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Support vector regression (SVR) has been applied to the prediction of mechanical properties of concrete, but the selection of its
hyperparameters has been a key factor affecting the prediction accuracy. To this end, hybrid machine learning combines the SVR
model and grid search (GS), namely, the GS-SVR model was proposed to predict the compressive strength of concrete and
sensitivity analysis in this work.*e hybrid model was trained and tested on a total of 98 datasets retrieved from literature, and the
model performance was compared with the original SVR model under the same datasets. *e obtained results in terms of R of
0.981, MSE of 3.44, RMSE of 1.85, MAE of 1.17, and MAPE of 0.05 demonstrate that the GS-SVR model proposed can be a
candidate method for compressive strength prediction in subsequent related studies. Additionally, a graphical user interface
(GUI) was developed to conveniently provide some initial estimates of the outcomes before performing extensive laboratory or
fieldwork. Finally, the effect of each variable on the compressive strength in a random environment was analyzed.

1. Introduction

As the most consumedmaterial in the construction industry,
cement has brought great convenience to the construction
industry. But the bad news is that it also puts enormous
pressure on the environment. Since the production and
utilization of cement are accompanied by a large amount of
greenhouse gas emissions, many scholars have started to
focus on research related to mineral admixtures that can be
used to replace cement [1–5]. Among them, the use of fly ash
as an auxiliary cementitious material for the production of a
large amount of fly ash concrete is one of the important ways
to reduce environmental pollution and realize the re-
sourcefulness of fly ash. Moreover, it is also an effective
means for concrete producers to enhance and improve the
performance of concrete in all aspects, reduce the use of
cement, and lower the cost of concrete [6, 7]. *e incor-
poration of fly ash not only ensures the quality of concrete
and reduces the cost of manufacturing concrete but also
improves the compatibility, durability, and strength, thus

becoming the most widely used alternative and receiving
great attention [8].

*e importance of concrete materials for the con-
struction industry needs no more introduction [9–11].
Concrete is used as a constructionmaterial worldwide due to
its various properties such as strength, durability, stiffness,
and fire resistance. Among these properties, compressive
strength is considered to be the most important one because
it seriously affects the safety and durability of concrete
members. Understanding the early behavior of concrete
allows appropriate measures to be taken to avoid problems
such as cracking and deformation of concrete members,
formwork failure, and rework. In addition, early strength
prediction and monitoring are important for assessing
construction safety, determining structural maturity, and
predicting later strength development. *e main reason for
different compressive strength values of concrete is that
concrete is a nonhomogeneous material consisting of
binders, aggregates, water, and admixtures. In such a
complex mix, it is difficult to find or predict the compressive
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strength of concrete accurately. *e compressive strength of
concrete can be assessed in the laboratory by crushing a
standard size cylinder or cube. However, such laboratory
tests are supposed to be inefficient and uneconomical, as well
as labor-intensive and time-consuming. Traditional
methods of concrete strength prediction are mainly based on
a statistical analysis of linear or nonlinear regression
equations, but obtaining accurate equations is difficult and
requires a great deal of skill and experience. Due to the large
number of concrete ingredients, it seems difficult to establish
an explicit equation between the compressive strength and
each ingredient as a way to predict its compressive strength.

To address these issues, machine learning techniques are
used to predict the compressive strength of concrete. In fact,
with the development of artificial intelligence, various
machine learning algorithms such as artificial neural net-
work (ANN), support vector machines (SVM), random
forest, and extreme learning machine (ELM) have been
applied to predict the mechanical properties of concrete
[12–23]. Ly et al. [24] employed an optimal deep neural
network model on a database of 223 experimental data to
predict the 28 days compressive strength of rubber concrete
and achieved a high prediction accuracy of R� 0.9874. Han
et al. [25] utilized an optimized random forest approach on
1030 data samples collected from published literature to
predict the compressive strength of high-performance
concrete. Furqan et al. [26] used the ANN, SVM, and gene
expression programming (GEP) on 300 datasets to predict
the compressive strength of self-compacting concrete.
Zhang et al. [27] employed nine machine learning models to
predict the compressive strength of concrete at the age of 7
days and found that the nonlinear models had better pre-
dictive performance than the linear models. Khoa et al. [28]
employed deep neural networks (DNNs) and ResNet models
for compressive strength prediction of green fly ash-based
geopolymer concrete. *e results showed that ResNet is
superior and indicated that these two machine learning
methods can be useful for the mixed design of geopolymer
concrete. From the published studies, it can be found that
these machine learning algorithms outperform traditional
empirical formulations by enabling the capture andmapping
of multidimensional nonlinear relationships. It is possible to
extract unknown relationships and data information be-
tween input and output variables [29].

