SHAP (SHapley Additive exPla-
nations) method [42] originates from game theory and it is
an additive feature attribution method, that is, the output of
the model is a linear addition of input variables. Te con-
tribution of each feature is represented by the so-called
Shapley value. SHAP not only ofers an understanding of
which features are important but also of how each feature
afects the prediction, whether at the level of the whole
database or at the level of single samples.

Table 2: Permutation feature importance of 12 features.

Model fc′ θu P/Agfc′ Ag/Ac fyt S L/d ρl fyl dl h h/b

OLS 0.64 0.21 0.24 0.01 0.11 0.05 0.02 <0.01 <0.01 0.01 0.04 0.03
Lasso 0.64 0.21 0.24 0.01 0.11 0.05 0.02 <0.01 <0.01 0.01 0.04 0.03
Ridge 0.59 0.18 0.23 0.01 0.09 0.05 0.01 <0.01 <0.01 <0.01 0.02 0.03
KNN 0.43 0.36 0.28 0.16 0.12 0.19 0.18 0.19 0.12 0.11 0.11 0.20
SVR 0.93 1.19 0.63 0.84 0.25 0.39 0.41 0.32 0.18 0.32 0.14 0.18
MLP 0.66 0.47 0.40 0.19 0.16 0.23 0.11 0.13 0.08 0.09 0.10 0.14
DT 1.23 0.40 0.37 0.62 0.25 <0.01 0.09 0.23 0.11 0.09 0.05 <0.01
RF 0.82 0.22 0.19 0.21 0.06 0.01 0.05 0.08 0.03 0.02 0.02 0.01
AdaBoost 0.47 0.08 0.12 0.05 0.04 0.02 0.02 0.01 0.01 0.01 0.02 0.01
XGBoost 0.73 0.34 0.29 0.32 0.14 0.10 0.05 0.05 0.04 0.03 0.02 <0.01
LightGBM 0.38 0.38 0.23 0.12 0.13 0.04 0.07 0.04 0.02 0.04 0.04 <0.01
CatBoost 0.45 0.36 0.20 0.13 0.11 0.07 0.06 0.05 0.04 0.03 0.03 0.01
Mean 0.66 0.37 0.29 0.22 0.13 0.10 0.09 0.09 0.06 0.06 0.05 0.05
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Figure 5 is a SHAP summary plot of the features, which
demonstrates the distribution of the SHAP values for each
feature and indicates the corresponding infuence trends.
Te horizontal axis represents the specifc SHAP value and
the vertical axis represents the input features, ordered by
importance. Te dots are the samples in the database. Te
colour of the dot indicates the value of the specifc feature,
and the colour from blue to red indicates a value from small
to large. Te horizontal position of the dot indicates whether
the feature value leads to a higher or lower prediction. For
example, the upper right dot in red indicates that a high
concrete compressive strength fc′ leads to a prediction in-
crease. It is observed that the quantity of transverse re-
inforcement required increases with increasing concrete
compressive strength fc′, increasing drift ratio demand θu,
increasing axial load ratio P/Agfc′, increasing gross area to
core area ratio Ag/Ac, decreasing yield strength of transverse
bars fyt, and decreasing shear span to efective depth ratio
L/d. In addition, more transverse reinforcement is required
for rectangular columns than for circular columns. While
the infuence trend of longitudinal reinforcement ratio ρl is
not obvious. Te law obtained by the SHAP method is
consistent with existing mechanical models and experi-
mental results of RC columns, so the proposed XGBoost
model is convincible.

In addition to the global interpretations of the entire data
set, SHAP also provides individual (local) interpretations of
single samples. Figure 6 illustrates explanations for a typical
circular sample.Te base value is the average of the predictions
of the whole training set, which is 0.619%. Te features de-
termine the deviation of the prediction from the base value.Te
red bars pointing to the right represent the contribution to
increasing the transverse reinforcement ratio from the base
value, while the blue bars pointing to the left represent op-
positely. For this circular sample, drift ratio demand θu is the
most critical feature and has a positive efect on transverse
reinforcement ratio, whose SHAP value is 0.23%.

