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The increase in traffic volume and train load poses new challenges to the reliability assessment of existing railway bridges. To
construct a comprehensive assessment method for the safety and reliability of existing railway bridges, firstly, the risk factors of
railway bridge structures are analyzed and the evaluation criteria are determined; secondly, based on the accident tree theory, a
multilevel Bayesian network model with key points is established, and the ability of the Bayesian network bidirectional reasoning
and sensitivity analysis is used to evaluate the structural safety; finally, the result was applied to the marina northern Songhua River
extra-large bridge to verify the applicability of the comprehensive evaluation of the reliability of an existing railway bridge. This
approach provides a theoretical basis for the maintenance and reinforcement of the Songhua River Bridge along the Bin-

North Line.

1. Introduction

The reliability assessment of existing railway bridge
structures is essential to ensure smooth railway lines,
normal train operations, and safe travel for pedestrians.
The theoretical research and practical application of a
comprehensive structural condition assessment method
for existing railway bridges are of great significance in
accurately assessing the health of existing railway bridges
and providing timely, efficient, and economical mainte-
nance solutions, as well as diagnosing the causes of ac-
cidents after a structural failure.

At present, a certain amount of work has been carried
out on bridge assessment methods. Traffic load models,
corrosion degradation models, and finite element models
of existing reinforced concrete bridges have been studied
[1-9], and machine learning methods have been applied to
the construction of structural reliability assessment
frameworks [10, 11], but the amount of data required to
build the models is greatly increased and does not apply to
small and medium span bridges. Reliability studies on

steel bridges have also been carried out gradually. The
damage to steel bridges is mainly fatigue damage, and
most of the studies have been conducted at the member
level for the mechanical properties but not at the overall
bridge level [12, 13]. In order to establish a more efficient
assessment model for existing bridges, we turned our
attention to Bayesian networks, which have been applied
by many scholars to bridge reliability assessment [14-18],
that can not only determine the state level of the bridge,
but also applies the inspection data to update. However,
the assessment system is not yet complete, and the as-
sessment indexes are not perfect. Most of them focus on
qualitative analysis of the reliability of bridge structure
systems, and the evaluation work of railway bridges is
even less advanced. The development of interdisciplinary
reliability theory has brought new directions for bridge
reliability assessment, carrying out a comprehensive as-
sessment of the reliability of existing railway bridges based
on a Bayesian network model, establishing a model for
assessing the structural risk of railway bridges under a
variety of disease factors, constructing a mathematical
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model of the interdependence of railway bridges as a
whole, the railway bridge structure and the railway bridge
components under the a priori probability of a failure of
the structural components. The application of Bayesian
networks can be more efficient and accurate in deter-
mining the condition of bridges and is an emerging
method for bridge condition assessment.

2. Identification of Risk Factors for Existing
Railway Bridges

To effectively improve the level of reliability assessment of
railway bridges, the first step is to analyze the influencing
factors of railway bridges in service, identify the risk factors
for railway bridges, classify those risk factors, and determine
their level to lay a theoretical foundation for a subsequent
overall bridge reliability analysis and determination of key
risk-causing factors.

2.1. Principles of Risk Factor Selection. To conduct an ob-
jective and comprehensive reliability assessment of railway
bridges, the selection of indicators for assessing the risk
factor status of railway bridges should abide by the following
principles:

(1) Scientific: scientific means that the selected risk
factors have clear concepts and scientific connota-
tions and can describe and reflect the structural
safety condition of bridges during service

(2) Representativeness: select risk factor assessment
indicators that can effectively reflect the health status
of a bridge in service and combine similar indicators
as much as possible, generally with no more than
nine subindicators

(3) Independence: the selected risk factor evaluation
indexes can independently reflect a certain type of
risk of a bridge structure, and the risk factor eval-
uation indexes of the same layer are independent of
each other

(4) Feasibility: feasibility means that the selected risk
factor assessment indicators can be quantitatively
described through some methods

(5) Hierarchy: focused selection of different levels of
risk factor assessment indicators to sort out the
assessment process in an orderly and efficient
manner

2.2. The Hierarchical Structure of Existing Railway Bridge Risk
Factors. There are many risk factors affecting the structural
reliability of existing railway bridges, and the relationship
among these risk factors is intricate and complex. The
condition assessment index system of bridge structures can
be covered by three assessment subsystems as follows: safety,
serviceability, and durability.

