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Direct usage of construction plans as input for structural analyses assumes the reference confguration to match the engineering
drawings. However, the built construction is typically supposed to match the construction plans after its successful erection. In
that state, the structure is usually already subjected to self-weight andmaybe other loadings. Consequently, an analysis approach is
necessary to fnd the unknown reference confguration for a given, desired deformed structural shape.Te standard static problem
needs to be reformulated with the reference coordinates being the unknown variables. Tis work describes the necessary steps for
geometrically and materially nonlinear truss elements based on the variation of reference strategy (VaReS) and gives a highly
detailed description of all resultant system derivatives. Arbitrary hyperelastic material laws can be applied of which this work
introduces the St. Venant-Kirchhof, the Neo-Hookean, and the Ogden law. Additionally, the self-weight load case is considered,
increasing the problem’s nonlinearity. Finally, two- and three-dimensional structural problems are presented to show the solution
capabilities, ranging from simple 3-bar systems to larger framework bridges. While all necessary vectors and matrices are
discussed and presented in great detail, a publicly available GitHub repository makes the code freely accessible as Python code.

1. Introduction

Direct usage of construction plans as input for structural
analyses assumes the reference confguration to match the
engineering drawings. However, the built construction is
typically supposed to match the construction plans after its
successful erection. In that state, the structure is usually
already subjected to self-weight and maybe other loadings.
Consequently, an analysis approach is necessary to fnd the
unknown reference confguration for a given, desired de-
formed structural shape.

In conventional structural analysis, a given confguration
is typically loaded and subsequently simulated, resulting in
deformations and stress states. Often, this analysis is un-
suitable, and an “inverse” analysis must be performed. Es-
pecially for lightweight membrane or cable net
constructions, the internal stress state is predefned, and a
corresponding equilibrium shape is searched. Moreover, the
desired deformed shape is given for specifc structures, and

an unknown reference confguration needs to be found.
Standard structural analysis is not applicable in these cases,
and other solution methods must be utilized. Overall, the
fnite element method (FEM) has proven to be one of the
most efective approaches and will also be the basis for the
presented method.

Several approaches have been developed to fnd an
equilibrium shape for a given stress state (including external
forces). Exploiting proven dynamic simulation strategies the
dynamic relaxation approach [1–3] creates a dynamic
problem, based on the underlying static problem. Similar to
an explicit dynamic simulation, no stifness matrices are
necessary, and a simple node-based solution loop can be
used to calculate the artifcially damped structure until an
equilibrium shape has been found.

Directly working with the static problem [4–6] has
developed the force density method, whose frst successful
and practical application can be admired in Munich in the
form of the roof of the Olympic Stadium [7]. Tis approach
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assembles nodal force equilibrium equations and keeps the
ratio of internal force and element length constant, creating
a linear system of equations out of a normally nonlinear
system. Reference [8] proposes the SGC (statically geo-
metrically coupled) method as an extension to the force
density, considering geometrical specifcations. Te updated
reference strategy (URS), developed by [9, 10], is a gener-
alization of the force density method. It is derived from
continuum mechanics of elastic bodies and closely follows
the FEM approach, allowing its application to any structure.
Te URS is not restricted to one-dimensional structures
compared to the force density method. Based on the URS,
form-fnding for hybrid structures is discussed in [11], and a
description of the whole engineering design cycle is given in
[12]. Further approaches are available, such as analyses based
on graphic statics [13–15] and constrained form-fnding
using automated diferentiation [16].

In contrast to the discussed form-fnding strategies,
[17, 18] developed the variation of reference strategy
(VaReS), inspired by [19]. It is further discussed in [20] and
later applied to the concept of isogeometric B-Rep analysis
(IBRA) in [21]. VaReS is typically employed to analyze
suitable cutting patterns for prestressed membrane struc-
tures. It is based on a change of the system unknowns, called
the “concept of inverse mechanics” by [17], originating from
[22, 23]. A similar strategy is followed by [24] to analyze
sheet metal forming. Here, the reference (undeformed
confguration) represents the unknown variables instead of
the structural displacements. While standard structural
analyses typically result in the deformed spatial confgura-
tion with a known material confguration, the inverse
analysis uses an initially given spatial (deformed) confgu-
ration to solve for a suitable unknown material (reference,
undeformed) confguration. Figure 1 graphically explains
this concept. Te idea of “inverse engineering” was already
discussed in [25–27] and successfully applied to cutting
pattern generations for isotropic materials in the linear and
moderately nonlinear regime.

