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Probabilistic seismic demand model (PSDM) is one of the critical components of performance-based earthquake engineering
frameworks. (e aim of this study is to propose a procedure to generate PSDMs for a typical regular continuous-girder bridge
subjected to far and near-fault ground motions (GMs) utilizing machine-learning methods. A series of nonlinear time history
analyses (NTHAs) is carried out to calculate the damage caused by the far and near-fault GMs for four different site conditions,
and 21 seismic intensity measures (IMs) are considered. Subsequently, PSDMs are established for the IMs and engineering
demand parameters based on the existing NTHA data using machine-learning methods, which include linear regression, Bayesian
regression (BR), and a tree-based model. (e results indicated that random forest (RF) is the most suitable model to predict the
longitudinal and transverse curvature at the bottom of the four piers from the coefficients of determination. More specifically, the
relative importance of each parameter in the model is evaluated, and peak ground velocity (PGV), peak spectral velocity (PSV),
Arias intensity (AI), and Fajfar intensity (FI) are found to be the critical factors for the RF-based PSDM. Finally, all of these
parameters, except AI, are correlated with velocity.(e research results explore a newmethod for establishing the seismic demand
model of continuous-girder bridges, which can provide suggestions for seismic damage prediction and seismic insurance
risk evaluation.

1. Introduction

Recent earthquakes have highlighted that continuous girder
bridges, as key components of transportation networks, are
one of the most vulnerable infrastructure components [1, 2].
As a key step in performance-based seismic design (PBSD)
[3, 4], probabilistic seismic demand model provides a means
to describe probabilistically the relationships between seis-
mic intensity measures (IMs) and engineering demand
parameters for bridges subjected to potential earthquakes.

Several studies investigated seismic demand models for
continuous girder bridges in recent years. Mackie et al. [5, 6]
established a PSDM for columns of California highway
bridges using nonlinear time history analysis and incre-
mental dynamic analysis. Nielson et al. [7, 8] established
PSDMs for columns, bearings, and abutments by analyzing
the seismic fragility curves of typical bridges in the central

and southeastern United States. Padgett et al. [9] investi-
gated the PSDMs for a class of retrofitted multispan con-
tinuous concrete girder bridges using two suites of synthetic
GMs. Pan et al. [10] focused on multispan simply supported
steel highway bridges in New York, USA, and established
PSDMs for columns and bearings based on nonlinear time
history analysis. Pan et al. [11] used the demand/capacity
ratio as a variable and adopted quadratic instead of linear
regression model to predict the demand, while analyzing the
fragility of bridges in New York, USA. Padgett et al. [12]
proposed criteria, such as efficiency, practicality, proficiency,
sufficiency, and hazard computability, to select the optimal
IMs for highway bridges. Zheng et al. [13] established
PSDMs for columns, bearings, and abutments by analyzing
the seismic fragility curves of typical simply supported girder
bridges in Wenchuan, China. (e results showed that peak
ground acceleration and engineering demand parameters of
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components were not ideal in logarithmic space. Ma et al.
[14] compared the near-fault damage mechanism of con-
tinuous bridges with far-fault earthquakes and established a
PSDM using an intensity parameter. (e results showed that
Housner intensity had the best correlation with the bridge
pier drift ratio. (e strategy currently employed to establish
PSDMs for continuous girder bridges is based on linear
regression utilizing only a single IM and engineering de-
mand parameters. However, a single IM cannot account for
all relevant characteristics of a ground motion. (erefore, it
is essential to include more IMs to improve the capability of
regression models to fit data. Several methods have been
proposed to improve the outcomes of the evaluation. Jiang
et al. [15] investigated the Optimal IMs of PSDMs for
isolated bridges subjected to pulse-like GMs. Similarly,
Wang et al. [16] proposed a multidimensional fragility
evaluation methodology considering multiple performance
limit states and seismic demand parameters, indicating that
the uncertainty and dependence between seismic demand
parameters are dispensable in the fragility analysis process.
Taking the dependence of the seismic demands on ground
motion characteristics and the prevailing uncertainties into
consideration, Huang et al. [17] constructed the probabilistic
demand models for reinforced concrete highway bridges
with one single-column bent.

