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�e rotation capacity of wide-�ange beams is a mechanical and physical parameter that shows a structural member’s ductility. It is
a crucial factor in the plastic design phase of wide-�ange beams, especially useful in extreme circumstances such as earthquakes.
�is study proposes an approach that facilitates the calculation of the rotation capacity (R) based on a soft computing technique
developed using an experimental database accumulated from prior studies. �e ensemble decision tree (EDT) model was studied
to construct a soft computing model that accurately predicts R based on training and testing datasets. �e model’s performance
metrics used were well-known criteria, namely the coe�cient of determination (CC), root mean square error (RMSE), as well as
mean absolute error (MAE). With CC� 0.925, RMSE of 3.20, and MAE of 2.60, the study’s �ndings indicate that the EDTmodel
accurately estimates the rotation capacity of wide-�ange steel beams. Furthermore, sensitivity analysis and 2D partial dependence
analyses were proposed to determine the e�ect of the factors that a�ect R.�is work could be a signi�cant step toward determining
the R of wide-�ange steel beams and aiding in improving structural member design.

1. Introduction

Currently, with the development trend of science and
technology, steel structures are increasingly being applied in
practice and are playing a crucial role in the �eld of
structural works. Structural steel beams, in particular, are
commonly employed in building construction. A wide-
�ange beam is a regularly utilized component because of its
e�ectiveness in bending around an axis with a large moment
of inertia. As illustrated in Figure 1, the behavior of wide-
�ange beams may be divided into three di�erent regimes:
elastic in the �rst phase, inelastic in the second phase, and
plastic. �e overelastic segment illustrates a transition be-
tween elastic and plastic behavior as more andmore �bers in
the cross section melt. Under any instance, the local plate
buckling of the compression �ange or the web in �exural
compression, or lateral-torsional buckling, is the leading
cause of the beam’s collapse. �e plastic behavior is of
particular interest in this work since it allows moment re-
distribution in indeterminate systems [1].

Rotation capacity is crucial in constructing plastic and
seismically resistant building structures. �e member must
generate plastic hinges in the plastic design, which must
rotate till the collapse mechanism is attained without sac-
ri�cing moment capacity. �us, it is ensured that the ap-
propriate redistribution of bending moments occurs [2].
�is rotation capability is critical in earthquake-resistant
design to ensure that a particular part of the input seismic
energy is dissipated through plastic behavior. As a result,
determining the rotation capability of steel structures be-
comes critical [3, 4].

In the literature, the rotation capacity is speci�ed as a
nondimensional parameter. For example, Salmon and
Johnson [5] established the R as a method of analyzing a
cross-deformation section’s capacity prior to the cross-
sectional capacity being depleted by instability. Lay and
Galambos [6] de�ned R as the ratio between the plastic
rotation (θh) after the moment decreases below the plastic
moment (Mp) to the elastic rotation (θp) at the initial
achievement of Mp. In another approach, Kemp [7] de�ned
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R as the ratio between the plastic rotation up to the max-
imum moment on the moment rotation curve, and θp. Fi-
nally, the American Society of Civil Engineers (ASCE) [8]
proposes a frequently used concept for R as the ratio between
the rotation at which the moment capacity on the unloading
section falls below Mp and the theoretical rotation at which
the total plastic capacity is obtained. Additionally, theo-
retical, empirical, and approximate techniques for deter-
mining the available rotation capacity of wide-flange steel
beams have been given in the literature, as described by
Gioncu and Petcu [9, 10].

Machine learning (ML) algorithms have improved
quickly over the past few years. Many experts have presented
a new method to measure the R of wide-flange steel beams.
&e work of Guzelbey et al. [3] was among the first to be
reported. In this research, a neural network (NN) model was
developed to predict the R of wide-flange steel beams based
on experimental data that were gathered from the literature.
&e suggested NN model was proven to be in perfect ac-
cordance with the experimental data, with high precision
(i.e., the R value is 0.997). Following that, Cevik [4] uses
genetic programming to create an estimation model for
wide-flange steel beams’ rotation capacity. &e proposed GP
formula is much more accurate than the numerical results
and the current analytical equations. Other machine
learning approaches are also addressed in the works of Cevik
[11], Samui et al. [12], and Alavi et al. [13] for developing
predictive models of wide-flange steel beams’ rotation ca-
pacity. &e results and the machine learning algorithms
employed in these studies are presented in Table 1. &ree
observations are drawn from the literature review in relation
to the most current prediction of the rotational capacity of
wide-flange steel beams. &e first is that, while various
studies have suggested a variety of suitable models for
machine learning that can predict the R value, the selection
procedure is questioned since no validation of models was
carried out. &is means that the models proposed and their
prediction accuracy were validated solely on the training and
testing datasets that were selected in previous research. &e
first point raises another issue regarding the utilization of the
previously suggested models for use during the design phase