While a very short introduction to a two-dimensional
truss element can be found in [17], this work takes up the
“concept of inverse mechanics” to fnd unknown reference
geometries for three-dimensional truss structures. With the
help of the presented approach, the engineer can determine
the necessary reference construction so that the desired fnal
aim geometry is obtained for a given load state. To allow a
wide range of application cases, the base equations are
geometrically and materially nonlinear. Arbitrary nonlinear
hyperelastic material laws can be used within this workfow,
of which the St. Venant-Kirchhof law, the Neo-Hookean
law, and the Ogden law are introduced herein. Conse-
quently, we add the efects of self-weight inclusion on the
solution procedure and present various test cases to prove
the efectiveness and simulation capabilities of the proposed
approach. Particular focus is put on the extensively detailed
presentation of all necessary derivatives and every step to-
wards the fnal solution. Additionally, all system matrices,
examples, and a simulation framework are made publicly
accessible via a GitHub repository [28] as Python code.

Te work is thematically structured as follows:

(i) Section 2 introduces the general truss formulation,
including material law and other assumptions. Tis
section is necessary to later follow up with the
detailed investigation of all its derivatives.

Subsection 2.1 formulates the nonlinear truss
formulation, presenting the internal element
forces, based on nonlinear stress and strain
measures

Subsection 2.2 discusses simplifcations for
linear strain and deformation regimes

(ii) Section 3 subsequently formulates the global
problem and the resulting system of equations
Subsection 3.1 discusses the standard global
force equilibrium in the reference
confguration.
Subsection 3.2 afterwards derives the inverse
problem, reformulating the force equilibrium
from the previous subsection.

(ii) Section 3 subsequently formulates the global
problem and the resulting system of equations
Subsection 3.1 discusses the standard global
force equilibrium in the reference
confguration.
Subsection 3.2 afterwards derives the inverse
problem, reformulating the force equilibrium
from the previous subsection.
Subsection 3.1 discusses the standard global
force equilibrium in the reference
confguration.
Subsection 3.2 afterwards derives the inverse
problem, reformulating the force equilibrium
from the previous subsection.

(iii) Section 4 follows up with a variety of diferent test
cases. Two- and three-dimensional truss structures
are discussed. Investigations of convergence rates
are included for selected examples.

(iv) Section 5 concludes this work.

2. Truss Formulation

Te truss element in this work is described by two nodes
connected by a linear, straight line, as depicted in Figure 2. It

y

x
standard static analysis

inverse analysis

Figure 1: A standard static analysis calculates the deformation of a
given reference confguration, and the displacements are the un-
known variables. Te inverse analysis is used to determine the
unknown reference confguration for a given deformed state.
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carries only normal forces and keeps a constant cross section
A by neglecting the Poisson’s efect.

Each node has three translational degrees of freedom
(dofs), which are assembled for every element in the dis-
placement vector ue, respectively,

ue � ue,1 ue,2􏼂 􏼃 � u1 v1 w1 u2 v2 w2􏼂 􏼃. (1)

Additionally, we introduce the discrete reference nodal
coordinates per element Xe, as well as the discrete actual
nodal coordinates per element xe,

Xe � X1 Y1 Z1 X2 Y2 Z2􏼂 􏼃, (2)

xe � x1 y1 z1 x2 y2 z2􏼂 􏼃. (3)

Using the reference coordinate diferences dX, dY, dZ,
the reference length L can be calculated as

L �

��������������

dX
2

+ dY
2

+ dZ
2

􏽱

,

dX � X2 − X1,

dY � Y2 − Y1,

dZ � Z2 − Z1.

(4)

Te same operation holds for the calculation of the
deformed element length l

l �

��������������

dx
2

+ dy
2

+ dz
2

􏽱

,

dx � x2 − x1,

dy � y2 − y1,

dz � z2 − z1.

(5)

2.1. Large Deformations—Nonlinear Truss Formulation.
Following the well-known FEM approach, the total virtual
work δW is expressed by the virtual internal work δWint and
the virtual external work δWext

δW � δWint − δWext � 0. (6)

Tis will result in a stifness matrix and a force vector to
solve the static problem.We will discuss the derivation of the
global three-dimensional stifness matrix in the following,
leading to the global problem formulation. Te virtual in-
ternal work is formulated by integrating over the reference
volume V � A L as the product of the reference area A and
the reference length L

δWint � 􏽚
V

Sδε dV � ALSδε

� ALS
zε

zue

δue.

(7)

To allow for the analysis of arbitrarily large deformations
and correctly considering rigid body rotations, nonlinear
strain and stress measurements are applied. While S rep-
resents the 1D 2 n d Piola-Kirchhof stress, the work-con-
jugated 1D Green-Lagrange strain is described by ε as
follows:

ε �
1
2

l
2

− L
2

L
2 . (8)

Based on the chosen material law and its associated
Helmholtz free-energy function Ψ, the 2 n d Piola-Kirchhof
stress and the respective material tangent modulus C can be
evaluated as follows:

S �
zΨ
zε

,

C �
zS

zε
�

z
2Ψ

zε2
.

(9)

S andC are exemplarily given for three diferent hyperelastic
material laws in the following. Tey can be plugged into the
derivations of this work to analyze and simulate diferent
deformation behaviors.