3.5.2. Partial Dependence Plot. To visualize the relationships
between transverse reinforcement ratio and the input pa-
rameters and to provide design suggestions for practical

engineering, partial dependence plot (PDP) [43] is adopted
in this study. Partial dependence of a feature corresponds to
the average response of an estimator for each possible value
of the feature. PDP shows the marginal efect of one or two
features on the predicted outcome of an ML model and
whether the relationship between the target and a feature is
linear, monotonic, or more complex. A fat PDP indicates
that the feature is not important, and the more the PDP
varies, the more important the feature is.

One-way PDPs of transverse reinforcement ratio Ash/sbc
on concrete compressive strength fc′, drift ratio demand θu,
axial load ratio P/Agfc′, gross area to core area ratio Ag/Ac,
yield strength of transverse bars fyt, section shape S, shear
span to efective depth ratio L/d, and longitudinal re-
inforcement ratio ρl, ordered by importance obtained from
permutation feature importance, are visualized in Figure 7.
Te thinner lines represent individual specimens (only 50
specimens are randomly selected for clear and typical dis-
play), while the thicker line represents the average value of all
the 498 samples in the database. Marks on the horizontal axis
indicate the data distribution. Te largest infuences can be
seen in concrete compressive strength, and there is an obvious
step around 70MPa. Te higher the concrete compressive
strength is, the more transverse reinforcement is needed. Te
second and third important features are drift ratio demand
and axial load ratio. With the increase of drift ratio and axial
load ratio, the transverse reinforcement ratio required also
increases. With the increase of gross area to core area ratio
Ag/Ac, the transverse reinforcement ratio mainly increases,
ignoring the decreases caused by some large-sized specimens
when the gross area to core area ratio Ag/Ac is small. With the
increase of yield strength of transverse barsfyt and shear span
to efective depth ratio L/d, the transverse reinforcement ratio
decreases. Rectangular columns require more transverse re-
inforcement than circular columns. Te infuence of longi-
tudinal reinforcement ratio ρl on the transverse
reinforcement ratio is small.Te law obtained from the partial
dependence plots is consistent with the SHAPmethod, which
further proves the reliability of the proposed XGBoost model.

Two-way PDP of transverse reinforcement ratio Ash/sbc
on drift ratio demand θu and axial load ratio P/Agfc′ is
visualized in Figure 8(a). Te maximum and minimum

Table 3: Performance measure of the developed models.

Model
Training set Testing set

R2 RMSE MAE WAPE R2 RMSE MAE WAPE
OLS 0.534 0.365 0.268 0.384 0.603 0.423 0.297 0.391
Lasso 0.533 0.366 0.267 0.384 0.595 0.427 0.300 0.395
Ridge 0.534 0.365 0.268 0.384 0.603 0.423 0.297 0.391
KNN 1.000 <0.001 <0.001 <0.001 0.775 0.318 0.194 0.256
SVR 0.941 0.129 0.075 0.108 0.733 0.347 0.233 0.307
MLP 0.738 0.274 0.191 0.274 0.719 0.356 0.233 0.308
DT 1.000 5.736 7.671 1.100 0.772 0.32 0.182 0.241
RF 0.951 0.118 0.079 0.114 0.838 0.27 0.185 0.244
AdaBoost 0.638 0.322 0.280 0.402 0.717 0.356 0.299 0.395
XGBoost 0.999 0.006 0.004 0.006 0.873 0.239 0.161 0.212
LightGBM 0.977 0.08 0.053 0.076 0.817 0.286 0.192 0.254
CatBoost 0.978 0.078 0.057 0.082 0.842 0.266 0.179 0.237
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average transverse reinforcement ratios are 1.29% and
0.35%, respectively. Since there is an obvious step near
70MPa in the PDP of transverse reinforcement ratio
Ash/sbc on concrete compressive strength fc′, the samples of
normal-strength concrete (less than 60MPa, the strength
defnition is not important here, just for illustration) are

studied separately. For normal-strength concrete, two-way
PDP of transverse reinforcement ratio Ash/sbc on drift ratio
demand θu and axial load ratio P/Agfc′ is visualized in
Figure 8(b). Te maximum and minimum average trans-
verse reinforcement ratios are 1.23% and 0.25%,
respectively.
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Figure 4: Comparison of predicted and experimental transverse reinforcement ratio.
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4. Discussion