(e prevalence of machine learning (ML) methods is
attributed to their high accuracy and efficiency. Compared to
the traditional linear regression, ML methods have advan-
tages for analysis complex and uncertain problems, facili-
tating decision-making, and propagating [18]. However, the
application of ML methods to PSDMs of regular continuous
girder bridges with multiple IMs has rarely been investigated
in the past, which provides the motivation for the present
study. (is paper proposes a general procedure to establish
PSDMs for continuous girder bridges based on ML models.
A series of NTHAs were performed on a bridge finite ele-
ment model in OpenSees, and 21 seismic IMs were con-
sidered. Various ML models, such as linear regression,
Bayesian regression, and tree-based model were used to
establish a PSDM for the continuous girder bridge and
compared to the conventional linear regressionmodel. From
the comparison, random forest (RF) was found to be the
most suitable model, and the relative importance of each
input IM was elucidated.

2. Overview of ML Regression Methods

ML is an important branch of artificial intelligence. It is an
approach to optimize the performance of a computational
process using available data or previous experience. Various
ML regression methods, shown in Figure 1, such as linear
regression, BR, and tree-based models [19] will be used to
establish a PSDM for continuous girder bridges in this paper.

2.1. Linear Regression. Linear regression uses a linear
function to fit the data based on the mean square error
(MSE) between the observed and the predicted values to
calculate the penalty function. It adopts the gradient descent

method to find a set of weights to minimize the MSE. A
linear regression model is established by minimizing the
MSE. (e model [19] takes the following form:

ytruei
� ypredicti ω, xi(  + e,

ypredicti ω, xi(  � ω0 + ω1xi1 + · · · + ωnxin,
(1)

where ω � [ω1,ω2, . . . ,ωn]T is the regression coefficients
vector, xi � [xi1, xi2, . . . , xin]T is the ith input variables
vector, ytruei

is the ith observed response, ypredicti is the ith

predicted response, and e is the error term.
Lasso regression (LR) and ridge regression (RR) add L1

and L2 norm regularization terms, respectively, to the
standard linear regression penalty function. For LR, the
penalty function [19] becomes

f(ω) � 
m

i�1
ytruei

− xT
i ω 

2
+ λ

n

i�1
ωi


, (2)

while the penalty function [19] for RR can be written as
follows:
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(e regularization terms in LR and RR are different,
which lead to different results.

Elastic net (EN) is a linear regression model utilizing
both L1 and L2 norm regularization terms. (e penalty
function [19] of EN is as follows:
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Support vector regression (SVR) is another linear re-
gression model based on the concept of support vector
machine (SVM). Given a training dataset for binary clas-
sification, SVM constructs a hyperplane to divide the data
into two classes, where the term ‘support vector’ refers to the
data point nearest to the hyperplane. (e hyperplane is
chosen to maximize its distance to the support vectors, i.e.,
the classification margin is maximized by SVM. Similar to
support vector machine, SVR finds a hyperplane as the
regression result, such that the distance between the sample
points farthest from the hyperplane is the shortest. (e
optimization problem [19] to find the regression hyperplane
can be written as follows:

minw,b

1
2
‖ω‖

2
,

s.t. ytruei
− ωxi+b( 



≤ ε, ∀i,
(5)

where ε is the hyperparameter that determines the width of
the interval boundary.

2.2. Bayesian Regression. BR is a linear regression model
solved by statistical Bayesian inference. BR regards the
parameters of a linear model as random variables and
calculates the posterior estimates using the prior values of
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the model parameters. Compared to other models, BR can
avoid under- and overfitting caused by choosing too simple
or too complex a model. At the same time, it can make full
use of available data, so as to avoid data underutilization. In
order to obtain a fully probabilistic BRmodel, the output y is
assumed to be Gaussian distributed around Xω [18]:

P(y|X,ω, α) � N(y|Xω, α), (6)

where α is treated as a random variable that is to be estimated
from the data, ω is the normal distribution weight, and X is
the input data.