(1) Safety analysis: the safety of a railway bridge struc-
ture refers to the ultimate bearing capacity of the
bridge structural members to resist collapse damage
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under the joint action of various risk factors, to avoid
collapse damage to the bridge structure, and to
ensure the safety of life and property.

(2) Suitability analysis: the structural serviceability of
railway bridges refers to the ability to meet the re-
quirements of the design specifications during ser-
vice. The parameters include the stiffness of the main
girder, the displacement of the top of the pier, and
the apparent damage to the load-bearing structure
and its ancillary structures.

(3) Durability analysis: the durability of railway bridge
structural members refers to the ability of those
members to resist a variety of deterioration pro-
cesses under the combined effect of a certain
service environment and certain internal factors
and conditions to meet the original design service
period.

2.3. Determination of Risk Factor Levels of Existing Railway
Bridges. Based on the above risk factor hierarchy analysis,
three subsystems of safety, serviceability, and durability were
identified, and multiple risk factors were further classified by
conducting a traceability analysis of each risk subsystem. If
the severity of each risk factor is only evaluated as “good” or
“bad,” the condition of the bridge cannot be accurately
described. So, the “fuzzy” theory is used to classify the risk
status levels of each risk factor, not by an exact value but by a
probability interval that vaguely describes the status level of
the risk factor.

(1) The structural condition classes of existing railway
bridges are shown in Table 1

(2) The safety status classes of existing railway bridges
are shown in Table 2

(3) The applicability status classes of existing railway
bridges are shown in Table 3

(4) The durability state classes of existing railway bridges
are shown in Table 4

3. Existing Comprehensive Railway Bridge
Reliability Evaluation Model

To predict the reliability of railway bridges and to explore the
specific causes of accidents after they have occurred, a hi-
erarchical analysis of railway bridge structures is required to
establish a network model of risk factor relationships using
the Bayesian network theory.

3.1. Bayesian Network Theory. Bayesian networks are
mathematical representations of causal relationships be-
tween events. By integrating probability theory, fuzzy al-
gorithms, graph theory, etc., a Bayesian network can not
only provide a clear visual representation of the causal re-
lationships between risk factors but also quantify the logical
relationships between risk factors through rigorous math-
ematical reasoning.
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TaBLE 1: Structural condition classes of existing railway bridges.

Risk factor Bridge performance RlSk- probability

level interval

I Bridge formation (0, 5%]
status

I Affect appearance (5%, 20%]

111 Affect use (20%, 50%]

v Impact on safety (50%, 80%]

A% Hazardous status (80%, 100%]

3.2. Bayesian Network Structure Construction. A Bayesian
network model is not built once and for all but is a con-
tinuous process of modification and improvement, requiring
updated learning by the Bayesian network to achieve an
accurate assessment of the reliability of railway bridges.

In Figure 1, R denotes the top event, R; denotes a first-
level risk factor set, R, denotes a second-level risk factor set,
R; denotes a third-level risk factor set, and R, denotes a
fourth-level risk factor set. The indicators at each level
contain multiple risk factor sets, and the meanings of the
numbering in the incident tree model are shown in Table 5.

3.3. Parameter Determination of the Bayesian Network Model.
After establishing the Bayesian network structure of an
existing railway bridge, further quantitative description of
the logical relationships between the nodes requires prob-
ability assignment between the nodes.

3.3.1. Root Node Prior Probability Analysis. The occurrence
probability level of the root node is fuzzy and described by a
probability interval. Experts evaluate the occurrence status
of the root node based on the root node occurrence
probability level criteria, which are shown in Table 6.

