
Research Article
Soil Deformation around a Cylindrical Cavity under Drained
Conditions: Theoretical Analysis

PierideMabeFogang ,1,2YangLiu ,1 JialeZhao ,1andKevinIgorAzeudaNdonfack 1,2

1School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2Department of Earth Sciences, University of Yaounde I, Yaounde, P.O. Box 812, Cameroon

Correspondence should be addressed to Yang Liu; yangliu@ustb.edu.cn

Received 18 March 2022; Accepted 26 May 2022; Published 29 June 2022

Academic Editor: Paolo S. Valvo

Copyright © 2022 Pieride Mabe Fogang et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

�is paper proposes analytical solutions to the soil deformation around a cylindrical cavity under drained conditions. Analytical
procedures are used to predict the degree of interaction between cavities and ground surface loads based on mathematical
theorems. �e stresses applied at the boundary condition induce the ground motions around the cylindrical cavity wall. Ad-
ditionally, the Airy stresses are obtained throughmathematical derivatives and integrations by combining the Fourier analysis test
with the Navier equations. Next, we established a schematic representation of the horizontal and vertical displacement related to
the corrective shear model to obtain insight into the intensity and directions of ground stresses. �e resulting transformations
include displacement, shear, and deviatoric stresses applied to the cylindrical cavity wall. �ese data can be used as input
parameters for numerical simulations to alternatively solve the groundmass redistribution problems and calibrate the horizontal
stress of drained soil conditions.

1. Introduction

Many countries encourage the construction of underground
structures to limit tra�c and �ooding on the surface. Recent
technological developments allow cavities to be excavated in
soft and rocky soils. �ese structures are usually subjected to
the weight of various loads on the ground surface. Studies
have shown that they cause signi�cant deformation and
displacement in tunnels. Potential ground motions are es-
timated on three consecutive approaches: empirical, ana-
lytical, and numerical simulation (Bao et al. [1]).

Peck [2] and Schmidt [3] proposed an empirical method
on the surface settlement curve to describe the Gaussian
distribution curve in equation (1). However, this method was
not realistic because the measurements were performed in a
single space for a half-space problem.

ST x̃
a, ỹb( ) � S0 max · e − x̃

a( )2/2(i)2( ), (1)

where S0 max is the maximum settlement at the ground
surface, x̃a � i/2(h/i)0.8 is the standard deviation, (i) is the

diameter of the cylindrical cavity, and h is the height of the
cylinder axis. Moreover, the Tresca criterion estimated the
volume of soil settlement to predict soil behavior and then
compared it to in-situ data (Mair and Taylor [4]). When the
volume of the cylindrical cavity moves in compression at the
soil surface, the volume of soil loss is estimated by
ΔvL � λmax/i. �e soil estimation method can be adapted as
a design guide for the initial displacement phase.

Moreover, the proposed analytical solutions are classi-
�ed into four categories: (1) solutions based on complex
variables (Verruijt [5]; Strack and Verruijt [6]; Verruijt and
Booker [7]; Verruijt and Strack [8]; Wang et al. [9]; Fu et al.
[10]; Fu et al. [11]; Zhang et al. [12]; Zeng et al. [13]), (2)
closed-form analytical solution using the virtual image
technique on the line sink (Sagaseta [14]; Verruijt and
Booker [15]; Loganathan and Poulos [16]; Park [17]; Pinto
and Whittle [18]), (3) the solution based on the exact
prediction of the middle continues (Liu [19]; Yang et al.
[20]), and (4) the general solution under the form of the airy
stress function in the cartesian and polar coordinates (Bobet
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[21]; Kooi and Verruijt [22]; Chou and Bobet [23]; Park
[17, 24]; Pinto [25]). )ese analytical solutions focus on the
deformation of soils at the boundary condition of under-
ground structures and are obtained in the context of linear
elasticity. Zou et al. [26] focused on employing elastoplastic
theories of circular tunnels to solve geotechnical engineering
problems.

Currently, several analytical solutions have been pre-
sented for the ground deformation.)ese solutions have also
been derived assuming a conformal radial deformation
model over the cavity cross section (Wang et al. [9]). Next,
the ground deformation can be obtained by imposing
pressure on the boundary condition concentrated toward
the central axis of the cavity.)e resulting analytical formula
considers different stresses but is chosen with varying depths
independently of the Airy stress function. Subsequently, the
results of this method are generally limited to the stress
distribution around the cavity. Lastly, in this paper, the
analytical solution is adopted to deal with the deformation,
displacement, and shear problems around the cylindrical
cavity, focusing on the load-induced motions at the ground
surface.