BR can be used for parameter regularization during the
prediction stage. (e regularization parameters are not se-
lected automatically, but rather manually adjusted. In
Bayesian ridge regression (BRR), we do not manually adjust
the regularization parameters, but let it be estimated from
the data as a variable. (e BRR assumes that the prior of the
coefficient ω follows a spherical Gaussian distribution [18]:

P(ω|λ) � N ω|0, λ−1
IP , (7)

where the priors over α and λ are chosen from a gamma
distributions, λ controls the variance of the Gaussian dis-
tribution, and IP is the p-dimensional identity matrix.

Automatic relevance determination (ARD), also known
as sparse Bayesian learning, is very similar to BRR, but it will
typically lead to sparser weights ω. Specifically, it weakens
the assumption that the Gaussian distribution is spherical
and instead assumes a different a priori hypothesis for ω,
which is an elliptical Gaussian distribution for noncorrelated
variables [18]:

P(ω|λ) � N ω|0, A
−1

 , (8)

where diag(A) � λ � λ1, . . . , λp .

2.3. Tree-Based Models. Tree-based models have the ad-
vantages of strong interpretability, convenience, and high
accuracy. Regression decision tree mainly refers to the
classification and regression tree algorithm. (e values
output by internal nodes are “yes” or “no,” which con-
stitute a binary tree structure. Regression tree divides the
feature space into several units, each with a specific
output. Because each node outputs “yes” or “no,” the
boundary is parallel to the coordinate axis. For the test
data, the corresponding output can be obtained as long as
we classify it into a unit according to the division of the
tree nodes.

RF represents an improvement over bagged trees, which
mainly reduces the correlation of multiple trees. In the
training stage, RF uses bootstrap sampling to collect
multiple different subtraining data sets from the input
training data set to train multiple different decision trees in
turn. In the prediction stage, the prediction results of
multiple decision trees in the RF are averaged to obtain the
final results.

Gradient boosting decision tree (GBDT), which adds
the gradient boosting method to the ordinary decision
tree, evolves from a single decision tree to multiple de-
cision trees to gradually improve the learning accuracy.
Adaptive boosting (AdaBoost) [20] strengthens the im-
portance of the samples wrongly assigned by the previous
application of the basic classifier and uses all the weighted
samples to retrain the basic classifier. At the same time, a
new weak classifier is added in each round until a pre-
determined small error rate or maximum number of it-
erations are reached. Light gradient boosting machine
(LightGBM) [20] is a model based on decision tree al-
gorithms, in which the model is generated leafwise rather
than depthwise (as in other decision tree-based methods).
Such a leafwise generation leads to more complex but also
more accurate trees.

3. Example Bridge and Its Modeling

A three-span reinforced concrete continuous girder bridge in
China was used to investigate the capacity of the proposed
ML-based demand models. (e girder had a box cross sec-
tion, 1.6m high, and 10.5m wide. Each of the two piers
consisted of two solid circular columns with a diameter of
1m. (e diameter of longitudinal reinforcements was 25mm
with a total of 20 reinforcement bars arranged at equal in-
tervals. (e diameter of stirrups was 16mm, and the distance
between stirrups was 10 cm. Pot rubber bearings were used at
the bent beams and abutments as girder supports.