As different experts do not have the same educational
background, years of experience, etc., the algebraic mean of
the experts’ evaluation results cannot be used directly to
calculate the a priori probability of the root node, and a
hierarchical analysis is needed to determine the relative
weights of different experts in the survey evaluation, taking
into account their educational background and titles.

After determining the occurrence probability level of the
root node and the relative weight of each expert, the prior
probability of the root node is calculated according to the
following formula:

P=) wB,, (1)

i=1

where P is the prior probability of the root node; w; is the
relative weight of the ith expert; and B; is the central value of
the probability that the first i experts consider the root node
to be at j rank.

3.3.2. Nonroot Node Conditional Probability Analysis.
Hierarchical analysis is used to determine the conditional
probability of nonroot nodes in the Bayesian network
structure of an existing railway bridge. The essence of

hierarchical analysis seeks to determine the conditional
probability between the nonroot nodes of the Bayesian
network structure by quantitatively assessing the relative
importance of one risk factor over another at the same level of
risk factors. Using hierarchical analysis to determine the
conditional probability table of the Bayesian network
structure of an existing railway bridge has the following main
steps.

(1) Construction of the Judgment Matrix. Based on the
Bayesian network structure of an existing railway bridge, a
judgment matrix is constructed based on the affiliation re-
lationship between the upper and lower nodes »n and the

relative importance of the nodes in the same
layerA = (a;;) -
Ay Gzt A
App Gpp tor Gy
A=l 0L ) (2)
Anp Anz **° Gpp

where A is the judgment matrix of n nodes belonging to the
same node and a;; means that for the subordinate nodes, the
degree of importance of node i relative to node j is a
quantitative index. The judgment matrix A has the following

properties:

a;>0(i,j=1,2,-,n),

a; =10, j=1,2,---,n), (3)

1

Jt

(iyj: 1,2,"',”)-

The quantitative indicators of the degree of importance
of the nodes in the judgment matrix are derived based on
Table 7.

(2) Calculation of the Conditional Probability. To cal-
culate the conditional probability of each node belonging to
the same upper node, it is actually the calculation of the
maximum A, eigenvalue of the judgment matrix and the
solution of the corresponding eigenvector
w=(w,wy--,w,)" to the maximum eigenvalue. The
calculation steps are as follows.

By multiplying the row elements in the judgment matrix
A = (a;})xp the product vector M; is obtained as follows:

n
Mi=l_[aij(i=1,2,...,n), (4)
j=1

The result b; is obtained by opening the product vector
M, to the power as follows:

bj=3M;(i=12,---,n). (5)
Standardize vectors b; = (b,,b,,---,b,):
W= s (1= 1,2, m) (6)
i: n l: 5> )---’n .
2imibi



TaBLE 2: Safety status classes of existing railway bridges.
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Risk factor level Bridge safety

Risk probability interval

I Fully compliant with design requirements, safe (0,5%]
I Basically meets the requirements, overall safety (5%,20%]
111 Minor damage to major components, generally safe (20%, 50%]
v Defective major components requiring reinforcement or reduced functional use (50%, 80%]
\ Not meeting safety requirements (80%, 100%]
TaBLE 3: Applicability status classes of existing railway bridges.

Risk . g Probability
rating Bridge applicability interval
I No apparent structural damage, functionally intact (0,5%]
11 Minor cosmetic damage to the structure, e.g., minor cracks (5%, 20%]
I Moderate damage to the structure with some impact on normal use, e.g., significant cracks, significant

. . . (20%, 50%]

corrosion of reinforcing steel, etc.

v Serious structural damage endangering the safety of the bridge (50%, 80%]
\4 The level of damage to the structure is too severe for further use (80%, 100%]

TaBLE 4: Durability state classes of existing railway bridges.