2. Definition of Problem

)e geometric representation in Figure 1(a) illustrates the
expansion of a cylindrical cavity under drained conditions in
a two-dimensional Cartesian domain (􏽥xa, 􏽥yb), showing an
initial state of stress with r0 the initial radius, r the distance
of the radius from the cavity axis, and 􏽥Pi the internal
pressure. Additionally, at constant static pressure, the cavity
is subjected to four types of stress: horizontal stress (σ􏽥x

a ),
vertical stress (σ

􏽥y
b ), radial stress (σr) , and tangential stress

(σθ). According to Yu and Houlsby [27, 28], the resting soil
coefficient is defined by k0 � 1. As reported by Mo et al. [29],
when the cavity pressure 􏽥pc increases slowly from its initial
value, the radius of the cavity and soil (elastoplastic region)
interface is expanded, respectively, (Figure 1(b)). Con-
cerning the soil surface contact, the unique mechanical
properties of the surface have a significant influence on the
deformation of the soil interface (Jong et al. [30]). In the
drained condition, it is assumed that although the expansion
process of the cylindrical cavity is relatively slow, this may be
the origin of the pore pressure related to the internal
pressure 􏽥pi in the plastic region. )us, the equilibrium
condition in the infinite soil in cylindrical coordinates can be
expressed by the following equation:

zσr

zr
+

zεr

zr
�
σθ − σr

r
, (2)

where zεr/zr is deformation Tensor. At equilibrium,
equation (2) refers to two conditions, one at infinity and the
second at a known value. For values of σr(r) � − 􏽥pi and
σr(∞) � 􏽥p∞ ≈ 0, the internal soil pressure 􏽥pi is considered
positive when the stress fields are variable. )e expansion of
the cylindrical cavity and the elastic force exerted on the soil
surface constitute a stress field related to the deformation, by
definition of Hooke’s law σ(􏽥xa, 􏽥yb) � εE (E is Young’s
modulus).

3. Analytical Solution in an Infinite Elastic Soil

)e equations based on the plane deformation elasticity
theory are represented using the arbitrary functions imposed
by the expansion problems at the boundary condition.When
the expansion is accentuated at the cylindrical cavity wall,
Hooke’s law in all types of soils satisfies the equilibrium
condition of equation (2). 􏽥yb � − (ε􏽥yb /ε􏽥xa ) defines the de-
formation induced by the vertical axial load due to static
pressure. According to Muskhelishvili [31], the evaluation of
deformation problems is a formula consisting of a more
practical method to consider stresses and displacements as
an analytical formulation. Moreover, Verruijt [5] proposes a
complex variable solution to predict the elastic behavior of
soils in a half-plane. )ese solutions are expressed in terms
of two functions (ϕ and ψ) called the “Goursat function”.
)en, using the Cauchy-Goursat harmonic conjugation
formula, the representation of the complex potential of
Goursat functions becomes ϕ � Re 􏽥zcψ(􏽥zc) + 􏽥xa(􏽥zc)􏽮 􏽯 (Re:
real). )e boundary condition is usually expressed in terms
of displacement or stress. Beyond this, by integrating
equation (6), the displacement related to the horizontal and
vertical components imposed by the boundary condition
proposed by Muskhelishvili [31] can be expressed as follows:

2.μ. u􏽥x
a + iu􏽥y

b􏼒 􏼓 � (3 − 4.v).ϕ 􏽥z
c

( 􏼁 − 􏽥z
c dϕ
d􏽥z

c − ψ 􏽥z
c

( 􏼁. (3)

)erefore, the exact solution of the airy function is
represented as follows:F � 1/2 Re(􏽥zcψ(􏽥zc)+􏽮 􏽥xa(􏽥zc))−

ψ(􏽥zc)}.

3.1. Conformal Mapping. According to the Laplacian
equation, the cartesian representation related to the complex
variable methods of the potential transformed
(􏽥zc(􏽥xa, 􏽥yb)⟶ ζ(ξ, η)) is established by the equilibrium
∇2ϕ � 0. )is potential can be rewritten in annular coor-
dinates (Figure 2(b)) as follows:

z
2ϕ

zξ2
+

z
2ϕ

zη2
� 0. (4)

)e cavity (a) in a 􏽥zc− space (Figure 2(a)) is mapped to an
annular region in ζ− space, on a circular ring (ζ � ξ + iη), of
diameter 1 and inner diameter ϖ (Figure 2(b)). )e conformal
mapping between the intermediate geometry and the irregular
geometry is written on the form (Verruijt and Booker [7])
􏽥zc � ω(ζ) � − ig[(1 + ζ)/(1 − ζ)], g � h(1 − ϖ2/1 + ϖ2) is a
constant (h is the depth of the cylindrical cavity) and 􏽥yb � r/h.
It can be shown that ζ � 1, axis 􏽥yb � 0, with inner radius circle
|ζ| � ϖ, which would correspond to the boundary of the
circular cylindrical cavity given by r2 � (􏽥xa)2 + (􏽥yb + h)2.
When the 􏽥zc-space is mapped according to a circular ring in a
ζ-space and bounded by the circles |ζ| � 1 and |ζ| � ϖ (Fig-
ure 2), the conformal mapping can be reproduced on the form:

ζ �
􏽥z

c 1 + ϖ2􏼐 􏼑 + ih 1 − ϖ2􏼐 􏼑

􏽥z
c 1 + ϖ2􏼐 􏼑 − ih 1 − ϖ2􏼐 􏼑

, (5)
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where ϖ � (h/r − 1) +
���
h/r

√
. With the aid of analytic con-

tinuation and conformal mapping techniques, the complex
potentials of the half-plane are expressed in a series form
with some unknown coefficients, which can be determined
by the Fourier expansion method (Dai et al. [32]).