(1) St. Venant-Kirchhof
S �E ε
C �E

(2) Neo-Hookean
S �Eε/(2ε + 1)

C �Eε/(2ε + 1)

(3) Ogdenβ1, β2 are specifc Ogden parameters and need
to be chosen appropriately.
S �(E/β1 − β2) ((2ε + 1)(β1/2)− 1− (2ε + 1)(β2/2)− 1)

C �(E/β1 − β2) ((β1 − 2)(2ε + 1)(β1/2)− 2 − (β2−
2)(2ε + 1)(β2/2)− 2)

Specifcally, the Ogden law is of major importance as it
can be easily transformed into other constitutive laws, such
as the St. Venant-Kirchhof law (β1 � 4, β2 � 2) and the
Neo-Hookean law (β1 � 2, β2 � 0) [29, 30]. Special attention
needs to be paid when dealing with large compressive
strains. As discussed in [29], the St. Venant-Kirchhof law is
not appropriate for this case anymore, and other material
laws are recommended.

y

xz

v1

n

u1w1

v2

u2
w2

Figure 2: Linear truss element with nodal degrees of freedom.
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Finally, the internal element forces Fint,e are derived from
(7) [29] as follows:

Fint,e � ALS
zε

zue

. (10)

2.2. Small Deformations—Linear Truss Formulation. In
many engineering applications, only small deformations
and strains occur. For these application cases, a
simplifed element formulation can be applied,
facilitating both the derivation as well as the imple-
mentation. Te small deformations and strains allow the
use of the linear elastic Hooke’s law to express the axial
stress σ by the Young’s Modulus E and the linear axial
strain ϵ

σ � Eϵ,

ϵ �
zu

zX
.

(11)

Here, u is the axial displacement feld, and X is the
coordinate running along the local element axis in its ref-
erence confguration. Te strains and deformations are thus
restricted to be small.

2.2.1. Stifness Matrix in 1D. We start the derivation in 1D
which is here expressed for a one-dimensional truss element
as shown in Figure 3. Te two nodal dofs u1, u2 are sufcient
to describe the local element displacement feld.

Te virtual internal work is again expressed by inte-
grating over the reference volume V as follows:

δWint � 􏽚
V
σδϵ dV. (12)

Tis is used in conjunction with linear shape functions
to derive the local one-dimensional element stifness
matrixKl

e,

Kl
e �

EA

L

1 − 1

− 1 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (13)

2.2.2. Rotation to 3D. To analyze a global three-dimensional
problem, a third dof is introduced. As depicted in Figure 2,
three dofs at each node describe the total elemental de-
formation capacities and are given in equation (1). Te
introduction of the three-dimensional dofs allows the

expression of the one-dimensional local element stifness
matrix from equation (13) to the three-dimensional space

Kl
e �

EA

L

1 0 0 − 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

− 1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

as well as the transformation/rotation matrix T as follows:

T �

n[0] 0 0 0 0 0

n[1] 0 0 0 0 0

n[2] 0 0 0 0 0

0 0 0 n[0] 0 0

0 0 0 n[1] 0 0

0 0 0 n[2] 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

nT
�

dX dY dZ􏼂 􏼃

L
.

(15)

Te direction vector n is used to express the orien-
tation of the truss in the three-dimensional space, see
Figure 2. Combining the previously derived element
matrices, Kl

e can be expressed with respect to the global,
three-dimensional dofs to obtain the global element
stifness matrix 23.

Kg
e � TKl

eT
T (16)

Finally, the internal forces for the linear truss formu-
lation are formulated as follows:

Fint,e � Kg
eue. (17)

3. Global Problem Formulation

3.1. Standard Static Force Equilibrium. First, the standard
static force equilibrium in the reference confguration is
expressed to proceed with the solution process of fnding
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the unknown reference confguration. Ten, following
the FEM workfow, the global element stifness matrices
of all structural elements are assembled by their dof
numbering. Te dof-based assembly [31] is from here on
described by the 􏽐 symbol, using a node n or an element e

loop.

K � 􏽘
e

Kg
e , Fext � 􏽘

n

Fext,n, Fint � 􏽘
e

Fint,e,

u � 􏽘
e

ue, x � 􏽘
e

xe, X � 􏽘
e

Xe.
(18)

All stifness matrices are assembled in the global
system stifness matrix K, the internal element forces are
assembled in the global internal force vector Fint, and the
external nodal forces are assembled in the global load
vector Fext. While Fext is, in general, assumed to be
constant, later in Section 3.2.3, the infuence of additional
self-weight is discussed. Other entities, such as the nodal
discrete displacements and coordinates, are as well
assembled.

Finally, we can express the global force equilibrium of
the whole system in equation (19). With the reference
confgurationXdescribing the system unknowns the ex-
pression turns out to be nonlinear, allowing us to express a
force residualrequation.

Fint(X, x) − Fext � r(X, x). (19)

Note: For in a standard static analysisxand thus the
nodal displacementsu, would be the unknown vector. Te
standard problem assumes a given (known) reference
confguration and solves the force equilibrium in (19) for the
unknown displacements.