Risk factor Bridge durability RlSkA probability

level interval

I Structural elements of the bridge are intact and no deterioration of materials occurs (0,5%]
Minor defects in structural elements of the bridge, minor deterioration of materials, crack widths not

1I . - (5%,20%]

exceeding limits
I Moderate defects in structural elements of the bridge,.partial deterioration of materials, crack widths (20%, 50%]
over limits

Significant defects in the structural elements of the bridge, significant deterioration of the material,

v . (50%, 80%]

and severe excess crack widths
v Significant defects in the structural elements of the bridge, complete deterioration of materials, (80%, 100%]

crushed concrete, and fractured reinforcement

Re36

FIGURE 1: Bayesian network structure of existing railway bridges.
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TaBLE 5: Risk factors and numbers of existing railway bridges.

Meaning No Meaning No
Security Rey,; Applicability Rey,
Durability Rey; — —
Girder capacity Re,, Pier capacity Re,,
Foundation capacity Re,;s Support capacity Re,,
Main girder fatigue Re,s Longitudinal stiffness of the main girder Reyg
Lateral stiffness of the main girder Re,; The lateral amplitude of the pier top Re,g
Apparent damage to load-bearing structures Reyy Apparent damage to accessory structures Reyy
Girder Re, ; Bridge pier Re,;,
Girder Rej, Pier Res,
Basis Res; Support Res,
Floor system Res; Affiliated facilities Resq
Others Re;, — —
Bridge circuit Rey, Stretch Rey,
Material Rey; Drainage facility Reyy
Check the facilities Reys Pavements and shelters Reyq
Wing wall Rey; Slope protection Reyq
River Reyy — —

TaBLE 6: Root node occurrence probability grade standard.

Prgbablhty Pr.obablhty Probability center State description

rating interval value

1 (0,0.0003] 0.0002 An almost impossible event during the service of a railway bridge
2 (0.0003,0.003] 0.002 Less frequent incidents during the service of a railway bridge

3 (0.003,0.03] 0.02 Occasional incidents during the service of a railway bridge

4 (0.03,0.3] 0.2 A frequent occurrence during the service of a railway bridge

5 (0.3,1] 0.9 A large number of incidents occurred during the service of a railway

bridge

TaBLE 7: Scale grade and state description.

Level of scale

State description

When node i is compared with node j, the quantization index of importance is 1, indicating that node i and node

! j are equally important
3 When node i is compared with node j, the quantization index of importance is 3, indicating that node i is slightly
more important than node j
5 When node i is compared with node j, the quantization index of importance is 5, indicating that node i is
significantly more important than node j

- When node i is compared with node j, the quantization index of importance is 7, indicating that node i is more
important than node j

9 When node i is compared with node j, the quantization index of importance is 9, indicating that node i is

extremely important than node j
2.4,6 8 When node i is compared with node j, the quantification index of importance is 2, 4, 6, or 8, indicating that node

The scale grade is
reciprocal

i and node j are in the middle of the above judgment

When node i is compared with node j, the quantified index of importance is a;;, and when node j is compared

with node i, the quantized index of importance isa i = ai
1

Calculate the maximum eigenvalue A, according to the
eigenvector W as follows:

_i) (7)

where W = (wl,wz,m,wn)T(i =1,2,---,n) is not only the

eigenvector of the judgment matrix A = (a;;),,, but also the

conditional probability distribution of the individual nodes
n belonging to the same upper node. (AW);, is the first i
element of vector W after multiplying matrix A with the
vector.

(3) Consistency Test. Judgment matrix A is the basis of
calculating the conditional probability. Therefore, it is nec-
essary to perform a consistency test. The steps for performing
a consistency test on the judgment matrix are as follows.



First, calculate the consistency indicator CI:

A
CJ = max | (8)
n—1

where nis the order of judgment matrix.

To avoid random errors, a consistency ratio CR is used
to check the consistency of judgment matrix A. The
calculation formula of the consistency ratio CR is shown
in (11).

CR = = , 9)
RI
where CR is consistency ratio; CI is consistency index; RI is
mean consistency index.