A 3D finite element model of the bridge was constructed
in the OpenSees platform [21] (Figure 2). (e girder was
simulated using the elastic beam-column elements, as it
usually remained in the elastic state under earthquake ex-
citation. Nonlinear-beam-column elements were adopted to
simulate the piers due to expectation that plastic hinges will
develop in them. (e cross sections were fiber-defined cross
sections composed of concrete fibers and steel fibers.
Concrete02 material model was used for both the confined
and unconfined concrete, but different material parameters
were assumed for the two. Reinforcing-steel material model

Regression used machine
learning methods

Linear regression Bayesian regression Tree-based model

Random forest
Gradient boosting decision tree

Adaptive Boosting
Light Gradient Boosting Machine

Bayesian ridge regression
Automatic relevance determination

Ridge regression
Lasso regression

Elastic net
Support vector regression

Figure 1: Some commonly used ML regression methods.
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was used for longitudinal reinforcement. (e bridge bear-
ings were modeled with flat slider bearing elements. Hy-
perbolic gap model proposed by Wilson and Elgamal [22]
was used to simulate the nonlinear deformation charac-
teristics and resistance of abutments. In order to simplify the
model and reduce the calculation time, soil-structure in-
teraction was ignored.

4. Ground Motion Selection

Ground motion is a time varying process, whose main
characteristics are the amplitude, spectrum, and duration,
which are referred to as the three key characteristics of an
earthquake. In recent years, earthquake engineering re-
searchers have proposed many ground motion parameters
to describe the intensity of ground motion. Different IMs
correlate differently with the seismic response of the same
bridge structure. (erefore, it is necessary to use multiple
IMs to evaluate the seismic response of bridges. (e current
study used the suite of GMs developed by Baker et al. [23],
which was established as part of the PEER Transportation
Research Program for the seismic risk assessment of in-
frastructure systems in California. Four sets of GMs were
selected (set 1: M� 6, R� 25 km, soil site; set 2: M� 7,
R� 10 km, rock site; set 3: M� 7, R� 10 km, soil site; set 4:
pulse-like GMs). Figure 3 presents the response spectra for
each groundmotion set. A total of 21 IMs were considered as
given in Table 1. In this paper, the bridge was excited in the
longitudinal direction.

5. Probabilistic Seismic Demand Models

In this study, the horizontal (longitudinal and transverse)
components of each ground motion [23] excited the
bridge model in the longitudinal direction, and the
seismic responses were calculated. (e seismic responses
refer to longitudinal pier curvatures (Figure 2) (at the
bottom of pier #1 (Lcur1), pier #2 (Lcur2), pier #3 (Lcur3),
and pier #4 (Lcur4)) and transverse pier curvatures (at the
bottom of pier #1 (Tcur1), pier #2 (Tcur2), pier #3(Tcur3),
and pier #4 (Tcur4)). In this study, the IMs and observed
responses were transformed by taking their natural
logarithm.

As a key step in PBSD, the PSDMs are established to
describe the probabilistic relationships between engineering
demand parameters and IMs. Previous studies on PSDMs
mainly used the model proposed by Cornell et al. [31].
Cornell et al. [31] assumed that the median seismic demand
(Sd) and the intensity parameter (IM) satisfy the following
exponential relationship:

Sd � a(IM)
b
, (9)

where a and b are the regression coefficients. Taking natural
logarithm of both sides of (5) yields:

ln Sd(  � ln a + b ln(IM). (10)

In the present work, the developed model has been
assessed using the coefficient of determination (R2):

Rigid Link

Abutment
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x
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A A
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Figure 2: Numerical model of example bridge.
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Figure 3: Response spectra for each ground motion set.

Table 1: Description of IMs.

IM Full name Definition Unit
PGA Peak ground acceleration PGA � max|€ug(t)| g

PGV Peak ground velocity PGV � max| _ug(t)| cm/sec
PGD Peak ground displacement PGD � max|ug(t)| cm
(vmax/amax) Peak velocity and acceleration ratio (vmax/amax) � (max| _ug(t)|/max|€ug(t)|) sec
(dmax/vmax) Peak displacement and velocity ratio (dmax/vmax) � max|ug(t)|/max| _ug(t)| sec