3.2. Inverse Problem. For the problem at hand, however, the
unknown is the reference confgurationX, making it necessary
to solve a system of nonlinear equations. Figure 4 demon-
strates the inverse problem, depicting the known deformed
confguration x and the unknown reference confguration X.

We propose to use a Newton–Raphson solution scheme,
expressing (19) in the form of a truncated Taylor’s series,
with k being the current iteration number

rk+1
� rk

+
zrk

zX

􏽺√􏽽􏽼√􏽻Ck

ΔXk
� 0.

(20)

Te necessary derivative of the residual vector is in-
troduced to be the C system matrix

ΔXk
� Xk+1–Xk

� –C–1krk. (21)

which is as well assembled by individual element e

contributions

C � 􏽘
e

Ce. (22)

Te following two Sections 3.2.1 and 3.2.2 discuss the
necessary steps to formulate Ce assembled in equation
(22).

3.2.1. Large Deformations—Nonlinear Truss Formulation.
With respect to the global force equilibrium in (19), the
element residual contribution is formulated as

re � Fint,e � ALS
zε

zue

, (23)

which is derived in equation (10).
Te element solution matrix Ce is consequently derived

by diferentiating the element residual re with respect to the
unknown reference confguration X.

Ce �
zre

zXe

�
zFint,e
zXe

,

� A S
zε

zue

zL

zXe􏽼√√√√√􏽻􏽺√√√√√􏽽
I

+ A L
zε

zue

zS

zXe􏽼√√√√√􏽻􏽺√√√√√􏽽
II

+ A L S
z2ε

zuezXe􏽼√√√√√􏽻􏽺√√√√√􏽽
III

.

(24)

(24) can be split into three parts I − III and will be
accordingly formulated for clarity in the following.

Part I

x

u1 u2

Figure 3: Linear truss element with nodal degrees of freedom, 1D.
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zε
zue

�
zε
zl

zl

zue

zε
zl

�
l

L
2 ,

zl

zue

�
1
l

dxe,

zL

zXe

�
1
L

dXe.

(25)

dxe � − dx − dy − dz dx dy dz􏼂 􏼃,

dXe � − dX − dY − dZ dX dY dzZ􏼂 􏼃,
(26)

Part II
= 0, const.

(27)
C C ,

C

==

= -

∂S
∂ε

∂S
∂Xe

∂ε
∂L

l2

L3

∂ε
∂Xe

∂ε
∂L

∂L
∂Xe

∂ε
∂l

∂l
∂Xe

.

+

Part III

= 0, const. (28)

= 0, const.
(29)

+

+

=

=

=

=

= = l

l

L2

L3

L2

∂2ε

∂2ε

∂2ε

∂
∂Xe

∂ ∂

∂

∂Xe

∂ue∂Xe

∂Xe

∂ue

∂ue ∂Xe∂ue

∂l

∂l

∂l

2l

∂ε

∂ε ∂2l

∂l

∂ε
∂l

∂l∂l∂Xe

∂l∂Xe

∂L
l
L2

∂
∂l

∂L

∂L
∂Xe

∂Xe

∂Xe

-

,

,

,

Te preceding derivations allow the expression of the
element solution matrix Ce for arbitrary hyperelastic ma-
terial laws. Depending on the chosen material law, the 2 n d

Piola-Kirchhof stress S and the appropriate material tangent
modulus C need to be calculated. For a selected choice of
suitable material models, Section 2.1 provides the necessary
terms.

3.2.2. Small Deformations—Linear Truss Formulation.
Following the internal force expression for small defor-
mations in (17), the elemental residual is expressed as

re � Fint,e � Kg
eue. (30)

Combining equations (1-3), the nodal dofs are expressed
via the diference between the reference and the actual
confguration in equation (31). Tis step is especially im-
portant as the reference confguration is unknown in this
work, see Figure 4.

ue � x1 − X1 y1 − Y1 z1 − Z1 x2 − X2 y2 − Y2 z2 − Z2􏼂 􏼃.

(31)

Te SolutionMatrixCe: From (19), it can be seen that the
derivative of the residual with respect to the unknown
confguration results in a nonlinear problem. Following (22),
the elemental solution matrix Ce is in the following derived
on element level. Applying the chain rule to the internal
element residual in equation (30).

Ce �
zre

zXe

�
zKg

e

zXe

ue + Kg
e

zue

zXe􏽼√􏽻􏽺√􏽽
− I

�
zKg

e

zXe

ue − Kg
e

� 􏽢Kg

e 􏽢ue − Kg
e .