When consistency ratio CR < 0.1, it is considered that the
judgment matrix meets the consistency requirement and
passes the test; when consistency ratio CR> 0.1, it is con-
sidered that the judgment matrix does not meet the con-
sistency requirement and cannot pass the test. Therefore, the
original judgment matrix needs to be adjusted and reex-
amined until the consistency of the judgment matrix passes
the test.

3.4. Bayesian Network Reasoning. Inference analysis using
Bayesian networks is mainly based on the a priori proba-
bilities of the nodes relevant to the nodes to be evaluated.
Bayesian formulas are used to calculate the probabilities of
the nodes to be evaluated and, based on the inference results,
to make targeted recommendations for the repair and
strengthening of a bridge structure.

3.4.1. Positive Causal Reasoning. Causal reasoning is a
bottom-up reasoning process in a Bayesian network structure
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diagram, which calculates the occurrence probability of leaf
nodes according to the joint probability of root nodes under a
variety of state combinations to predict the occurrence of
accidents. If Bayesian network node T has n parent nodes
X =(X,,X,--X,)and using T = I and T = 0 to represent
the two different states of the child node T occurring and not
occurring, then when parent node X = (X, X,,--- X,,) state
combination is known, the formula for calculating the
probability of occurrence of child node T is as follows:

P(T=11X;=x,X,=%5-,X,=x,)

_P(T: I)Xl =X1’X2 :xz’...,Xn :Xn)

(10)
P(X;=xpXy=x5, X, =x,)
x; € {1,0}.
P(T=11X;,=x;,X,=x%,...,X,=x,)is the condi-

tional probability that the occurrence of a child node
under the combination condition of the parent node states
is known; P(T=1X,=x,X,=x,---,X,=x,) Iis
the joint probability of child node and parent node; P (X, =
x, X, =%x,-,X, =x,) is the joint probability of the
parent node.

3.4.2. Reverse Diagnostic Reasoning. Reverse diagnosis
reasoning is a top-down reasoning process that calculates the
probability of the root node under the condition that the
state probability of a leaf node is known. Bayesian network
node T has n parent nodes X = (X, X,,---X,), so when
child node T occurs, the probability of X; occurrence of the
parent node is calculated as follows:

P(X;=1,T=1)

P(X,= 1T = 1)

_P(T=11X;=1)P(X;=1)
- P(T=1)
x; € {1,0},

where P(X; = 1|T =1) is the posterior probability of the
occurrence of the first i parent node after the occurrence of a
known child node; P(T = 1|X; = I) is the conditional prob-
ability of the occurrence of a child node under the condition
that the first i parent node is known to occur; P (X; = 1) is the

_21”{P(T: X =xp, X, =%, X, :xn)xP(XI =xp X, =%

» Xy = xn)}
(11)

edge probability of the occurrence of the i parent node; P (T =
1) is the probability of occurrence of a child node.

3.4.3. Sensitivity Analysis. Sensitivity analysis is an impor-
tant part of the Bayesian network reasoning. When the state
of a node in a Bayesian network changes, the influence
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degree of this node on other nodes is analyzed. If Bayesian
network node T has n parent nodes X = (X, X,,---X,,),
then the sensitivity calculation formula of parent node X; is
as follows:

P(X,=1)=

7
|P(T=11X, = 1) = X7 {P(T = 11X, = xp-+, X, = x,) X P(X, = xp,-++, X,, = x,)}

2x YTHP(T = 11X, = xpp-++, X, = %,) X P(X; = %+, X,y = x,)}
|P(T: 1|Xi = 0)_Z§H{P(T: 0|X1 :xl"">Xn :xn)XP(XI :xl"">Xn :xn)}| (12)

2x YTUP(T = 11X, = x},---
_|P(T=11X; = 1) - P(T = D| +|P(T = 11X; = 0) - P(T = 0)|

’Xn =xn)XP(X1 =x1""’Xn :xn)}

2xP(T=1)

where P(T = 1|X; = 0) is the conditional probability that a
child node will occur if parent node i does not occur is
known; P(T =0|X; =x;,X,=x,---,X,=x,) 1is the
conditional probability that a child node does not occur
under the condition of a known combination of parent node
states; P (T = 0) is the probability that a child node does not
occur.