4.1. Comparisons with Empirical Models. To validate the
superiority of the proposed XGBoost model, two traditional
empirical models proposed by Watson et al. [3] and Sheikh
et al. [4] are employed to predict the transverse re-
inforcement ratio needed for RC rectangular columns.

Te Watson et al. [3] model is given as follows:

Ash

sbc
�

Ag

Ac

μϕ − 33ρlm + 22􏼐 􏼑

111
fc′
fyt

P

ϕfc′Ag
− 0.006. (1)

Te Sheikh et al. [4] model is given as follows:

Ash,ACI

sbc
� 0.3

Ag

Ac
− 1􏼠 􏼡

fc′
fyt
≥ 0.09

fc′
fyt

,

Ash

sbc
� α 1 + 13

P

P0
􏼠 􏼡

5⎧⎨

⎩

⎫⎬

⎭

μϕ􏼐 􏼑
1.15

29
Ash,ACI

sbc
.

(2)

Here, P is the Axial compressive load; P0 is the nominal
axial load strength at zero eccentricity (P0 � 0.85fc′Ag (1 −

ρl) + Agρlfyl); μϕ is the curvature ductility factor, ϕ is the
strength reduction factor; m � fyl/0.85fc′; α is a parameter

that accounts for the confnement efciency including
confguration and the lateral restraint provided to the
longitudinal bars; other variables are defned previously.

Figure 9 illustrates the comparison between the trans-
verse reinforcement ratio of the rectangular columns ob-
tained from experiments and those from the prediction
formulas. Ideally, all points are distributed on the diagonal
line. A point distributed below the diagonal line means the
formulation under-predicts, whereas above the diagonal line
indicates the formulation over-predicts. All the ML models
trained in the previous section show higher accuracy than
the empirical formulas, especially the XGBoost model.
Figure 9(c) illustrates the results of rectangular columns in
the database predicted by the proposed XGBoost model (just
for visual contrast, noting that the performance of the ML
model should be evaluated on the testing set, not the whole
database).

Te mean absolute error (MAE) of Watson et al. [3] and
Sheikh et al. [4] empirical formulas are 0.727 and 0.652,
respectively, while that of the proposed XGBoost model on
testing set is 0.161. Te standard deviation of the error
between experimental and predicted transverse re-
inforcement ratio of Watson et al. [3] and Sheikh et al. [4]
empirical formulas are 0.990 and 1.291, respectively, while
that of the proposed XGBoost model on testing set is 0.239.
Both empirical formulas show less accuracy and larger
uncertainties than the proposed XGBoost model. Te rea-
sons can be attributed to the fact that (1) the empirical
equations were developed based on a narrow range of data
having a limited diversifcation in specimen results; (2) the
empirical equations might neglect important parameters
that contribute to the transverse reinforcement ratio; (3) the
ability of ML methods to capture complex and nonlinear
relationships between the output and inputs is stronger than
the traditional linear regression formula.

4.2. Safety Analysis. When applied in engineering practice,
considering safety and structural stability, the transverse
reinforcement ratio prediction model should be conser-
vative enough for the safe design of RC structures. For
primary members critical to structural stability, it is
suggested that the probability that the predicted value is
lower than the experimental value is less than 20%, re-
ferring to the confdence of acceptance criteria for Life
Safety (LS) of primary members suggested by Ghannoum
et al. [44].