(32)

Te new tensors 􏽢Kg

e , 􏽢ue are introduced for simplifcation
and are described in the following. Tis notation allows a
straightforward description of the remaining operations. 􏽢ue

will result in a 36× 6 matrix, with the elemental nodal
displacement vector ue moving from the very left top to the
right bottom

􏽢ue �

ue 0 0 0 0 0

0 ue 0 0 0 0

0 0 ue 0 0 0

0 0 0 ue 0 0

0 0 0 0 ue 0

0 0 0 0 0 ue

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

At the same time, 􏽢Kg

e can be expressed with the help of
the single respective derivative of the global element stifness

y

xz

X (unknown)

x (known)

desired configuration
unknown reference configuration

ue,1

ue,2

Figure 4: Unknown reference confguration deforms to the desired
confguration.
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matrix, with respect to each unknown reference position in
space, resulting in a 6× 36 matrix

􏽢Kg

e �
zKg

e

zX1

zKg
e

zY1

zKg
e

zZ1

zKg
e

zX2

zKg
e

zY2

zKg
e

zZ2
􏼢 􏼣. (34)

Te individual derivative expressions in (34) are cal-
culated by the chain rule applied to (16) including the de-
rivatives of the transformation matrix and the local element
stifness matrix.

Derivatives of Kg
e : Te respective derivatives in (34) are

discussed in the following, rearranging the global element
stifness matrix from (16) by merging the length terms

Kg
e � TKl

eT
T

�
EA

L
3 TK

l

eT
T
. (35)

Te • matrices are obtained by multiplying the original
matrices by the length L, so that the length is separated as
shown in (35), rendering a constant matrix Kl

e.
Now, the derivative of Kg

e with respect to an arbitrary
reference coordinate Xi can fnally be expressed as
follows:

zKg
e

zXi

� −
3EA

L
4

zL

zXi

TKl

eT
T

+
EA

L
3

zT
zXi

Kl

eT
T

+ TKl

e

zTT

zXi

⎞⎠.⎛⎝

(36)

First, the derivative of the length with respect to the
reference coordinates can be written in the following form
and will later be used again, when including self-weight

zL

zXe

�
zL

zX1

zL

zY1

zL

zZ1

zL

zX2

zL

zY2

zL

zZ2
􏼢 􏼣,

�
− dX − dY − dZ +dX +dY +dZ􏼂 􏼃

L
.

(37)

Additionally, the derivative of the transformation matrix
T, which has the length excluded, results in the following
simple matrices:

zT
zX1

� −
zT

zX2

�

− 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 − 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

zT
zY1

� −
zT
zY2

�

0 0 0 0 0 0

− 1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 − 1 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

zT
zZ1

� −
zT
zZ2

�

0 0 0 0 0 0

0 0 0 0 0 0

− 1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 − 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

3.2.3. Including Self-Weight. Additional terms need to be
considered when including self-weight. As the self-weight
depends on the reference element length, the unknown
reference confguration infuences the load case and adds
new nonlinear terms to re.

With the help of the mass density ρ and a global gravity-
direction vector g, the additional nodal forces per element
are expressed as follows:

Fgravity,e � 0.5 ρA L(X)
􏽺√√√􏽽􏽼√√√􏽻mass(X)

g gearth,

gT
� gx gy gz gx gy gz􏽨 􏽩.

(39)

Withgx, gy, gzbeing the spatial components of the
normalized gravity direction vector and the gravitational
accelerationgearth ≈ 9.81m/s2. Additionally, to the previ-
ously derived element residual re, the self-weight forces need
to be included

re � Fint,e − Fgravity,e, (40)

adding a new term to the element solution matrix Ce. Te
following equation describes the complete matrix, including
all necessary derivatives

Ce �
zFint,e
zXe

−
zFgravity,e

zXe

. (41)

With the help of the length derivatives in equation (35),
the new term is calculated as follows:
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zFgravity,e

zXe

� 0.5 ρA ggearth
zL

zXe

. (42)

Te additional terms toCe in (41) hold for both the linear
and the nonlinear truss element.

3.2.4. Code Implementation. In order to generate lasting
added value, all derivatives are made publicly available.
Tey can be downloaded as Python code via a GitHub
repository [28]. Jupyter Notebook fles are included for a
direct assessment of all derivatives, functions, and the
proceeding examples.

4. Examples

Several examples are presented in the following chapter. We
will employ the derived system matrices in two and three
dimensions. While smaller examples serve as an introduc-
tion, more complex systems are analyzed to demonstrate the
simulation capabilities. For selected examples, a discussion
of the solution convergence is added. While we present the
nodal solutions for small examples, the solutions for large
examples are only visualized. Additionally, all chosen
stifness and force values are purely academic. Forces are
given in Newton N, distances and lengths in meter m, areas
in m2, and densities in kg/m3. In the respective two-di-
mensional examples, the third direction, here the global z-
axis, is fxed on all system nodes to prevent any movement in
said direction.

Tis section includes the following examples:

(i) Section 4.1 demonstrates a simple 2D 3-bar system.
Te nonlinear solution is compared to the linear
formulation, and convergence rates are included.