4. Example Analysis of the Comprehensive
Reliability Assessment for the Songhua River
Special Bridge on the Bin-North Line

In this section, the reliability grade of the Bin-North Line
Songhua River Bridge is evaluated using case analysis, and
the feasibility and practicability of the comprehensive reli-
ability evaluation method of an existing railway bridge based
on a Bayesian network are verified.

4.1. Project Overview. The Bin-North line K2+660m
Songhua River special bridge is located in the Bin-North line
between the Jiang-South and Jiang-North stations and is the
only public railway special bridge in the Harbin Railway
Bureau. The Bin-North line Songhua River special bridge is
shown in Figure 2.

The K2 + 620 m Songhua River Bridge on the Bin-North
Line was completed and opened to traffic from March 1932
to December 1933 by the Japan Railway Construction
Bureau, and the upper highway bridge was completed and
opened to traffic in August 1934. The bridge has a total
length of 1065.8 m and is composed of 15 steel truss girders.
Except for the 3rd to 5th holes (80 m + 96 m + 80 m), which
are a set of parallel strings under Warren-type cantilevers
and hanging truss girders, the other 12 holes are all 64m
parallel strings under Warren-type simply supported truss
girders.

4.2. Analysis of Risk Factors for the Songhua River Special
Bridge on the Bin-North Line. Through a comprehensive
inspection of the bridge structure, it was found that there are
various disease factors in the large bridge over the Songhua

x; € {1, 0},

River along the waterfront and north lines. The steel truss
girders are severely rusted and corroded. The connecting
angles in the weak parts are cracked. The coating on the
surface of some of the girders is aging and spalling. Some
rivets are missing and the bolts are loose. The surfaces of the
bearings of the whole bridge are rusted and corroded. The
concrete of the wing walls is aging and the bottom of the
wing walls has cracked corners. The conical slopes and slope
protection are growing weeds and the mortar of the masonry
joints is partially spalling. The concrete of the bridge piers is
aging and spalling. The concrete transverse cracks exist on
the top of each pier. There are water seepage and alkaline
phenomenon in the piers. There are cracks in the bridge deck
system, broken concrete, spalling, exposed bones, and aged
and alkaline bridge deck slabs. There are deformation,
blockage, and broken rubber strips in the expansion joints.
There is rust and corrosion in the expansion device parts;
rust and corrosion in the pavement slabs and aged bases;
rust, corrosion, and deformation in the railings; blockage in
the drainage facilities; and rust and corrosion in the in-
spection facilities.

4.3. Comprehensive Reliability Evaluation of the Songhua
River Bridge along the Bin-North Line. A Bayesian network
structure model was established according to the risk factors
for the Songhua River Bridge along the Bin-North Line.

4.3.1. Prior Probability Calculation. To ensure the accuracy
of the evaluation results, five experts with practical expe-
rience in bridge engineering were selected to evaluate the
risk factors for the Songhua River Bridge on the Bin-North
Line and the evaluation results of each expert based on the
comprehensive consideration of their differences in edu-
cation background and professional titles were weighted.
The relative weights of the five experts are shown in Table 8.

Experts judged the root node probability rank in the
Bayesian network based on Tables 3 and 4, and the root node
prior probability was obtained by converting the Bayesian
network root node probability rank judged by the experts



8
FiGure 2: Bin-North line Songhua river bridge.
TaBLE 8: Relative weight of the experts.
Expert no. 1 2 3 4 5

Relative weight 0.30740 0.30740 0.19629 0.10832 0.08058

into the corresponding probability centroid value and
weighted average based on the weights of each expert.