of wide-flange steel beams. &e reliability of predictions is
certainly a problem with these models. Last but not least, it is
not simple to comprehend the machine learning models to
understand their applications in structural engineering
without being able to guarantee the accuracy of the pre-
dictions. In fact, it is often said that machine’s learning tools
are black-boxes. &is has led to the development of ex-
plainable AI recently, where engineers can comprehend the
outcomes of the AI system. However, without confirmation
of the reliability and generalizability of ML models, their
understanding can be difficult. &is is also a drawback of the
research studies on wide-flange steel beams, because analysis
on the effect of input factors on the rotation capacity has not
yet been done.

Overall, the main objective of this research is to predict
the rotation capacity of wide-flange steel beams as well as
determine the influence of parameters on the rotation ca-
pacity. &e development of a machine learning model based
on an ensemble decision tree is presented, which also
highlights a model that has not been previously investigated.
Moreover, repeated k-fold cross-validation is conducted to
ensure the model’s reliability and generalizability. To this
aim, an experimental dataset on wide-flange steel beams’
rotation capacity is used to illustrate the research’s meth-
odological approach. Finally, a variety of diagrams are
generated, thanks to the developed model, that demonstrate
the effect of the beams’ characteristics on the resulting ro-
tation capacity. &e remaining content of this paper consists
of the following parts: the second (part 2) contains the
fundamental details about the dataset, followed by the basic
information on the used algorithm (Section 3). &e results,
discussions, and practical results are discussed in Section 4.

2. Database Construction

&is paper proposes an ensemble model that is based on 77
experimental results to forecast the rotation capacity of
wide-flange beams. &is dataset was compiled from 7 major
international journals [7, 14–19]. &e study’s purpose is to
determine the wide-flange beam’s rotational capability
(denoted R). &e input variables considered are the half-
length of the flange (denoted b, mm), the web’s height
(denoted by d, mm), the flange’s thickness (denoted tf, mm),
the web’s thickness (denoted tw, mm), the beam’s length (L,
mm), the flange’s yield strength (Fyf, MPa), and the web’s
yield strength (Fyw, MPa). Figure 2 a illustrates the geo-
metric form of the cross-sectional variables of the beams
under test. &e procedure for conducting the experiment to
establish the wide-flange steel beams’ rotation capacity is
illustrated in Figure 3.

&e range of inputs and outputs, including the max
and min values, are the following: &e length of the flange
varies over a fairly wide range, from 36.95 to 150.4mm; the
height of the web ranges from 120.3 to 320mm; the thickness
of the flange ranges from 1.44 to 17.3mm; and the thickness
of the web ranges from 4 to 11.5mm. &e range of length of
the beam is quite large, from 940 to 4000mm; the yield
strength of the flange has a variable value in the range from
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Figure 1: &e general behavior of wide-flange beams.
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236 to 817Mpa. Finally, the yield strength of the web ranges
from 217 to 990MPa.

&e distribution graph and correlation between the input
and output parameters considered in this investigation are
shown in Figure 4. &e Pearson’s correlation coefficient (r)
was computed and documented in each pair of parameters.
R has no significant direct correlation with the other input

parameters, as can be shown. Some of the input parameters
have high correlation, such as the flange’s thickness and the
web’s thickness (correlation of 0.91), the correlation between
the flange’s half-length and thickness is 0.83, and between
the flange’s half-length and the web’s thickness is 0.84.
Although these parameters have a high correlation, these
parameters are the sizes of different components in the
beams’ structure, which are related to the local stability of the
beams.&erefore, all input parameters are considered in this
study after the collection, analysis, and evaluation process.
Finally, this dataset is normalized to the range of values 0-1
to reduce the mistakes created by the EDT model during
simulation. &is commonly used method in artificial in-
telligence problems limits errors generated by numerical
simulations.