Arms24 Root-mean-square of acceleration Arms �

����������������

1/ttot 
TD

0 [€ug(t)]2


dt g

Vrms24 Root-mean-square of velocity Vrms �

�����������������

1/ttot 
TD

0 [ _ug(t)]2dt



cm/sec

Drms24 Root-mean-square of displacement Drms �

�����������������

1/ttot 
TD

0 [ug(t)]2dt



cm

TD25 Significant duration TD � t(95%AI) − t(5%AI) sec
AI26 Arias intensity AI � 1/ttot 

TD

0 [ _ug(t)]2dts m/sec

SED Specific energy density SED � 
TD

0 [ _ug(t)]2dt cm2/sec

CAV27 Cumulative absolute velocity CAV � 
TD

0 | _ug(t)|dt cm/sec

CAD28 Cumulative absolute displacement CAD � 
TD
0 |€ug(t)|dt cm

CAI28 Cumulative absolute energy CAD � 
TD
0 |ug(t)|dt cm/sec

PSA Peak spectral acceleration PSA � max(Sa(Ti)) g

PSV Peak spectral velocity PSV � max(Sv(Ti)) cm/sec
PSD Peak spectral displacement PSD � max(Sd(Ti)) cm
Ia29 Compound acceleration-related IM Ia � PGA × TD1/3 g.sec1/3
Iv29 Compound velocity-related IM Iv � PGV2/3 × TD1/3 cm2/3/sec1/3
Id29 Compound displacement-related IM Id � PGD × TD1/3 cm.sec1/3
FI30 Fajfar intensity FI � PGV × TD1/4 cm/sec3/4
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R
2

� 1 −


n
1 ypredicti − ytruei

 
2


n
1 ytrueMean i

− ytrue i
 

2, i ∈ (1, n). (11)

(e larger the R2 value, the better the fitting of the
regression curve to the data.

(e coefficients of determination (R2) for the considered
seismic responses with respect to the 21 IMs listed in Table 1

are summarized in Figure 4(a), and values of R2 greater than
0.7 are shown in Figure 4(b). It can be observed that the PGV
and PSV fit the data better than the other IMs. Figures 5 and
6 present the PSDM results of the seismic responses versus
PGV and PSV. It can be seen that the prediction ability of the
regression model generated by fitting only one IM (PGV or
PSV) required improvement mainly because using PGV or
PSV only cannot guarantee to capture all the main
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Figure 4: Coefficients of determination (R2) for seismic responses with respect to IMs.
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Figure 5: PSDM results for longitudinal (Lcur1, Lcur2, Lcur3, and Lcur4) and transverse (Tcur1., Tcur2,Tcur3, andTcur4) pier curvatures
at pier bottom vs. PGV.
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Figure 6: PSDM results for longitudinal (Lcur1, Lcur2, Lcur3, and Lcur4) and transverse (Tcur1, Tcur2, Tcur3, and Tcur4) pier curvatures
at pier bottom vs. PSV.

Table 2: Coefficients of determination of traditional and various ML demand models.

Methods Lcur1 Tcur1 Lcur2 Tcur2 Lcur3 Tcur3 Lcur4 Tcur4
Traditional method Only PGV 0.81 0.80 0.81 0.79 0.81 0.80 0.80 0.80

Only PSV 0.81 0.81 0.82 0.80 0.82 0.82 0.81 0.82
Linear regression RR 0.86 0.85 0.86 0.85 0.86 0.86 0.86 0.86

LR 0.47 0.31 0.46 0.31 0.46 0.40 0.44 0.40
EN 0.65 0.57 0.63 0.59 0.66 0.61 0.65 0.62
SVR 0.88 0.87 0.88 0.87 0.88 0.87 0.87 0.87

Bayesian regression BRR 0.86 0.85 0.86 0.86 0.86 0.86 0.85 0.86
ARD 0.85 0.85 0.86 0.85 0.86 0.86 0.86 0.84

Tree-based model RF 0.89 0.88 0.89 0.87 0.88 0.87 0.88 0.88
GBDT 0.88 0.86 0.89 0.86 0.88 0.86 0.87 0.87

AdaBoost 0.87 0.86 0.87 0.86 0.88 0.85 0.87 0.87
LightGBM 0.89 0.86 0.88 0.86 0.88 0.86 0.87 0.85
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Figure 7: Comparison of regression results of traditional and various ML methods.
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characteristics of a ground motion. In order to improve the
ability of the regression models to fit the data and consider
more IMs, ML methods were adopted to establish the
PSDMs in this study.