Let f(􏽥zc) be a function admitting a single development
function f(􏽥zc) � 􏽐n∈Ranζn. Taylor series is an excellent way
to start the discussion on the Laurent series. For n � 0, the
general formula Taylor series becomes 􏽐

∞
n�0 a0 ∗ (􏽥xa

− c)0 � a0. )en, by definition of the Laurent series, the two
parameters of the Goursat function can be reformulated as
follows:

ϕ(ζ) � a0 + 􏽘
∞

n�1
an ∗ ζ

n
+ 􏽘
∞

n�1
bn ∗ ζ

− n
, (6)

ψ(ζ) � x0 + 􏽘
∞

n�1
xn ∗ ζ

n
+ 􏽘
∞

n�1
yn ∗ ζ

− n
, (7)

where the coefficients an, bn, xn, and yn are found by im-
posing the boundary condition at both boundaries (ϕ,ψ).
Hence, the Laurent series parameters (x0, xn, and yn) can be
written as

x0 � − a0 −
1
2
b1 −

1
2
a1, (8)

xn � − bn +(n + 1)
1
2
an− 1 −

1
2

(n + 1)an+1, For any ζ≺n,

ζ − n
� x0ζ

− n
,

(9)

yn � − an +(n + 1)
1
2
bn− 1 −

1
2

(n + 1)bn+1. (10)

At the boundary condition, equation (3) can be redefined
into the following equation:

2μ.u ϖ.eiθ
􏼐 􏼑 � 2a0 +

1
2

b1 +
1
2

a1 + a1 ϖ.e
iθ

􏼐 􏼑 + b1 ϖ.e
iθ

􏼐 􏼑
− 1

− a1 ϖ.e
iθ

􏼐 􏼑 − b1 ϖ.e
iθ

􏼐 􏼑
− 1

+ · · ·

+ b1 ϖ.e
iθ

􏼐 􏼑 − a0 ϖ.e
iθ

􏼐 􏼑 + a2 ϖ.e
iθ

􏼐 􏼑 + a1 ϖ.e
iθ

􏼐 􏼑 − b0 ϖ.e
iθ

􏼐 􏼑 + b2 ϖ.e
iθ

􏼐 􏼑.

(11)
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Figure 1: Schematic representation of a cylindrical cavity in infinite soil under drained conditions: (a) initial state of stress and (b) expansion
of the cylindrical cavity at the stress boundary conditions.
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Figure 2: Conformal mapping of a cylindrical cavity represented from 􏽥zc-space to ζ-space: (a) cylindrical cavity in an infinite plane
􏽥zc � 􏽥xa + i􏽥yb and (b) conformal mapping ζ � ξ + iη.
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After expanding the Laurent series, the equation (11)
will be expressed by following the Fourier series to the
boundary condition. Similarly, Zeng et al. [33] propose a
mapped function and another method to derive the
mapped coefficient as an arbitrary solution in a half-plane
and then as a given pressure requirement. )e coefficients
of equations (6) and (7) have been determined, except a0,
invariant. )is coefficient remains undetermined because it
is in the main chain of the Laurent series and, therefore, can
be the origin of the complex variables developed by
Sokolnikoff [34]. For ζ � 1, the system of equations (8), (9),
and (10) could be cancelled if the value were determinable.
)erefore, when k⟶∞ and |ζ| � ϖ.eiθ, the development
of the Laurent series developed in equations (3) reduces to
(11), this shows that the exact analytical formula obtained is
justified.

3.2. Conformal Convergence. )e pre-stress radial dis-
placement field in the cylindrical cavity can be due to the
connection well around the elastic region and can be ob-
tained by the following polar coordinate (Pinto [25]), ur �

piR
2/2.μ.r (R is the radius of the cylindrical cavity and pi is

the hydrostatic pressure under normal convergence).
Considering ordinary differential equation (ODE) under
hydrostatic compression, the radial displacement can be
rewritten as follows:

ur � −
pi

2.μ
(1 − 2.v)r +

R
2

r
􏼨 􏼩. (12)

By simplifying equation (12), the conformal convergence
parameter is set by uε � − piR/2.μ; therefore, the displace-
ment components can be expressed as follows:

u􏽥x
a 􏽥x

a
, 􏽥y

b
􏼐 􏼑|cc � − uε.

􏽥x
a
R

􏽥x
a

( 􏼁
2

+(Y)
2,

u
􏽥y

b 􏽥x
a
, 􏽥y

b
􏼐 􏼑|cc � − uε.

Y.R

􏽥x
a

( 􏼁
2

+(Y)
2,

(13)

where cc is the conformal convergence. )e horizontal and
vertical components of the displacement evaluated by the
radial displacement can be rewritten as follows:

u􏽥x
a 􏽥x

a
, 􏽥y

b
􏼐 􏼑|cc � uε.

1
􏽥x

a
R

(1 − 2.v) 􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑
2

+ 􏽥x
a
R( 􏼁

2

􏽥x
a

( 􏼁
2

+ Y
2

⎛⎝ ⎞⎠, (14)

u
􏽥y

b 􏽥x
a
, 􏽥y

b
􏼐 􏼑|cc � uε.

1
Y.R

(1 − 2.v) 􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑
2

+(Y.R)
2

􏽥x
a

( 􏼁
2

+ Y
2

⎛⎝ ⎞⎠. (15)

By introducing both parameters (Y � 􏽥yb + h and
Y � 􏽥yb − h) into equations (13)–(15), the horizontal and

vertical displacement components can be re-expressed as
follows:

u􏽥x
a 􏽥x

a
, 􏽥y

b
􏼐 􏼑|cc � uε.