However, these models also have limitations, and many
models require parameter tuning to get better performance.
For support vector regression (SVR), the selection of
hyperparameters has a great impact on the accuracy of the

prediction results. In other words, the prediction accuracy of
a single SVR model is limited. To better understand and
apply the SVR method, further exploration is still needed in
this area using different datasets and optimization algo-
rithms. For this reason, this study aims to propose a hybrid
machine learning that combines the SVR model and grid
search (GS), namely, the GS-SVR model, to achieve an
accurate prediction of the compressive strength of fly ash
concrete. Based on the model, the effect of random variation
of individual variables on compressive strength is investi-
gated as a reference and guide for concrete mix design and
strength prediction.

2. Methodology

2.1. Support VectorRegression. *e objective of the SVR is to
find a linear regression equation that fits all sample points
and minimizes the total variance of the sample points from
this regression hyperplane. *ere is a sample training set
E � (xi, yi)|i � 1, 2, . . . n , xi ∈ Rn, yi ∈ R. A function f (xi)
is probed on Rn, such that yi � f (xi), and there is always a
corresponding y-value for any input x. Such a function f (xi)
is called a regression function, and f (xi) can be described as
follows.

f xi(  � ω · ϕ xi(  + b, (1)

where ω ∈ Rn is the weight vector, ϕ(xi) is a nonlinear
mapping which serves to map the data from the space Rn to
the higher feature space, and b is the bias. Equation (1) can be
fitted to all sample points at precision ε.

yi − ω · ϕ xi(  + b 


≤ ε, i � 1, 2, . . . , n. (2)

Since there is a certain fitting error, the slack variables
(ξi, ξi
∗) and the penalty parameter C are introduced. *e

regression fitting problem is changed to an optimization
problem.

min R ω, ξi, ξ
∗
i( (  �

1
2
ω · ω + C 

n

i�1
ξi + ξ∗i( ,

s.t.

yi − ω · ϕ xi(  + b ≤ ε + ξi,

ω · ϕ xi(  + b − yi ≤ ε + ξ∗i ,

ξi, ξ
∗
i ≥ 0.
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(3)

Using Lagrange multipliers for equation (3), the
Lagrange function is introduced to obtain its dual form.
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(4)

*e core of optimization at this point is to first determine
the feature space and find the flattest function in that space
that satisfies the conditions and then use that function to
solve the nonlinear problem. For this reason, the kernel
function K(xi, xj), K(xi, xj) � ϕ(xi) · ϕ(xj) is introduced.
*e regression fitting function at this point is

f xi(  � 

n

i,j�1
αi − α∗i( K xi, xj  + b. (5)

*ere are many choices of kernel functions, and the
commonly used RBF function (Figure 1) is chosen in this
study [30].

2.2. Grid Search Method. It is well known that the identi-
fication results depend heavily on the selection of hyper-
parameters of the SVR model. Since the parameters are
highly nonlinear, a large number of experiments are often
required to determine the combination of parameters, such
as the penalty parameter C and the kernel parameter g.
Although Lin et al. [31, 32] have done much extensive re-
search to simplify the application of SVM, such as proposing
LIBSVM, the selection of parameters C and g still depends
on experience. *erefore, there is an urgent need to im-
plement automatic tuning of parameters to obtain the op-
timal value once the parameters are entered. *e grid search
(GS) method can solve these problems. *e GS method is to
computationally evaluate the impact of each parameter
combination on themodel performance by iterating through
all the candidate parameter choices in a loop to obtain the
optimal combination of hyperparameters [33]. *e flow-
chart of parameter selection is shown in Figure 2.

3. Dataset Description

3.1. Input andOutputVariables. In this study, 98 sets of data
were retrieved from the literature. Each dataset consisted of
six constituents (cement, fly ash, water, super, plasticizer,
coarse aggregate, and fine aggregate) and age as input
variables and the compressive strength as output variable.
*e distribution of the input and output variables is shown
in Figure 3, and the statistical characteristics of these var-
iables are given in Table 1. It can be seen that the compressive
strength varies greatly for different combinations of input
variables. Additionally, Pearson correlation coefficients
between input and output variables were plotted, as shown

in Figure 4. Within the current dataset, linear correlation
between any of the input and output variables is weak, which
indicates a complex nonlinear relationship between com-
pressive strength and these input parameters. *erefore, the
relationship between compressive strength and these pa-
rameters is difficult to reflect by an explicit equation.