(ii) Section 4.2 discusses a 2D framework bridge. Te
nonlinear solution is compared to the linear
formulation.

(iii) Section 4.3 analyses a 3D 3-bar system. Te
nonlinear solution is compared to the linear
formulation.

(iv) Section 4.4 demonstrates a 3D frame. Te non-
linear solution is compared to the linear
formulation.

(v) Section 4.5 discusses a 3D framework bridge.
(vi) Section 4.6 shows a 3D 3-bar system, including

self-weight. Te nonlinear solution is compared to
the linear formulation, and convergence rates are
included.

(vii) Section 4.7 discusses the infuence of diferent
material laws on a 3D system.

(viii) Section 4.8 demonstrates a large structural setup
with an increased number of degrees of freedom.

To verify the found reference confgurations, a standard
FEM analysis is performed on the found reference confg-
uration. Te results coincide with the desired fnal confg-
uration and are visualized in most of the example

discussions in this work. Tese standard FEM analyses have
been performed with the code available in the GitHub re-
pository [28] and verifed with the open-source multiphysics
software KRATOS [32–34].

All examples are accessible via a GitHub repository [28].
Te interested reader is invited to download the ofered fles,
re-run the examples herein, and analyze new structures. A
tutorial is included, describing the proper usage.

4.1. 2D 3-Bar System. Te frst two-dimensional system
describes a 3-bar structure as visualized in Figure 5. Te
Young’s modulus E is chosen to be1e6N/m2, and the cross
section isA � 1e–2m2, while the force vector on the free
middle note is [4e2, − 8e2]N. Te St. Venant-Kirchhof
material law is used for the nonlinear truss formulation,
and the standard, small deformation Hooke’s law is for the
linear truss formulation.

In Figure 5, the gray line presents the known deformed
confguration, while the solid black and blue lines are the
results of the inverse analyses herein. Te diferent resulting
reference confgurations for the linear and the nonlinear
truss formulation can be observed. While the linear truss
formulation calculates the force equilibrium in the reference
confguration and is restricted to small deformations, the
nonlinear truss formulation formulates its force equilibrium
in the deformed confguration and can represent large de-
formations. Additionally, the dotted yellow line describes
the result of a standard FEM analysis on the found, pre-
viously unknown reference confgurations. It can be ob-
served that the solution of the standard FEM analysis
coincides with the given desired aim confguration of the
inverse analysis.

Te found reference confguration of the middle free
node is given in the following Table 1.

Additionally, Figure 6 presents the convergence of the
problem residual with respect to the Newton-Raphson it-
erations k. Te L − 2 norm ‖•‖2 is chosen to depict a con-
vergence rate that is at least quadratic.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Y 
[m

]

reference linear
reference nonlinear

aim
deformed reference

Figure 5: Unknown and known confguration of a 3-bar structure.
Te red arrows demonstrate the force vector.
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4.2. 2D Framework Bridge. A truss framework bridge is
modeled using multiple structural elements in two di-
mensions. Te structure in Figure 7 has a Young’s
modulus E � 3e5N/m2, a cross sectionA � 1e–2m2, and
two vertical forces in y-direction of magnitude 1e2N. Te
forces are intentionally chosen to be arbitrary and
nonsymmetric to test the simulation capabilities. Te
St. Venant-Kirchhof material law is used for the non-
linear truss formulation, and the standard, small defor-
mation Hooke’s law is for the linear truss formulation.
Figure 7 nicely shows the solution for the unknown

reference confguration and the result of a proceeding
standard FEM analysis. Te found reference shapes
deform nicely into the desired aim confguration. Te
diference between the linear and nonlinear truss
formulation again can be observed. Figure 8 presents
the course of the residual over iterations steps k. Te
gradient for ‖rk‖2 < 1e − 1 demonstrates the correct
implementation.

4.3. 3D 3-Bar System. To begin with 3D systems, a 3-bar
structure is investigated. Te structure has a Young’s
modulus E � 1e6N/m2, a cross sectionA � 1e–2m2, and a
force vector of [1e3, 0, 2e3]N is applied to the free node. Te
St. Venant-Kirchhof material law is used for the nonlinear
truss formulation, and the standard, small deformation
Hooke’s law is for the linear truss formulation. Solutions for
the unknown reference confguration are visualized in
Figure 9 and given in Tables 2 and 3.

Te found reference confguration of the middle free
node is given in the following.

Again, Figure 10 presents the convergence for both the
linear and the nonlinear truss elements.

4.4. 3DFrame. Figure 11 depicts the next three-dimensional
setup. Te frame is supposed to defect to a regular rect-
angular shape, as demonstrated by the gray dotted lines. Te
system uses a Young’s modulus E � 1e6N/m2 and a cross
sectionA � 1e–2m2, and the nodal force vector is
[300, 300, 300]N. Te St. Venant-Kirchhof material law is
used for the nonlinear truss formulation, and the standard,
small deformation Hooke’s law is for the linear truss
formulation.