􏽥x
a
.R

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2,

u
􏽥y

b 􏽥x
a
, 􏽥y

b
􏼐 􏼑|cc � uε.

􏽥y
b

+ h􏼐 􏼑.R

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2,

(16)

u􏽥x
a 􏽥x

a
, 􏽥y

b
􏼐 􏼑|cc � uε.

􏽥x
a
.R

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2,

u􏽥y
b 􏽥x

a
, 􏽥y

b
􏼐 􏼑|cc � uε.

􏽥y
b

− h􏼐 􏼑.R

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2,

(17)

u􏽥x
a 􏽥x

a
, 􏽥y

b
􏼐 􏼑|cc � uε.

1
R.􏽥x

a

(1 − 2.v) 􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

􏼒 􏼓
2

+ 􏽥x
a
R( 􏼁

2

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (18)
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u
􏽥y

b 􏽥x
a
, 􏽥y

b
􏼐 􏼑|cc � uε.

1
R. 􏽥y

b
+ h􏼐 􏼑

(1 − 2.v) 􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

􏼒 􏼓
2

+ R 􏽥y
b

+ h􏼐 􏼑􏼐 􏼑
2

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (19)

u􏽥x
a 􏽥x

a
, 􏽥y

b
􏼐 􏼑|cc � uε.

1
R.􏽥x

a

(1 − 2.v) 􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
2

+ 􏽥x
a
R( 􏼁

2

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (20)

u􏽥y
b 􏽥x

a
, 􏽥y

b
􏼐 􏼑|cc � uε.

1
R. 􏽥y

b
− h􏼐 􏼑

(1 − 2.v) 􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
2

+ R 􏽥y
b

− h􏼐 􏼑􏼐 􏼑
2

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (21)

)ese results (equations (16) and (21)) were also proposed
by Pinto [25] to evaluate the stresses applied around the cavity.
)e general problem of elasticity produced during conformal

convergence is formulated based on vertical and horizontal
stresses. )is definition is based on the Navier equations, re-
duced according to the following stresses (equation (12)):

σ􏽥xa |cc � uε.R

(1 − 2.v) 􏽥x
a

( 􏼁
2

− 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓 v. 􏽥y
b

− h􏼐 􏼑
2

− 􏽥x
a

( 􏼁
2

􏼒 􏼓 + 2μ 􏽥y
b

− h􏼐 􏼑
2

􏼔 􏼕

R.􏽥x
a

􏽥y
b

− h􏼐 􏼑􏽨 􏽩
2 − ...

− 2μ.

􏽥x
a

( 􏼁
2

− 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (22)

σ
􏽥y

b |cc � uε.R

(1 − 2.v) 􏽥x
a

( 􏼁
2

− 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓 v. 􏽥y
b

− h􏼐 􏼑
2

− 􏽥x
a

( 􏼁
2

􏼒 􏼓 − 2μ 􏽥x
a

( 􏼁
2

􏼒 􏼓􏼔 􏼕

R.􏽥x
a

􏽥y
b

− h􏼐 􏼑􏽨 􏽩
2 + ...

+2μ.
􏽥x

a
( 􏼁

2
􏽥x

a
( 􏼁

2
− 􏽥y

b
− h􏼐 􏼑

2
􏼒 􏼓

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (23)

)en, the shear stress corrected conformal displacement
solutions are determined in equations (23) and (24) based on
the polar parameters of the Airy function (f􏽥x

a � 􏽥xa cos nθ
and f􏽥y

b � 􏽥yb cos nθ), the inverse Fourier transform
(F � 􏽐

∞
n�− ∞ cn exp(− 2π(n/t)􏽥xa, with

cn � 1/t 􏽚
(t/2)

− (t/2)
f(􏽥x

a
)exp[− 2πi(n/t)]d􏽥x

a), the Cauchy-

Goursat biharmonic conjugation, and the elasticity theory of
Boresi and Chong [35].

u􏽥x
a |cc � 2uεR.

(1 − v)􏽥x
a

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2 −

􏽥x
a

􏽥y
b

− h􏼐 􏼑􏽥y
b

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (24)

u􏽥y
b |cc � uεR

2􏽥y
b

− h 􏽥x
a

( 􏼁
2

− h 􏽥y
b

− h􏼐 􏼑
2

􏼒

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
2 −

2(1 − v) 􏽥y
b

− h􏼐 􏼑

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (25)
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)e resulting shear stress formula is based on the
equations (18) and (19) and can be rewritten as follows:

τ(x, y)|cc � 2uε.μ.R.

􏽥x
a 2􏽥y

b
− h􏼐 􏼑 (1 − 2h) 􏽥y

b
− h􏼐 􏼑

2
− 􏽥x

a
( 􏼁

2
􏼒 􏼓 + 2􏽥x

a
.􏽥y

b
− h􏼐 􏼑 − ...

− 􏽥y
b

− h􏼐 􏼑
2

− 􏽥x
a

( 􏼁
2

􏼒 􏼓

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (26)

Deducing equations (16), (17), (23), and (24), the hor-
izontal and vertical components of the displacement stresses
compensate for each other. Summing up the equations (19),
(21), and (24), the conformal vertical progress (Ωu􏽥y

b )

around the cylindrical cavity can be defined by the following
equation:

Ωu􏽥yb |cc � 2.9
R

h
.uε.