3. Model Details

3.1. Ensemble Decision Trees (EDT). Quinlan presented de-
cision trees (DT) [20], a popular machine learning method
that may be used for many real-world problems. &e data
points are divided at each node using the given split criterion
in a recursive partition technique. &e DT’s fundamental
premise is to utilize a set of criteria to find the areas with the
most homogenous output and input variables, after which
each zone is fitted with a constant. &e DT technique offers
the benefits of being nonparametric, simple to grasp, and
rapid to fit, even for more significant problems, without
requiring much statistical understanding. However, putting
the decision tree into practice may be tricky. For instance,
even little changes in the dataset may have a substantial
impact on the tree structure. Similarly, given an unknown
dataset, the findings might not be correct anymore (over-
fitting problems). Ensemble approaches combine multiple
decision trees to provide better predictive performance than
one decision tree to address the drawbacks (Figure 5). &e
principle behind the ensemble model is that a variety of weak
learners come together to produce a more powerful learner.

tf
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b

Figure 2: Illustration of the beams’ cross section and considered
variables.
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Figure 3: Diagram of the rotation capacity experiment.

Table 1: Summary of research findings related to ML algorithms to predict the rotation capacity.

No Ref. Method
Data
and

inputs

Performance measure

R and R2 MAPE RMSE

1 Guzelbey
et al. [3] NN 81 data 7

inputs R test � 0.99 Rtrain � 0.997 6.959% (test) 5.293% (train) 0.0233 (test) 0.0171 (train)

2 Cevik [4] GP 81 data 7
inputs R� 0.81 (test) R� 0.96 (train) 36% (test) 20.5% (train)

3 Cevik [11] Neuro-
fuzzy

81 data 7
inputs

Train: COV� 30% test :
COV� 5.5%

4 Samui et al.
[12]

SVM
RVM GPR
GRNN

77 data
7 inputs

Train SVM :R2 � 0.9622 RVM :
R2 � 0.9723 GPR :R2 � 0.8290
GRNN :R2 � 0.9867 test SVM :
R2 � 0.4252 RVM :R2 � 0.9175
GPR :R2 � 0.5728 GRNN :

R2 � 0.5041

Train SVM: 5.333% RVM:
11.2748% GPR: 46.7118%
GRNN: 2.0554% test SVM:

115.76% RVM: 51.3325% GPR:
59.7143% GRNN: 88.2490%

Train SVM: 1.2999 RVM:
1.1122 GPR: 2.7643 GRNN:
0.7697 test SVM: 5.3190
RVM: 2.0152 GPR: 4.5854

GRNN: 3.3008

5 Alavi [13] BR-ANN 77 data
7 inputs:

R� 0.94523 (train) R� 0.83988
(test) R� 0.93211 (all) 20.32%

ANN� artificial neural networks; GP� genitic programming; RVM� relevance vector machine; GR� generalized regression; SVM� support vector machine;
GPR� gaussian process regression; BR� bayesian regularized.
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Even when the settings are altered, the performance of
decision tree ensembles is rather excellent.&ere have been a
variety of ensemble approaches suggested. Some of them are
broad approaches that may be applied to any model, such as
bagging [21] and boosting [22].

Bagging (bootstrap aggregation) is used in order to
decrease the variation of the decision tree. &e aim is to
produce diverse subsets of data out of an initial training

sample that is selected randomly with replacement. Every
subset of data is then used to build the decision tree. &is
means a collection of diverse models are generated and used.
&e sum of predictions from various trees is used and is
more durable than one decision tree. Boosting is a different
method for creating a set of predictors. &e learners are
taught in a gradual manner in this way, starting with the
early learners making basic models from data and then
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Figure 4: &e distribution chart and correlation between input and output parameters considered in this study.
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evaluating the data for any flaws. Also, new trees are created
(random samples) with the intention of finding net errors
from the prior tree at every stage.

&is work considers the EDT model to perform the
prediction tasks, with a decision tree (DT) as the base
estimator. It is important to note that EDT is relatively
similar to the random forest (RF) algorithm, as they fit
multiple models on different subsets of a training dataset,
then combine the prediction results from all models to get
the final decision. &e fundamental difference between
EDTand RF is that RF is an extension of EDT bagging that
randomly selects subsets of features used in each data
sample. Only a subset of features is selected randomly from
the total in RF, and the best split feature from the subset is
used to split each tree’s node. On the contrary, in EDT
bagging, all features are considered for splitting a tree’s
node.

3.2. Repeated K-fold Cross-Validation. In the area of ma-
chine learning, the cross-validation technique is a common
method of preventing overfitting during the training phase.
A typical dataset is split into three sets that include a training
set, a validation set, and a testing set. &e first set is utilized
for training, and the validation set is used during the training
phase to verify the trained model’s accuracy, whereas the
testing set is used for the final evaluation of the model. When
the datasets are split into two parts, the training and testing
datasets, cross-validation is also an option to avoid over-
fitting problems.