3.2. Performance Criteria. To describe and compare the
performance of the models, five evaluation metrics, linear
correlation coefficient (R), mean squared error (MSE), mean
root error (RMSE), mean absolute percentage error
(MAPE), andmean absolute error (MAPE), were introduced
[34]. *ese metrics are defined as follows.
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(6)

where n is the number of samples, ye is the experimental
value of compressive strength, and yp is the predicted value.
When R is closer to 1 or the other four error indicators are
closer to 0, the prediction performance of themodel is better.

4. Model Performance

Initially, GS is used for the selection of hyperparameters in
the SVR. For the GS-SVR model, C and g are searched in an
exponential grid of [2−8, 28] with step 20.1. *e evolution of
the parameters is shown in Figure 5. *e model is trained
using 10-fold cross-validation.
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To highlight the superiority of the proposed method in
this study, the original SVR model and GS-SVR model were
performed on the same training and test set. *e model
results are shown in Figure 6. It can be clearly observed that
compared with the SVR model, the GS-SVR model results
have a closer distribution of data points along the diagonal,
indicating that the predicted values match better with the
experimental values, and the correlation coefficient R ex-
ceeds 0.98 for both the training and test sets.

For comparison and evaluation purposes, Figure 7 shows
the predicted and experimental values for the training and
test sets in more detail. At each sample point, the predicted
values agree well with the experimental values, demon-
strating the accuracy and effectiveness of the GS-SVR model

in capturing the complex nonlinear relationships between
the seven input variables and the compressive strength. *e
error metrics for model training and test are shown in
Figure 8. It can be clearly observed from both sets that the
four error indicators of the GS-SVR model are smaller,
further validating the accuracy and generalization capability
of the proposed GS-SVR model.

5. Sensitivity Analysis

*e model results in Section 4 show that the compressive
strength depends on the input vector consisting of six
ingredients and age. However, these variables have al-
most no deterministic values in a stochastic

Y

X

Gaussian kernel

Figure 1: Schematic diagram of support vector machine and Gaussian kernel.
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Figure 2: Flowchart of the SVR model using the GS method and cross-validation.
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Figure 3: Distribution of input and output variables.
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environment. *is uncertainty may cause the deviation
of the predicted and actual values of the concrete
compressive strength. *erefore, this section focuses on
the effect of the random variation degree of each input
variable on the compressive strength. According to the
statistical characteristics of the dataset given in Table 1, a
set of input vectors with deterministic configurations is

given in Table 2. *e input variables are assumed to be at
three different values of degree of stochasticity
S0 � (0.05, 0.1, 0.15). In each stochastic setting, 104
samples were generated using MATLAB. To quantify and
compare the degree of influence on the output variable,
the sensitivity of the random input to the compressive
strength is defined as follows [35, 36].

Table 1: Statistical characteristics of variables.

Cement Fly ash Water Super plasticizer Coarse aggregate Fine aggregate Age Compressive
strength

Training set

Unit kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 d MPa
Count 78 78 78 78 78 78 78 78

Maximum 376 163.3 216.7 18 1118 905.4 90 72.11
Minimum 136.1 92.1 141.1 0 801 700 3 9.49

Standard deviation 54.22 9.68 18.12 4.65 67.60 44.70 29.72 13.37
Mean 243.95 123.54 177.77 6.46 1010.62 800.34 34.06 31.85

Skewness 0.25 −0.05 −0.18 −0.07 −0.97 0.63 0.97 0.63
Kurtosis −0.75 9.44 −0.81 −0.88 0.79 0.23 −0.40 0.02

Test set

Count 20 20 20 20 20 20 20 20
Maximum 349 168.3 220.5 16.1 1111.6 856.5 90 41.64
Minimum 144 95.7 158.2 0 801.1 687 3 9.55

Standard deviation 59.46 11.81 17.50 5.79 75.95 43.85 25.71 9.53
Mean 231.28 125.19 182.27 5.77 969.55 771.99 32.70 25.49

Skewness 0.46 1.78 0.51 0.34 −0.29 −0.17 1.52 0.21
Kurtosis −0.80 10.57 −0.11 −1.47 −0.05 −0.73 1.65 −1.20
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Figure 4: Correlation coefficient of the dataset.
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Figure 6: Correlation between predicted and experimental values of two models. (a) SVR model. (b) GS-SVR model.
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CV �
σ
μ

, (7)

where σ and μ are the standard deviation and mean values of
the compressive strength, respectively. *e distribution of

compressive strength for the three randomness settings is
shown in Figure 9.