8(1 − v) − (1 − 2.v)(R/h)
2

(R/h)
2

+ 4􏼐 􏼑
2 . (27)

)e initial solution is based on the polar radial defor-
mation. )e representative geometry in Figure 3 shows the
conformal vertical progress based on the solutions resulting
from the polar radial deformation. )e medium properties
function the different Poisson’s ratios (v � 0, v � 0.25, and
v � 0.50); they all converge to the value r/h � 1 and are
constant when r/h � 0.9. For a constant curve variation, the
load pressure at the ground surface applies a symmetrical
stress distribution on the cavity boundary. Using equation
(23), for 􏽥xa � ± h and 􏽥yb � 0 , the maximum conformal
horizontal motion can be expressed as follows:

Γu􏽥xa max|cc � ± uε(1 − v)
R

h
. (28)

Hence, the conformal vertical motion (equation (24))
􏽥yb � 0 and 􏽥xa � ± h, the maximum conformal vertical
motion can be obtained as follows:

Γu
􏽥y

b max|cc � ±
R

h(uε)
(1 − v) −

1
2
. (29)

Equations (27) and (28) can be considered the maximum
displacement induced by the loads at the ground surface.
When Γu􏽥x

a |cc � Γu􏽥yb |cc � 0, with 􏽥zc � 0 ; therefore

dϕ/d􏽥zc � 0. )e maximum motions in the boundary con-
dition can be due to the elastic stress forces exerted by the
principal axes (σr, σθ) on the initial radius r0. In this vein,
the hypothesis of Verruijt (5) seems to be the most ap-
propriate in this paper because, after excavation, the load-
induced conditions on the ground surface apply forces that
can be damped either by the cavity wall or by the thickness of
the lining. )e geometry in Figure 4 was realized by adding
equations (21)–(24), (31), and (32). It shows the displace-
ments on each half-plane of the cavity performing

convergent motions toward the initial radius. Beyond this,
symmetry is observed on each half-plane of the cavity,
resulting in a nonuniform convergence when the vertical
load is greater than the horizontal load. )e ground dis-
placement is not a function of v and R/h, but 􏽥xa/h and 􏽥yb/h
coordinates.

3.3. Near and Far Field Non-Uniform Deformation. )e
components of the initial state displacement of the cylin-
drical cavity are defined by the elastic constitutive relation as
presented by Pinto [25], defining the following relations:

u􏽥x
a |nd �

qi

2.μ
􏽥x

a
; u􏽥yb |nd � −

qi

2.μ
􏽥y

b
, (30)

where nd is the nonuniform deformation and qi is the
hydrostatic pressure under nonuniform deformation.. At the
boundary condition, the pure distortion parameter of a
cylindrical cavity (uδ) is defined by Pinto [25],
uδ � (3 − 4.v)(qi.R/2.μ). In cylindrical coordinates, a spe-
cific biharmonic function can be used as the Airy stress
function according to the formula
F

(􏽥x
a
,􏽥y

b
)

� dn(r− n+2 cos nθ). Additionally, some analyses by
Hua and Dai [36] based on the consistency of the con-
centration obtained by the analytical algorithm on the real
solution are joined with the approximate explicit solution to
evaluate the cylindrical cavity when the depth increases.
However, the stress concentration around the hole is pro-
posed by a complex potential on a half-plane, representing in
a specific form unknown coefficients, determined by pre-
scribed boundary conditions (Dai et al., [37]). Using the
compatibility equation, the biharmonic function that can be
used as the Airy stress function can be defined as follows:

F(r)|nd � X.r
n+2

+ Y.r
n

+ Z.r
− n+2

+ T.r
− n

􏼐 􏼑 cos nθ, (31)

where X, Y, Z, and Tare constants. )e elastoplastic solution
as a function of stresses σr, σθ, and τ(r,θ) (in the far-field,
σr(r⟶∞)|nd � 0, σθ(r⟶∞)|nd � 0 and angle θ is negligible)
will yield stress tensors related to equation (38). On this
subject, as presented by Aghchai et al. [38], the airy stress
function formulation is based on the general idea of de-
veloping a representation for the stress field that satisfies the
equilibrium and gives a single governing equation from the
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compatibility statement. By integrating into the theory of
elasticity proposed by Boresi and Chong [35], the derivatives
of the components of the Airy stress and the biharmonic

conjugate of Cauchy-Goursat, the displacement in non-
uniform deformation (Figure 5) becomes

u
i􏽥x

a 􏽥x
a
, 􏽥y

b
􏼐 􏼑|nd � uδ

R

(3 − 4c)
.􏽥x

a
.

􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑. 4
(1 − v).

􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑 − Y

⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ − R

2
. 􏽥x

a
( 􏼁

2
− 3Y

2
􏼐 􏼑

􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑
3 ,

(32)

u
i􏽥y

b 􏽥x
a
, 􏽥y

b
􏼐 􏼑|nd � − uδ

R

(3 − 4c)
.Y.

􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑.
4(1 − v).

􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑 − 􏽥x
a􏼠 􏼡􏼢 􏼣 + R

2
. 3 􏽥x

a
( 􏼁

2
− Y

2
􏼐 􏼑

􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑
3 .

(33)
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Figure 3: Vertical progress based on conformal convergence.
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Figure 4: Stratigraphic deformation due to conformal contraction (uε/uδ).
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Equations (31), (32), and Pinto [25] show a significant
difference in the biharmonic function derived from equation

(30). Considering 1/R2.(r)3 ≈ 0, the displacement compo-
nents in the far-field can be established as follows:

u􏽥xa 􏽥x
a
, 􏽥y

b
􏼐 􏼑|nd � uδ

4(1 − v)

(3 − 4.v)
.R.􏽥x

a
.

􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑 − (Y/(1 − v))

􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑
2 , (34)

u
􏽥y

b 􏽥x
a
, 􏽥y

b
􏼐 􏼑|nd � − uδ

4(1 − v)

(3 − 4.v)
.R.Y.

􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑 − 􏽥x
a/(1 − v)

􏽥x
a

( 􏼁
2

+ Y
2

􏼐 􏼑
2 . (35)

)e displacement (equations (31) and (32)) can be re-
established as follows Y � 􏽥yb + h :

􏽥x
a

( 􏼁
2
+

􏽥y
b

+ h􏼐 􏼑
2

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠. 4 (1 − v).

􏽥x
a

( 􏼁
2
+

􏽥y
b

+ h􏼐 􏼑
2

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ − 􏽥y

b
+ h􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − · · ·

u
i 􏽥x

a
( ) 􏽥x

a
, 􏽥y

b
􏼐 􏼑|nd � uδ

R

(3 − 4.v)
.􏽥x

a
.

− R
2

􏽥x
a

( 􏼁
2

− 3 􏽥y
b

+ h􏼐 􏼑
2

􏼒 􏼓

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

􏼒 􏼓
3 ,

(36)

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

􏼒 􏼓. 4(1 − v).
􏽥x

a
( 􏼁

2
+

􏽥y
b

+ h􏼐 􏼑
2

⎛⎝ ⎞⎠ − x⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + · · ·

u
i 􏽥y

b
( 􏼁

􏽥x
a
, 􏽥y

b
􏼐 􏼑|nd � − uδ

R

(3 − 4.v)
. 􏽥y

b
+ h􏼐 􏼑

+R
2 3 􏽥x

a
( 􏼁

2
− 􏽥y

b
+ h􏼐 􏼑

2
􏼒 􏼓

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

􏼒 􏼓
3 .

(37)

uδ

uδ

R

a

b

yb̃

xa˜
uδ

r0

uδ

Figure 5: Nonuniform deformation (a and b are the dimensions of the ellipsoid).
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Equations (31) and (32) can be given as Y � 􏽥yb − h:

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓 4 (1 − v)

􏽥x
a

( 􏼁
2
+

􏽥y
b

− h􏼐 􏼑
2

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ − 􏽥y

b
− h􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − · · ·

u
ii 􏽥x

a
( ) 􏽥x

a
, 􏽥y

b
􏼐 􏼑|nd � uδ

R

(3 − 4.v)
.􏽥x

a
.

− R
2

􏽥x
a

( 􏼁
2

− 3 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
3 ,

(38)

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓 4(1 − v)
􏽥x

a
( 􏼁

2
+

􏽥y
b

− h􏼐 􏼑
2

⎛⎝ ⎞⎠ − 􏽥x
a⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + · · ·

u
ii 􏽥y

b
( 􏼁

􏽥x
a
, 􏽥y

b
􏼐 􏼑|nd � − uδ

R

(3 − 4.v)
. 􏽥y

b
− h􏼐 􏼑.

+R
2 3 􏽥x

a
( 􏼁

2
− 􏽥y

b
− h􏼐 􏼑

2
􏼒 􏼓

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
3 .

(39)

)en, equations (33) and (34) becomes (far-field
displacement):

u􏽥x
a 􏽥x

a
, 􏽥y

b
􏼐 􏼑|nd � uδ

4(1 − v)

(3 − 4.v)
.R.􏽥x

a
.

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

􏼒 􏼓 − (1/(1 − v)). 􏽥y
b

+ h􏼐 􏼑

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

􏼒 􏼓
2 , (40)

u
􏽥y

b 􏽥x
a
, 􏽥y

b
􏼐 􏼑|nd � − uδ

4(1 − v)

(3 − 4.v)
.R. 􏽥y

b
+ h􏼐 􏼑.

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

􏼒 􏼓 − (1/1 − v).􏽥x
a

􏽥x
a

( 􏼁
2

+ 􏽥y
b

+ h􏼐 􏼑
2

􏼒 􏼓
2 . (41)

Equations (31) and (34) can be established as follows:

u􏽥xa 􏽥x
a
, 􏽥y

b
􏼐 􏼑|nd � uδ

4(1 − v)

(3 − 4.v)
.R.􏽥x

a
.

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓 − (1/(1 − v)). 􏽥y
b

− h􏼐 􏼑

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
2 , (42)

u􏽥y
b 􏽥x

a
, 􏽥y

b
􏼐 􏼑|nd � − uδ

4(1 − v)

(3 − 4.v)
.R. 􏽥y

b
− h􏼐 􏼑.