&e test dataset will be kept separate and saved for the
final assessment stage, which will evaluate the model’s
“response” when encountering completely unknown data.
After just one run, the K-fold cross-validation approach
might produce a noisy assessment of the model’s perfor-
mance. Different datasets, on the other hand, might provide
quite different results. &erefore, repeated K-fold cross-
validation is a technique to improve the predictive perfor-
mance of a machine learningmodel. Simply repeat the cross-
validation procedure numerous times and average the re-
sults overall folds and runs. &is average, calculated using
standard error, represents the model’s true underlying mean
performance on the dataset more accurately. &e basic
technique of the iterative K-fold algorithm is to shuffle and
randomly sample the dataset many times, resulting in a
model that is as robust as it is comprised of most of the
training and testing operations. However, the precision with
which this cross-validation approach assesses the correct-
ness of a machine learning model is determined by two
criteria. &e first input, K, is an integer that specifies the
number of folds in which the supplied training dataset
should be split (or subsets). &e model is then trained on the
K-1 subset of K folds, with the remaining subset utilized to
verify the model’s functioning. &ese steps will be repeated
up to a specific number of times, which will be decided by the
algorithm’s second parameter, giving rise to the name re-
peated K-fold cross-validation. &e model’s ultimate

accuracy will be determined by the mean performance score
across all the cases.

3.3. Partial Dependence Plot. &e functional connection
between a limited number of input variables and predictions
is shown by a partial dependency (PD) plot. &ey demon-
strate how the predictions are influenced by the values of the
input variables of interest. &e most fundamental PD plots
are 1-way plots, which show how a model’s predictions are
affected by a single input. PDPs with two input features of
interest demonstrate how the two characteristics interact
with one another.

PD plots examine variables of interest across a certain
range. &e model is assessed for all observations of the other
model inputs at each value of the variable, and the outcome
is then averaged. As a result, the connection they describe is
only true if the variable of interest does not have substantial
interaction with the other model inputs.

After marginalizing the impacts of all other features, the
partial dependency function of a model F

⌢
explains the

predicted influence of a feature. &e partial dependence of a
feature set XI,I ⊆ 1, 2, . . . , k{ } (usually |I|� 1) is defined as
follows:

PDI � EXξ
F
⌢

x, Xξ  , (1)

where Xξ are the remaining features so that
I∪ξ � 1, 2, . . . , k{ } and I∩ξ �∅. &e PD is estimated using
Monte Carlo integration:

PDI(x) �
1

m2


m2

i�1
F
⌢

x, X
o
ξ . (2)

For simplicity, we write PD instead of DI, and PD
⌢

instead of PD
⌢

I when we refer to an arbitrary PD. &e PD
plot consists of a line connecting the points

x(r), PD
⌢

I(x(r)) 
R

r�1
, with R grid points that are usually

equidistant or quantiles of PDI.

3.4. Performance Assessment. A variety of metrics were used
in this work to measure the effectiveness of the proposedML
model, such as the coefficient of determination (CC), mean
absolute error (MAE), and root mean square error (RMSE).
MAE refers to the average magnitude of the model’s error but
does not include the skewed trends between the model output
and actual data. Besides, root mean square error (RMSE) is a
basic criterion for evaluating predictive modeling perfor-
mance. &e RMSE is a fundamental metric for evaluating the
performance of predictive models. RMSE is especially sen-
sitive to significant error values. As a result, the model error is
more stable when the RMSE is close to the MAE values.
RMSE, similar to MAE, is in the range of (0; +∞). CC shows
the data’s appropriateness for the method, ranging from −∞
to 1. Lower values of CC indicate poor model performance,
while CC values near 1 indicate strong model accuracy. &e
following equations reflect these values [23–25]:
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CC � 1 −
Σni�1 Pi − Ei( 

2

Σni�1 Pi( 
2

⎡⎣ ⎤⎦,

RMSE �

�������������

1
n



n

i�1
Pi − Ei( 

2




,

MAE �
1
n



n

i�1
Pi − Ei


,

(3)

where E is the actual value, P is the model’s output, and n is
the data points.