Te respective convergence rates are given in Figure 12.

4.5. 3D Framework Bridge. Subsequently, we present the
example of a 3D framework bridge structure, as shown in
Figure 13. While a single force loads the structure non-
symmetric with [0, − 800, 0]N, the system’s Young’s

Table 1: Solution of the initially unknown and known confgu-
ration of the 3-bar structure in Figure 5.

X Z x z
Linear 1.0093919774375 1.1858502537476 1.0 − 1.0
Nonlinear 1.0273412684167 1.3304932012403 1.0 − 1.0

0 1 2 3 4 5
k

10-11

10-9

10-7
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10-3
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||r
k || 2

Figure 6: Convergence of the 3-bar system.
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Figure 7: Unknown and known confguration of a two-dimen-
sional bridge structure. Te red arrows demonstrate the force
vector.
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Figure 8: Convergence of the 2D framework bridge system.
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modulus is E � 1e7N/m2, and the elements are assigned a
cross sectionA � 1e–2m2.Te St. Venant-Kirchhof material
law is used for the nonlinear truss formulation, and the
standard, small deformation Hooke’s law is for the linear
truss formulation. As the three dimensionality makes a
proper visualization difcult, the found reference confgu-
ration is compared to the desired aim confguration in
multiple spatial projections. Figure 13 depicts a three-di-
mensional side view.

Figures 14 and 15 show a projection in the x − z plane
for diferent levels of z. Te vertical point load of − 800N in
y-direction is visualized in Figure 15.

In the following Figures 16 and 17, the projection on the
x − z plane is shown for diferent y levels.

Te convergence rate for the 3D bridge system is vi-
sualized in Figure 18. While the linear truss formulation
needs several iterations to reach ‖rk‖2 < 1e − 1, it thereafter
shows proper convergence.

4.6. Self-Weight. In the following, the inclusion of the self-
weight is discussed with respect to the problem solving
procedure. Te same 3-bar system as in Section 4.3 is used
withE � 1e6N/m2, A � 1e–2m2, g � [0, 1, 0], and
ρ � 1e3kg/m3.Te St. Venant-Kirchhofmaterial law is used
for the nonlinear truss formulation, and the standard, small
deformation Hooke’s law is for the linear truss formulation.
Te theoretical background and the respective symbols are
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Figure 9: Unknown and known confguration of a 3-bar structure. Te red arrow demonstrates the force vector [1e3, 0, 2e3]N.

Table 2: Solution of the initially unknown confguration and aim confguration of the 3-bar structure in Figure 9 with linear truss elements.

X Y Z
0.4775519165819412 − 0.48025726960289933 1.4935108461479483
x y z
1.0 0.0 2.0

Table 3: Solution of the initially unknown confguration and aim confguration of the 3-bar structure in Figure 9 with nonlinear truss
elements.

X Y Z
0.6553972454362691 − 0.424638016434548 1.735432507307086
x y z
1.0 0.0 2.0
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Figure 10: Convergence of the 3D 3-bar system.
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Figure 11: Unknown and known confguration of a three-dimensional frame structure. Te red arrow demonstrates the force vector
[300, 300, 300]N.
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discussed in Section 3.2.3. Figure 19 visualizes the problem
setup and the found, initially unknown reference confgu-
ration in the following.

After solving for the unknown reference confguration,
the following discrete nodal position is found. Table 4
presents the result for the linear truss formulation, while
Table 5 relates to the nonlinear formulation.

While the inclusion of the self-weight leads to ad-
ditional forces, it infuences the setup of the solution
matrix Ce, too. Te necessary changes to Ce are discussed
in Section 3.2.3, especially in equation (39). While, in
some cases, it is also possible to fnd a solution for the
self-weight problem employing the original matrix from
equations (27) or (32), a lower convergence rate is
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Figure 12: Convergence of the 3D frame system.
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Figure 13: Unknown and known confguration of a 3D bridge structure. Te red arrow demonstrates the force vector [0, − 800, 0]N.
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expected. Tis behavior is visualized in Figure 20, where
the same problem is solved twice. Ones, using the original
matrix from equation (30) for linear trusses and equation
(29) for nonlinear trusses (here named “incomplete,” due
to its lack of necessary terms) and again with the complete
matrix from equation (41). Te latter equation includes
all derivatives of the new residual vector, containing the
self-weight loads dependent on the unknown reference
confguration. Te large diferences in convergence rates
can be seen in Figure 20, proving the correct derivation
and implementation of the necessary additional deriva-
tive terms.