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓 − (1/(1 − v)).􏽥x
a

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
2 . (43)

)e approximate shear stress in the far-field is deter-
mined by the equations (39)–(42).

)e discontinuity lines shown in Figure 6 all converge on
the central and median axis of the cylindrical cavity. )is
means that the horizontal and vertical displacement can be
mathematically established by u􏽥x

a � 􏽥xa/h.u
􏽥y

b . For r/h � 0.25
(Figure 7), the horizontal and vertical motion curves for

different values of the Poisson’s ratio all converge to u􏽥xa/uδ
� 0 and u􏽥y

a/uδ � 0. On this subject, the Sagaseta [14] the-
orem on both sides of the mirror is respected in the far-field
of the cylindrical cavity. Hence, a series solution for the
stress distribution in the half-plane is derived using con-
formal mapping techniques and Fourier expansions (Dai
et al. [39]). In this case, by evaluating the displacement
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induced by the vertical stress (R2 ≈ h2) and including the

inverse Fourier transform F(n) � i/2π􏽚
ω�2πi

τ(ω) exp(−

iωnΔt)dω, the nonuniform displacement rectified by the
shear stress on the near-field can be established as follows:

u
iii 􏽥xa

( ) 􏽥x
a
, 􏽥y

b
􏼐 􏼑|nd �

3uδR

3 − 4.v
.

(1 − v) 􏽥x
a
. 􏽥x

a
( 􏼁

2
+ 􏽥y

b
􏼐 􏼑

2
− h

2
􏼒 􏼓􏼒 􏼓􏼔 􏼕

􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓
3 − ...

− 􏽥x
a

( 􏼁
2

+ 􏽥y
b

− h􏼐 􏼑
2

􏼒 􏼓

􏽥y
b

􏽥y
b

− h􏼐 􏼑.h + 2h 􏽥x
a

( 􏼁
2

− 􏽥y
b

− th􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎝
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In this vein, the displacement components induced by
the nonuniform deformation are derived from the super-
position of the displacement components (equations
(35)–(38)) and the equilibrium displacement field after
excavation (Figure 8; U
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)us, in the region − h≺􏽥xa≺h, the vertical displacement is
larger than the horizontal displacement. )is convergence is
also noticeable in Figure 9. )e vertical progress imposed on
the nonuniform deformation (Ωu

􏽥y
b ) can be established by

the following equation:
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􏽥y

b 􏽥x
a
, 􏽥y

b
􏼐 􏼑|nd �

2
(3 − 4.v)

.uδ.
R

h

(7 − 4.v)(R/h)
4

+ 4(7 − 8.v)(R/h)
2

− 17

(R/h)
2

+ 4􏼐 􏼑
3

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (46)

)e geometric representation in Figure 7 shows a
concavity downwards (with R/h > 1.1 and v = 0.5). )us, the
load-induced ground deformation at the ground surface
applies compressive pressure to the cylindrical cavity wall (R
≈ h). For a shallow cylindrical cavity, the probability of
vertical displacement is much higher than in deep cavities.
)erefore, the variations of the complex solutions presented
by Verruijt and Booker [15] demonstrate the assertion of the
exact solution presented in equation (3).

By adding the two displacement parameters given by the
approximate solution (equation (37)), 􏽥yb � 0, with
􏽥xa � ± h, the maximum horizontal motion in nonuniform
deformation can be expressed as

Γu􏽥xa max|nd � ±
uδ

(3 − 4.v)

R

h
(2(1 − v) + h) +

1
4

R

h
􏼒 􏼓

2
􏼨 􏼩.

(47)

Hence, the maximum vertical motion in nonuniform
deformation can be reduced to the following formula
(equation 38; with 􏽥yb � 0):

Γu􏽥y
b max|nd � ±

uδ

(3 − 4.v)

R

h
.

7 − 8.v + 4(R/h)
3

􏼐 􏼑

3
⎡⎣ ⎤⎦. (48)

For 􏽥yb � ± h, the maximum vertical motion can be
reduced to zero. )us, for different values of v � 0.00,
v � 0.25, and v � 0.50, with R � h for shallow cavities, is
equal to Γu􏽥yb max |nd � ± 1.2uδ, Γu􏽥yb max |nd � ± 1.5uδ,

and Γu
􏽥yb max |nd � ± 2.3uδ. Analytical solutions are pre-

cious for the conceptual understanding of the mechanical
behavior of noncircular cavities and the validation of nu-
merical models (Wang et al. [40]). It is important to note
that soil settlement is related to the pressure at the soil
surface. Next, the stress distribution around the cavity can
induce conformal convergence, nonuniform deformation,
and vertical progression (Figure 10).

4. Discussion

)e geometric representation in Figure 11 is the superposition
of the conformal vertical displacement and the vertical
progress of the tunnel spring line for the approximate solution
of the uniform convergence mode (Pinto [25]). Next, the two
solutions show similarities in the values of the Poisson’s ratio
(v � 0, v � 0.25, and v � 0.50), and the orthogonal projection
of the curves, which all converge to the value r/h � 1. )e
comparison shows that the conformal vertical progression
resulting from equation (26) is two times smaller than the
value proposed by Pinto and Whittle [41].