4. Results & Discussion

4.1. Prediction Results. &is section describes the numerical
simulation process to develop the EDTmodel for accurately
predicting the R of wide-flange beams. &e first part of this
section is dedicated to the selection process of the hyper-
parameters values of the EDT model. In general, the per-
formance of tree-based machine learning models depends
on important hyperparameters such as the number of trees
or variables defining the branches and leaves. &erefore, a
trial and error technique is used in this study to find the best
hyperparameters associated with the proposed EDTmodel.
As a result, the number of trees was chosen as 1000, the
bagging method was selected, the number of learning cycles
was 30, and the minimum leaf size was 1.

After an extensive model selection process, these
hyperparameters were chosen, where repeated k-fold cross-
validation was conducted. Repeated k-fold CV is also the key
highlight in this research, with the EDT machine learning
model being more reliable. Precisely, the training dataset is
partitioned into ten folds for cross-validation in the first step.
With 10 simulations, each corresponding to a 10-fold CV,
the average performance of each training and testing dataset
is obtained and displayed in Figure 6. Notably, the testing
data (30% of the dataset) were not considered during the
hyperparameters selection and were only used for model
performance assessment. It means that the EDT hyper-
parameters are chosen based on only the training data.

It can be observed that as the training data is randomly
shuffled, the EDT model’s prediction ability changes. &e
performance evaluation criteria for the training dataset vary
within certain intervals, but the amplitude is relatively stable.
For instance, the RMSE fluctuates around 2.6, with a
minimum RMSE of 2.2, and a maximum of 3.1, respectively,
with the fourth repeated CV (denoted as CV4) and the first
repeated CV (CV1). Besides, MAE varied from 1.6 to 2.1,
and CV4, CV1 were found to be the best and poorest
simulations, respectively. Lastly, the CC ranges from 0.940 to
0.965, with CV3 being the best and CV6 the poorest.
&erefore, it could be concluded that the trained EDTmodel
has a high prediction accuracy with the training dataset and
may be used for further evaluation of the testing dataset.
Considering the testing dataset now contains 23 samples that
were entirely unknown throughout the training process. &e
suggested EDTmodel with 10 times repeated 10-fold cross-

validation has excellent prediction performance. Further-
more, there is no overfitting since EDT’s capacity on the
training set is higher than on the testing dataset. While
predicting entirely unknown data, the EDTmodel produces
excellent performance, with the mean values of CC, RMSE,
and MAE ranging from [0.83; 0.925], [2, 3, 6], and [2, 6; 4.3],
respectively. CV1 has the best overall performance based on
all three criteria. As can be observed, the difference between
the training and testing datasets of CV1 is not significant,
and the EDTmodel still performs well, with a CC of 0.925.
Overall, engineers can use this model to estimate the R of
wide-flange beams thanks to its great accuracy.

&e following part presents typical EDT model predic-
tion results derived from the trained and verified EDTmodel
in the previous section. Figure 7 shows the actual and
predicted rotation capacity of wide-flange beams using the
proposed EDTmodel for training and testing datasets. &e
solid lines represent experimental values, and the dotted
ones represent the predicted values. As shown, the target
values of 54 samples in the training dataset are remarkably
similar to the actual findings. Minor mistakes were also
discovered in the test dataset’s remaining samples (23 test
results). &e error levels and correlation between the ex-
perimental findings and the prediction results of the EDT
model described in the next part are used to quantify this
accuracy.

Figure 8(a) shows the EDT model’s distribution and
cumulative error for the training set, while Figure 8(b) shows
those for the testing set. According to the comparison, the
predicted values are close to the experimental value. Besides,
it is simple to calculate the error percentage within a range
using the cumulative distribution line (red line). For ex-
ample, 85 percent of samples with error between the ex-
perimental and simulated EDTvalues are in the range [−3; 3]
for the training data. Similarly, the error range in [−3; 3] is
70% with the testing set.

Furthermore, the regression graphs illustrating the
correlation between the experimental and predicted values
of R of wide-flange beams for the training part (Figure 8(c))
and the testing part (Figure 8(d)) are shown. &e linear
regression lines are relatively close to the diagonals, indi-
cating that the outputs of EDT were highly correlated with
the experimental ones. In summary, Table 2 shows the re-
sults of the EDT model’s three performance evaluation
criteria. &e training set has a better CC value of 0.94, while
the testing set is at 0.925. &e training dataset’s RMSE and
MAE are 3.05 and 2.15, respectively, while those for the
testing dataset are 3.2 and 2.6. &e findings show that the
suggested EDT model is a good predictor and reasonably
forecasts the wide-flange beams’ rotation capacity.