Te histogram and empirical cumulative distribution of
the error between experimental and predicted transverse
reinforcement ratio (the error is defned as experimental
value minus predicted value) of the XGBoost model on
testing set are plotted in Figure 10. Te vertical line at
error� 0 indicates that the predicted value is equal to the
experimental value. Errors less than 0 indicate safety; errors
bigger than 0 indicate insecurity. Most of the transverse
reinforcement ratios predicted by the XGBoost model are
very close to the experimental values, with a safety proba-
bility of 55%. To provide a conservative estimate of the
transverse reinforcement ratio, it is suggested that an
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additional value of 0.12% should be added to the transverse
reinforcement ratio predicted by the proposed XGBoost
model with a guarantee rate of 80%. In other words, the
probability that the amount of transverse reinforcement
predicted by the proposed XGBoost model is lower than that
required for RC columns is 20%.

4.3.MLModelDeployment. After training anMLmodel, it is
desirable to have a way to persist the model for future use
without having to retrain. Te pickle module in the Scikit-
learn package implements a fundamental but powerful al-
gorithm for serializing and de-serializing a Python object
structure. Although this method is simple and convenient, it
has poor compatibility. Pickle format can only be used in
python. If the production environment needs other lan-
guages, it cannot be called directly. In order to integrate the

trained ML model into a seismic design software in-
compatible with the ML model-building language, m2cgen
(model 2 code generator) is used to transform the trained
XGBoost model into C code. Te m2cgen is a lightweight
library which provides an easy way to transform trained
statistical models into native code (Python, C, Java, et al.).
Te trained XGBoost model can be easily integrated into
seismic design software for reliable prediction of the
transverse reinforcement ratio of RC columns through
source code or API (Application Programming Interface).
For example, the XGBoost model is integrated into SAUSG
software developed by China Academy of Building Research
using C code, to predict the transverse reinforcement ratio of
RC columns, as shown in Figure 11.

Trough nonlinear structural dynamic analysis of the
overall structural system under the specifed earthquake
ground motion, the maximum component deformation in
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the response history can be obtained. Te concept of
obtaining component drift ratio demand from nonlinear
structural dynamic analysis is suitable for all types of
structural components. Tis paper mainly focuses on RC
columns. Because the component drift ratio demand is
defned according to the experimental confguration of
cantilever, deformation transformation is required. In the
nonlinear structural dynamic analysis, there is usually a zero
moment point near the middle point of the column. Te
segments below and above the zero moment point can be
equivalent to two cantilever columns, and the drift ratio
demands can be calculated, respectively, as shown in
Figure 12.

If the moments of the top and bottom ends of the
column are of diferent signs, frstly, we fnd the location of
the zero moment point and then calculate the displacement
of the zero moment point according to the shape function of
the fnite element model. For each equivalent cantilever, the
displacement of the zero moment point and column end are
transformed into the local coordinate system defned based
on the tangent of the column end, that is, the implicated

angle of the column end, which is considered as the harmless
drift ratio, is automatically deducted, as shown in
Figure 12(b).Te drift ratios at the top and bottom ends are
calculated by Equation (3).

θt �
Δt
Ht

�
d0 − dt

Ht
,

θb �
Δb
Hb

�
d0 − db

Hb
,

(3)

where θt is the drift ratio at the top end; θb is the drift
ratio at the bottom end; d0 is the displacement at zero
moment point; dt is the displacement of the top node of
the column; db is the displacement of the bottom node of
the column; Ht is the length of the upper equivalent
cantilever; Hb is the length of the lower equivalent
cantilever.

If the moments of the top and bottom ends of the
column are of the same signs, the zero moment point is
outside the column, and its position does not need to be
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Figure 9: Comparison of predicted and experimental transverse reinforcement ratio. (a) Empirical model proposed by Watson et al. [3].
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calculated. Te drift ratio of the column can be approxi-
mately calculated by Equation (4).