(e ML methods described in Section 2 were used to
establish the machine-learning-based PSDMs. 90% of the
available data were used to establish the prediction model
(training set), and the remaining 10% to evaluate the
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Figure 8: Relative importance of input parameters in RF model.
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performance of the prediction model (test set). (e parti-
tioning of the entire dataset into the training set and testing
set was random, and the performance of the model on the
testing set was taken as an indication of the performance of
the model on the unknown data. (e ML codes for the
models mentioned in Section 2 were developed using the
open-source Python package scikit-learn [32]. (e perfor-
mance of each ML model was evaluated using the coefficient
of determination (R2) (Table 2). (e maximum values of
each column in Table 2 are marked by bold font. As shown in
Table 2, the results of the tree-based model are better than
those of the linear regression and BR, while the results of the
different tree-based models (RF, GBDT, AdaBoost, and
LightGBM) are close to one another. It can be concluded
from Table 2 that the tree-based models had a higher ac-
curacy than the traditional methods, linear regression, and
BR. It can be seen from Figure 7 that the fitting degree of RF
(green) was closest to the original data (black), which is
consistent with the results listed in Table 2. (us, RF was
deemed to be the most suitable model to establish the PSDM
in this research.

To evaluate how the performance of the RF model is
affected by the input parameters, a further analysis was
carried out to identify the importance of the input pa-
rameters, as shown in Figure 8. (e importance of a feature
[32] was computed as the (normalized) total reduction of the
Gini importance [33] of that feature. (e higher the Gini
importance, the more important the feature. Note that the
sum of all the values above the vertical bars in Figure 8 is
100%. As seen in Figure 8, PGV, PSV, AI, and FI are all
critical factors of the PSDMs, while all other IMs have much
less influence on the demandmodels. It can also be seen that,
based on their definitions, the critical IMs (PGV, PSV, AI,
and FI) are correlated with the velocity except for AI.

6. Conclusions

(e main purpose of this paper was to develop a PSDM to
predict the seismic response of regular continuous girder
bridges based on ML methods. (e efficiency of various ML
regression models, such as lasso regression, ridge regression,
elastic net, supported vector regression, Bayesian ridge re-
gression, automatic relevance determination, random forest,
gradient boosting decision tree, adaptive boosting, and light
gradient boosting machine, for generating of PSDMs for a
regular continuous girder bridge was first evaluated. A three-
dimensional numerical model of a bridge was generated
using OpenSees. A total of 320GMs attributed to four site
conditions were selected to excite the bridge. (e coefficient
of determination (R2) was used to assess the ML models
developed. Several main conclusions are drawn as follows:

(i) PGV and PSV are more appropriate than other IMs
for establishing the PSDMs for the regular con-
tinuous girder bridges subjected to the selected
GMs. However, the machine-learning-based de-
mandmodels utilizing more than one IMs are better
than the traditional demand models based on a
single IM.

(ii) (is paper evaluated three mainstream ML re-
gression methods (linear regression, BR, and tree-
based model), incorporating 10ML models: LR, RR,
EN, SVR, BRR, ARD, RF, GBDT, AdaBoost, and
LGBM. (e tree-based models had a higher accu-
racy than traditional methods, linear regression, and
a significantly improved coefficient of determina-
tion. (e obtained results indicated that RF can be
used for predicting the seismic behavior of regular
continuous girder bridges subjected to far and near-
fault GMs.

(iii) (is study identified the critical factors for the RF-
based PSDMs of the bridge for various engineering
demand parameters. PGV, PSV, AI, and FI were
found to be the critical factors of the RF-based
PSDMs, and they were all correlated with velocity,
except for AI.