4.3.2. Nonroot Node Conditional Probability Calculation.
The Hierarchical analysis was used to determine the con-
ditional probabilities of the Bayesian network structure. The
Bayesian network structure model of the Songhua River
Special Bridge on the Bin-North Line was analyzed as an
overall bridge hierarchy model. First, a judgment matrix of
the Songhua River Special Bridge system on the Bin-North
Line was established, and the conditional probabilities of the
Songhua River Special Bridge system on the Bin-North Line
were calculated using the square root method based on the
judgment matrix to obtain a table of conditional proba-
bilities for the bridge system, quantifying the Bayesian
network structure model and providing a two-way predic-
tion and diagnostic analysis for the subsequent probabilistic
support.

4.3.3. Analysis of Positive Causal Reasoning. According to
the results of the positive causal reasoning analysis, the
overall bridge structure failure probability for the Songhua
River Bridge on the North-North Line is 21%, which affects
the use of the bridge. The consequence level of the risk event
is V, which is of great risk.

4.3.4. Reverse Diagnostic Analysis. By reverse diagnostic
analysis result of the Songhua River Bridge, the failure
probability of the whole bridge structure is 100%, the failure
probability of bridge structure safety is as high as 71%, which
is the main cause of the whole bridge structure failure, and
the most likely cause risk chain is: (security — the overall
state of the bridge structure), so the security failure prob-
ability is adjusted to 100%. The probability of main girder
fatigue events is up to 75%, and the most likely risk chain is:
(main girder fatigue — safety — overall bridge structure
state).
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TABLE 9: Sensitivity analysis results.

Node number Sensitive value Node number Sensitive value

Reyy 0.169 Re; 0.139
Rel3 0.186 - -
R621 0.300 Rezz 0.300
R€23 0.300 Rez4 0.050
Re25 0.050 R626 0.261
Re,, 0.261 Res 0.261
Rezg 0.266 R6210 0.198
Rele 0.500 R€212 0.500
Res, 0.300 Res, 0.300
Re33 0.300 Re34 0.100
Ress 0.292 Ress 0.304
Re37 0.205 — —
Rey, 0.429 Reys 0.143
Re43 0.429 Re44 0.637
Reys 0.258 Ress 0.105
Rey; 0.429 Reys 0.429
Re49 0.143 — —

4.3.5. Sensitivity Analysis. Sensitivity analysis is an impor-
tant part of Bayesian network reasoning. Based on backward
diagnostic analysis, sensitivity analysis calculates the com-
plete derivative set of the posterior probability distribution
of risk nodes in the Bayesian network. These sensitivity
values characterize the importance of the accuracy of the
numerical parameters of the network for computing the
posterior probability of the target. If the sensitivity value is
large for a risk factor, then a small change in that risk factor
may lead to a large change in the posterior of the target node.
Through sensitivity analysis, the sensitivity value of each
node is judged. The sensitivity analysis results are shown in
Table 9.

5. Conclusions

(1) Principles for the selection of risk factors for railway
bridges are proposed, and an index system including
three risk subsystems for safety, serviceability, and
durability is constructed

(2) The Bayesian network structure of an existing rail-
way bridge was established, the prior probability of
the root node was determined according to its oc-
currence probability grade standard, and the con-
ditional probability between the nonroot nodes of
the Bayesian network structure was determined
using an analytic hierarchy process

(3) The existing Bayesian evaluation system for a railway
bridge can be used for bidirectional reasoning and
sensitivity analysis

(4) The Bayesian network model was applied to the
reliability assessment of the Songhua River Bridge on
the Bin-North Line to evaluate the probability of
failure of each risk factor, and the evaluation results
showed that the overall bridge structure failure
probability of the Songhua River Bridge on the Bin-
North Line is 21%
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(5) The application of Bayesian networks for the creation
of models for evaluation can be efficiently applied to
the state evaluation of structures due to the char-
acteristics of probabilistic graphical models that can
be better visualized and greatly reduce the time
required to build the models
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