)is difference is due to the partial derivatives and
mathematical integration resulting from the Fourier analysis
test and Navier’s equations on the radial displacement
during hydrostatic compression. Such a solution may be
more suitable for shallow tunnels as it can also predict
settlement movements when the tunnel has a variable in-
ternal pressure.
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In this study, Figure 12 shows the relationship between
the vertical progress imposed by the nonuniform defor-
mation on the cavity wall and the vertical translation of the
spring line proposed by Pinto [25]. )ese solutions all ex-
hibit concavity at r/h � 0.5, and all converge at the r/h � 1
point. It is therefore essential to note that the provided
solutions give satisfactory results.

5. Conclusion

)is paper presents analytical solutions to soil deformation
around a cylindrical cavity under drained conditions. An-
alytical methods based on mathematical formulas were
proposed considering three deformation parameters: con-
formal convergence, nonuniform deformation, and

horizontal and vertical ground motion. )e integration of
the ground deformation methods was based on approximate
solutions referring to the exact solutions. Additionally, other
predictive models of soil behavior resulting mainly from the
geometry and stability index were suggested to compensate
for the redistribution of stresses at the wall of the cylindrical
cavity.

(1) )emodel related to the conformal convergence (uε)

was defined on the approach of continuous nu-
merical functions in a 2D Cartesian plane, intro-
duced by the radial displacement pre-stress applied
to the boundary condition. )e stresses were
redistributed uniformly at the cavity wall, inducing
the displacement determined by the Airy stress.
)us, the expansion rate influenced by the excava-
tion speed impacting the initial soil stresses was
determined by the maximum soil movements
(Γu􏽥x

a max and Γu􏽥y
b max) and was established for

varying Poisson’s ratios (0≺v≺1) values.
(2) )e nonuniform deformation (uδ) based on the

biharmonic function was defined on the initial stress
state of the soil, according to the elastic constitutive
relation.)e near and far-fields were evaluated using
the asymmetric stress distribution around the ex-
cavation trough. Furthermore, a settlement model
induced by the deformed soil was related to the
pressure at the soil surface due to the void created by
the excavation. )en, the corrective shear pressure
was obtained by the maximum components. )e
shear pressure and its relatively high traction balance
the forces that could lead to its deformation. )us,
when the load applied to the ground surface is less,
the minimum components assumption cannot be
applied because the traction pressure could induce a
rebound leading to the buoyancy of the cylindrical
cavity.

(3) Finally, a comparison of the results with previous
work has shown that the analytical solution of a
cylindrical cavity could predict the ground motion
either by the rate of ground excavationmodifying the
initial conditions of the environment or by the
variations of load on the ground surface.
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Géotechnique, vol. 46, no. 4, pp. 753–756, 1996.

[16] N. Loganathan and H. G. Poulos, “Analytical prediction for
tunneling-induced ground movements in clays,” Journal of
Geotechnical and Geoenvironmental Engineering, vol. 124,
no. 9, pp. 846–856, 1998.

[17] K. H. Park, “Elastic solution for tunneling-induced ground
movements in clays,” International Journal of Geomechanics,
vol. 4, no. 4, pp. 310–318, 2004.

[18] F. Pinto and A. J. Whittle, “Ground movements due to
shallow tunnels in soft ground. I analytical solutions,” Journal
of Geotechnical and Geoenvironmental Engineering, vol. 140,
no. 4, Article ID 04013040, 2014.

[19] B. Liu, “)eory of stochastic medium and its application in
surface subsidence due to excavation,” Transactions of Non-
ferrous Metals Society of China, vol. 2, no. 3, pp. 17–24, 1992.

[20] J. S. Yang, B. C. Liu, and M. C. Wang, “Modeling of tunneling
induced ground surface movements using stochastic medium
theory,” Tunnelling and Underground Space Technology,
vol. 19, no. 2, pp. 113–123, 2004.

[21] A. Bobet, “Analytical solutions for shallow tunnels in satu-
rated ground,” Journal of Engineering Mechanics, vol. 127,
no. 12, pp. 1258–1266, 2001.

[22] C. B. Kooi and A. Verruijt, “Interaction of circular holes in an
infinite elastic medium,” Tunnelling and Underground Space
Technology, vol. 16, no. 1, pp. 59–62, 2001.

[23] W. I. Chou and A. Bobet, “Predictions of ground deforma-
tions in shallow tunnels in clay,” Tunnelling and Underground
Space Technology, vol. 17, no. 1, pp. 3–19, 2002.

[24] K. H. Park, “Analytical solution for tunnelling-induced
ground movement in clays,” Tunnelling and Underground
Space Technology, vol. 20, no. 3, pp. 249–261, 2005.

[25] F. Pinto, “Analytical Methods to Interpret Ground Defor-
mations Due to Soft Ground Tunneling,” S M thesis, Dept. of
Civil and Environmental Engineering, Massachusetts Insti-
tute of Technology (MIT), Cambridge, England, 1999.

[26] J. F. Zou, K. F. Chen, and Q. J. Pan, “An improved numerical
approach in surrounding rock incorporating rockbolt effec-
tiveness and seepage force,” Acta Geotechnica, vol. 13, no. 3,
pp. 707–727, 2018.

[27] H. S. Yu and G. T. Houlsby, “Finite cavity expansion in di-
latant soils: loading analysis,” Géotechnique, vol. 41, no. 2,
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