Although the findings of this study are based on the case
study of a three-span regular continuous girder bridge in
China, the methodology is applicable to other bridges. As the
accurate probabilistic seismic demand analysis is a common
challenge in performance-based earthquake engineering
frameworks, the proposed approach will help to improve
establishing the PSDMs.
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[5] K. Mackie and B. Stojadinović, “Probabilistic seismic demand
model for California highway bridges,” Journal of Bridge
Engineering, vol. 6, no. 6, pp. 468–481, 2001.

[6] KR. Mackie, Fragility-based Seismic Decision Making for
Highway Overpass Bridges, University of California, Berkeley,
CA, USA, 2004.

[7] BG. Nielson, Analytical Fragility Curves for Highway Bridges
in Moderate Seismic Zones, Georgia Institute of Technology,
Atlanta, GA, USA, 2005.

[8] B. G. Nielson and R. Desroches, “Seismic fragility method-
ology for highway bridges using a component level approach,”
Earthquake Engineering & Structural Dynamics, vol. 36, no. 6,
pp. 823–839, 2007.

[9] J. E. Padgett and R. Desroches, “Methodology for the de-
velopment of analytical fragility curves for retrofitted
bridges,” Earthquake Engineering & Structural Dynamics,
vol. 37, no. 8, pp. 1157–1174, 2010.

[10] Y. Pan, A. K. Agrawal, and M. Ghosn, “Seismic fragility of
continuous steel highway bridges in New York state,” Journal
of Bridge Engineering, vol. 12, no. 6, pp. 689–699, 2007.

[11] Y. Pan, A. K. Agrawal, M. Ghosn, and S. Alampalli, “Seismic
fragility of multispan simply supported steel highway bridges
in New York state. II: fragility analysis, fragility curves, and
fragility surfaces,” Journal of Bridge Engineering, vol. 15, no. 5,
pp. 462–472, 2010.

[12] J. E. Padgett, B. G. Nielson, and R. Desroches, “Selection of
optimal intensity measures in probabilistic seismic demand
models of highway bridge portfolios,” Earthquake Engineering
& Structural Dynamics, vol. 37, no. 5, pp. 711–725, 2010.

[13] K. F. Zheng, L. B. Chen, W. L. Zhuang, and H. S. Ma, “Bridge
vulnerability analysis based on probabilistic seismic demand
models,” Engineering Mechanics, vol. 30, no. 5, pp. 165–171,
2013.

[14] H.-B. Ma, W.-D. Zhuo, D. Lavorato et al., “Probabilistic
seismic response analysis on continuous bridges under near-
fault ground motions,” Iranian Journal of Science and Tech-
nology, Transactions of Civil Engineering, vol. 43, no. 3,
pp. 491–500, 2019.

[15] L. Jiang, J. Zhong, M. He, and W. Yuan, “Optimal seismic
intensity measure selection for isolated bridges under pulse-
like ground motions,” Advances in Civil Engineering,
vol. 2019, Article ID 3858457, 22 pages, 2019.

[16] Q. Wang, Z. Y. Wu, and S. W. Liu, “Multivariate probabilistic
seismic demand model for the bridge multidimensional
fragility analysis,” KSCE Journal of Civil Engineering, vol. 22,
2008.

[17] Q. Huang, P. Gardoni, and S. Hurlebaus, “Probabilistic
seismic demand models and fragility estimates for reinforced
concrete highway bridges with one single-column bent,”
Journal of Engineering Mechanics, vol. 136, no. 11, pp. 1340–
1353, 2010.

[18] M. Mohammed, M. Badruddin Khan, E.. Bashier, and
M.. Bashier, Machine Learning: Algorithms and Applications,
CRC Press, Boca Raton, FL, USA, 2016.