4.7. Diferent Hyperelastic Material Laws. To discuss the
infuence of the three diferent hyperelastic material laws in-
troduced in Section 2.1, a 2D truss system is investigated, as
depicted in Figure 21. Te Young’s modulus is always E �

1e6N/m2, and the cross section isA � 1e–2m2. While the St.
Venant-Kirchhof law and the Neo-Hookean law do not need
further material parameters, β1 � 10, β2 � 0 is assigned to the
Ogden law. Only the nonlinear truss formulation can be ap-
plied in conjunction with the nonlinear hyperelastic material
laws. Figure 21 shows the diferent reference confgurations for
each of the material law. All three cases yield the desired aim
confguration when simulated with a standard FEM analysis.
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Figure 14: Bridge confgurations in x − y plane for z � 0.
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Figure 15: Bridge confgurations in x − y plane for z � 1. Te red arrow describes the vertical point load.
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Figure 16: Bridge confgurations in x − z plane for y � 0.
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Figure 17: Bridge confgurations in x − z plane for y � 1.
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Figure 18: Convergence of the 3D bridge system.
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Figure 22 visualizes the convergence rate for each of the
simulations. At least quadratic convergence is observed for
all three cases.

Te solution for the unknown reference confguration
yields the following y-coordinate for the middle node, given
in Table 6.
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Figure 19: Unknown and known confguration of a three-dimensional truss structure, subjected to self-weight. Te red arrow indicates the
normalized gravity direction vector g, acting in the y-direction.

Table 4: Solution of the initially unknown confguration and aim confguration of the 3-bar structure in Figure 19 with linear truss elements.

X Y Z
0.874387790220 − 0.2627503778460 1.9263479975443
x y z
1.0 0.0 2.0

Table 5: Solution of the initially unknown confguration and aim confguration of the 3-bar structure in Figure 19 with nonlinear truss
elements.

X Y Z
0.8431479069299 − 0.3437354017714 1.9298317925520
x y z
1.0 0.0 2.0
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Figure 20: Convergence of the nonlinear self-weight problem, employing either the complete solution matrix Ce from equation 57 or the
incomplete matrix from equation 32, respectively, 43. Both converge to the approximately same solution but show diferent convergence
rates.
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Figure 21: Unknown and known confguration of a 2D nonlinear truss structure. Te three diferent hyperelastic material laws are
compared: St. Venant-Kirchhof, Neo-Hookean, Ogden.

Table 6: Unknown reference confguration and desired aim confguration for various hyperelastic material laws.

St. Venant-Kirchhof Neo-Hookean Ogden (β1 � 10, β2 � 0)

Y 2.0 2.0 2.0
Y 1.3113434128 1.1695200737 1.4055031762
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4.8. TUM Logo—Large Number of Degrees of Freedom.
Finally, to conclude, we present an example with a
larger number of dofs. Te logo of the Technical University
of Munich (TUM) is taken as an inspiration for the following
example. As depicted in Figure 23, the whole structure is
discretized with nonlinear truss elements, using the St.
Venant-Kirchhof material law. Te Young’s modulus is
chosen to be E � 2.069e11N/m2, and the cross section of
each truss isA � 1e–2m2. Supports are introduced on the left

lower side as shown in Figure 23, and the right lower side is
loaded with a y-load of 5e5N on 11 nodes. As all dis-
placements in the global z-direction are fxed, the total
number of 3241 nodes yields ≈ 7e3 dofs.

Figure 24 fnally visualizes the found reference con-
fguration and the desired aim confguration, which co-
incides with the deformed reference structure, obtained by
a standard FEM analysis on the found reference
confguration.
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Figure 22: Convergence of the 2D nonlinear truss structure for diferent hyperelastic material laws.
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Figure 23: Known aim confguration. Te whole model consists of single nonlinear truss elements, as depicted in the blue box. As all
displacements out-of-plane are constrained, a total number of 3241 nodes yield ≈ 7e3 dofs.
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5. Conclusion

In contrast to standard static analyses of structures,
searching for a suitable reference geometry is not as
straightforward. A reformulation of the structural force
equilibrium equation is necessary. We are changing the
unknowns from the structural displacements to the un-
known reference confguration. Tis change of unknowns
yields a diferent solution matrix, compared to the stifness
matrix of standard static analyses. Including load cases,
which depend on the reference confguration (such as self-
weight), adds additional nonlinear terms to the problem
statement. Tis work presents the described problem
reformulation in terms of unknowns for geometrically
nonlinear truss elements combined with nonlinear
hyperelastic material laws. Additionally, simplifcations to
linear truss formulations are given, ofering a wide range of
detailed derivations. To solve the newly obtained nonlinear
system of equations, we propose the gradient-based
Newton-Raphson solution scheme. Consequently, the
preceding sections discuss and present arising system de-
rivatives in great detail. Every part of each necessary so-
lution matrix is derived and consequently given.
Additionally, we published everything in a freely accessible
GitHub repository [28]. While all system matrices are
available, each presented example is added to the repository
and thus freely available.

Te derivation and implementation are checked by
various two- and three-dimensional test cases, ranging
from small systems to larger, more complex structures. Te
solution scheme herein, including all system matrices, can
now be used to analyze workshop geometries for truss
structures.
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FEM: Finite element method
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