As the randomness S0 increases, the sensitivity of
compressive strength for the three cases is higher. Addi-
tionally, among the seven variables, fly ash and coarse
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Table 2: Deterministic values of configuration parameters.

Variable Unit Value
Cement kg/m3 230
Fly ash kg/m3 125
Water kg/m3 180
Superplasticizer kg/m3 6
Coarse aggregate kg/m3 1000
Fine aggregate kg/m3 800
Age d 28
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aggregate resulted in a more discrete distribution of pre-
dicted compressive strength values, where fly ash has the
greatest influence on the predicted uncertainty of com-
pressive strength values. *is insight might also be observed
in Figure 9(d). Designers should take more attention to the
design of mix design and compressive strength prediction of
concrete with fly ash admixture in stochastic environments.

6. GS-SVR Model-Based Interactive Graphical
User Interface

Nowadays, structural designers and engineers prefer to
develop more robust and user-friendly software to gain
wider applicability. In fact, to ensure that the model de-
veloped in this study is useful and practical and for ease of
use, a graphical user interface (GUI) was compiled using
MATLAB as shown in Figure 10. *e whole interface is

divided into two main parts: the optimization of hyper-
parameters and the prediction of output results with known
input parameters. *e operation of the GUI can be obtained
by clicking on the Help menu, and the whole process
consists of four main steps.

Step 1. Click the Initialize setting button to get the default
values of the parameters; these values can also be modified
manually.

Step 2. Click the Optimization button to obtain the optimal
values of parameters C and g

Step 3. Manually enter each input parameter

Step 4. Click the Predict button to get the final output value
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Figure 9: Distribution of the predicted values of compressive strength at different random degrees. (a) S0 � 0.05. (b) S0 � 0.1. (c) S0 � 0.15.
(d) Sensitivity.
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Finally, the compressive strength of fly ash concrete is
displayed directly by clicking the Predict button. *is GUI
was developed mainly for the dataset used in this study, and
future optimization of the user interface such as adding new
datasets and other influencing parameters can be considered
to make the model predictions more accurate.

7. Conclusions

In this work, a hybrid machine learning model GS-SVR was
employed to predict the compressive strength of concrete
with fly ash admixture and quantity the sensitivity of the
compressive strength in the stochastic environment. *e
main findings are as follows.

(1) *e proposed GS-SVR model can accurately capture
the complex nonlinear relationship between the
seven input parameters and the compressive strength
of concrete with an accuracy R of over 98% in both
the training and test phases

(2) From the performance criteria, the prediction per-
formance of the proposedmodel is better than that of
the original SVR model, which is a promising can-
didate for evaluating the compressive strength of fly
ash concrete

(3) In the stochastic environment, for the dataset used in
this study, the compressive strength of concrete with
fly ash admixture is most sensitive to fly ash, followed
by the coarse aggregate, and the sensitivity to the
other five input variables is weak.

(4) As the randomness of variables increases, the dis-
tribution range of compressive strength becomes

wider and the dispersion becomes larger, and de-
signers and engineers should pay more attention to
the effect of random variation of fly ash and coarse
aggregate on strength uncertainty.

(5) *is study provides a newGUI that can be easily used
to predict the compressive strength of fly ash con-
crete. *is tool has been proven to be very successful,
exhibiting very reliable predictions. Otherwise, it is
idealistic to have some initial estimates of the out-
comes before performing any extensive laboratory
work or fieldwork.

*is work also exhibits several limitations that need to be
investigated in the future. First, the dataset used in this study
is not large enough, and the effects of aggregate size and
water reducing agent type on model prediction accuracy are
not studied due to the lack of the dataset. Second, other
machine learning algorithms or hybrid models can also be
developed appropriately if higher prediction accuracy can be
obtained. Finally, the current GUI is relatively simple and
rough. As new datasets are added, the model needs to be
retrained, and the GUI needs to be further updated and
improved.
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