[19] F. Pedregosa, G. Varoquaux, and A. Gramfort, Scikit-learn:
Machine Learning in Python, 2012, https://www.researchgate.
net/publication/305386496_Scikit-Iearn_Machine_learning_
in_python.

[20] T. Hastie, R. Tibshirani, and J. H. Friedman, “(e elements of
statistical learning,” Springer, Elements, vol. 1, no. 3,
pp. 267-268, 2009.

[21] F. McKenna, G. L. Fenves, and M. H. Scott, Open System for
Earthquake Engineering Simulation, Pacific Earthquake En-
gineering Research Center, Berkeley, CA, USA, 2010.

[22] P.Wilson and A. Elgamal, “Large scale measurement of lateral
earth pressure on bridge abutment back-wall subjected to
static and dynamic loading,” in Proceedings of the New
Zealand Workshop on Geotechnical Earthquake Engineering,
Christchurch, New Zealand, January 2006.

[23] J. W. Baker, T. Lin, and S. K. Shahi, New Ground Motion
Selection Procedures and Selected Motions for the PEER
Transportation Research Program, Pacific Earthquake Engi-
neering Research Center, Berkeley, CA, USA, 2011.

[24] S. Kramer, Geotechnical Earthquake Engineering, Prentice-
Hall, Hoboken, NJ, USA, 2008.

[25] TD. Trifunac and AG. Brady, “A study on the duration of
strong earthquake ground motion,” Bulletin of the Seismo-
logical Society of America, vol. 65, no. 3, pp. 581–626, 1975.

[26] A. Arias, “AMeasure of Earthquake Intensity,” Seismic Design
for Nuclear Power Plants, Massachusetts Inst. of Tech. Press,
Cambridge, MA, USA, 1970.

[27] J. W. Reed and R. P. Kassawara, “Criterion for determining
exceedance of the operating basis earthquake,” Nuclear En-
gineering and Design, vol. 123, no. 2, pp. 387–396, 1990.

[28] J. Hu, W. Wu, and L. Xie, “Review and analysis of cumulative
absolute velocity related parameters of ground motion,”
Journal of Earthquake Engineering & Engineering Vibration,
2013, https://www.researchgate.net/publication/288274519_
Review_and_analysis_of_cumulative_absolute_velocity_relat
ed_parameters_of_ground_motion.

[29] R. Riddell and J. E. Garcia, “Hysteretic energy spectrum and
damage control,” Earthquake Engineering & Structural Dy-
namics, vol. 30, no. 12, pp. 1791–1816, 2001.

[30] P. Fajfar, T. Vidic, and M. Fischinger, “A measure of
earthquake motion capacity to damage medium-period
structures,” Soil Dynamics and Earthquake Engineering, vol. 9,
no. 5, pp. 236–242, 1990.

[31] C. A. Cornell, F. Jalayer, and R. O. Hamburger, “(e prob-
abilistic basis for the 2000 SAC/FEMA steel moment frame
guidelines,” Journal of Structural Engineering, vol. 128, no. 4,
2002.

[32] F. Pedregosa, G. Varoquaux, and A. Gramfort, Scikit-learn:
Machine Learning in Python, 2012.

[33] G. Biau and E. Scornet, “A random forest guided tour,” Test,
vol. 25, no. 2, pp. 197–227, 2016.

10 Advances in Civil Engineering

https://www.researchgate.net/publication/305386496_Scikit-Iearn_Machine_learning_in_python
https://www.researchgate.net/publication/305386496_Scikit-Iearn_Machine_learning_in_python
https://www.researchgate.net/publication/305386496_Scikit-Iearn_Machine_learning_in_python
https://www.researchgate.net/publication/288274519_Review_and_analysis_of_cumulative_absolute_velocity_related_parameters_of_ground_motion
https://www.researchgate.net/publication/288274519_Review_and_analysis_of_cumulative_absolute_velocity_related_parameters_of_ground_motion
https://www.researchgate.net/publication/288274519_Review_and_analysis_of_cumulative_absolute_velocity_related_parameters_of_ground_motion