θt � θb �
dt − db

H
, (4)

where H is the length of the column.
Te column drift ratios at all time steps can be calculated

according to the abovementioned formulas, and the enve-
lope of the absolute value of the drift ratios at all time steps
can be obtained as the drift ratio demand.
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Figure 11: Ductility design using ML model in SAUSG software. Schematic diagram displayed for transverse reinforcement area.
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Finally, the drift ratio demands θu, along with concrete
compressive strength fc′, axial load ratio P/Agfc′, gross area
to core area ratio Ag/Ac, yield strength of transverse bars fyt
, section shape S, shear span to efective depth ratio L/d, and
longitudinal reinforcement ratio ρl are input into the
trained ML model to predict the transverse reinforcement
ratios required at the top or bottom ends of the RC col-
umns. Noting that the sectional dimensions and drift ratio
demands in the sectional height and width direction may be
quite diferent, the transverse reinforcement ratios in
height and width direction should be calculated separately.

5. Conclusion

Te existing models to predict the amount of transverse
reinforcement required for RC columns are all empirical
models with low accuracy and large dispersion and have not
considered the real ductility demand of individual compo-
nents. Tis paper proposes a ductility design method of RC
structure based on the real component drift ratio demand and
develops a method for determining the component drift ratio
demand. To establish a transverse reinforcement ratio pre-
diction model, a database consisting of 326 rectangular
columns and 172 circular columns for a total of 498 tests is
used. Te database is randomly split into a training set (80%)
and a testing set (20%). Twelve ML models including Or-
dinary Least Squares, Lasso regression, Ridge regression, K-
Nearest Neighbors, Support Vector Regression, Multilayer
Perceptron, Decision Trees, Random Forests, AdaBoost,
XGBoost, LightGBM, and CatBoost are trained. Feature
engineering, including data transformation, feature extrac-
tion, feature selection, and feature iteration, is systematically
carried out through an iterative process. For the best output,
grid search and the 10-fold cross-validation method are
applied to tune the hyper-parameters. Trough a compre-
hensive performance validation on the testing set, an
XGBoost model is suggested for the best accuracy. Te SHAP
method and partial dependence plot are used to interpret the
“black box” ML model. Te following conclusions are drawn:

(1) Te amount of transverse reinforcement required for
columns increases with increasing concrete com-
pressive strength, increasing drift ratio demand,

increasing axial load ratio, increasing gross area to
core area ratio, decreasing yield strength of trans-
verse bars, and decreasing shear span to efective
depth ratio, ordered by importance. In addition,
more transverse reinforcement is required for rect-
angular columns than for circular columns. While
the infuence trend of longitudinal reinforcement
ratio is not obvious, other features are less important.

(2) Compared with two empirical models, all the 12
trained ML models show higher accuracy and lower
dispersion than empirical models, especially the
XGBoost model. Te mean absolute error of the
XGBoost model on testing set is 0.161, while the two
empirical models are 0.727 and 0.652, respectively.
Te standard deviation of the error of the XGBoost
model on testing set is 0.239, while the two empirical
models are 0.990 and 1.291, respectively.

(3) Simple design charts are given by partial dependence
plot for reference by engineers. Partial dependence
plots of transverse reinforcement ratio on drift ratio
demand and axial load ratio show that the average
maximum and minimum transverse reinforcement
ratio are 1.29% and 0.35% for normal-strength and
high-strength concrete, while 1.23% and 0.25% for
normal-strength concrete (less than 60MPa).

(4) Te safety probability of the proposed XGBoost
model on testing set is 55%. To provide a conser-
vative estimate of the transverse reinforcement ratio,
an additional value of 0.12% is suggested to be added
to the predicted value for a guarantee rate of 80%.

Te trained XGBoost model is transformed into C code
and integrated into seismic design software for productive
practice. An open-source data-driven model is created for
continuous improvement, with the fexibility to incorporate
more experimental data when available.

Data Availability

Te experimental database, Jupyter Notebook python code
for 12 ML models, C code of the trained XGBoost model,
and other materials used to support the fndings of this study
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Figure 12: Schematic diagram of component drift ratio. (a) Cantilever. (b) Structural component.
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have been deposited in the GitHub repository (https://
github.com/qiaobaojuan/ML-model-for-RC-columns.git).
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