Finally, a comparison of EDT with the deep neural
networks (DNN) model is conducted in this part to confirm
the performance of the tree-based algorithm proposed
herein. With DNN, BFGS quasi-Newton backpropagation
training function is used with a two-hidden layer structure,
each containing 8 and 6 neurons in the first and second
hidden layer, respectively. Trial and error tests are also
conducted, and the tansig activation functions are selected in
the two-hidden layers, whereas a linear function is applied to
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the output layer. &e results (see Figure 9). show that for the
training set, DNN achieves excellent prediction results
(RMSE= 1.70, MAE= 0.33, and CC= 0.972). However, it

seems that the DNN model exhibits overfitting problems as
the prediction results are relatively poor on the testing set
(RMSE= 5.67, MAE= 3.67, and CC= 0.81). Compared with
those obtained with EDT (Table 2), it is clear that the EDT
model is superior to DNN in terms of prediction accuracy
and stability.

4.2. Sensitivity Analysis and Discussion. Sensitivity analysis
can be utilized to study the impact of the value of an in-
dependent factor on the value of a dependent variable based
on certain conditions. It is a technique for forecasting the
result of a choice based on a set of factors. For instance, an
analyst could assess how changes to one factor affect the
outcome by establishing a specific number of variables. &is
technique is applied in conjunction with the constraints set
by a set of input variables.

In this investigation, sensitivity analysis was conducted
to assess the significance of input factors on the wide-flange
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Figure 7: Comparison of the performance of EDTmodel with the
actual values of R in function of: (a) &e training dataset; and (b)
&e testing dataset.
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Table 2: Summary of the various performance evaluation criteria for the EDT model.

RMSE MAE CC
Training 3.05 2.15 0.94
Testing 3.2 2.6 0.925
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Figure 9: Regression analysis between experimental and simulation values calculated by DNN for (a) &e training set; and (b) Testing set.
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beam’s rotation capacity. A significant feature index was
constructed based on different levels of variables from
quantiles 0 to 1 to define the effect of each feature. &e
essential performance index of the seven input variables is
shown in Figure 10. &e yield strength of the flange is the
input variable with the most important feature index (0.515),
followed by the length of the beam (0.5), the thickness of the
web (0.42), the yield strength of the web (0.34), and three less
significant input variables (the height of the web, the
thickness of the flange, and finally half the length of the
flange) with feature indices of 0.275, 0.205, and 0.115, re-
spectively. Overall, four input parameters, namely yield
strength of the flange, length of the beam, the thickness of
the web, and the yield strength of the web, are the most
important features that affect R. &erefore, further in-depth
analysis of the interaction effect of these variables should be
conducted and discussed.

Finally, this part is dedicated to the presentation and
analysis of two-dimensional PDP (Figure 11). As discussed
in Section , calculating PDP enables visualizing the rela-
tionship between variables and analyzing the effect of a
combination of variables on the problem’s output. A 1D-
PDP is generally calculated by fixing six variables and
changing the variable’s value to be studied in the database’s
value domain. However, using 1D-PDP is challenging if the
objective is to analyze the influence of input variables on the
target, mainly due to the complicated relationship and
coupling effect between variables. A 2D-PDP can overcome
the above shortage by including two variables and analyzing
the complex correlation between the two variables affecting
R.

2D-PDP analysis of the four critical input parameters
discussed previously is presented. Figure 11(a) illustrates the
PDP relationship between the length of the beam (L) and the
yield strength of the flange (Fyf ). It is noted that these two
variables have the most significant influence on R, as
previously mentioned. When the values of L and Fyf
change within the database’s constraints, the value of R
varies between 6 and 13. In general, a small L value results
in a large R, and as L increases from 1000 to 4000mm, R
tends to decrease regardless of the value of Fyf. When Fyf
varies between 236 and 800MPa, however, the variation of
R is not uniform. Precisely, R achieves its highest values
when Fyf is about 300MPa. Additionally, there is a special
region in the PDP heatmap in which R approaches a
minimum value (close to 6) when Fyf is between 350 and
600MPa and L is between 3000 and 4000mm. Addi-
tionally, when L values are close to 1000mm and Fyf
approaches 300MPa, R reaches its maximum value. Using
this PDP analysis, structural engineers could have an idea
during the design phase of wide-flange beams to achieve
the desired values of R.

Next, the influence of Fyf and the thickness of the web
(tw) on the value of R is investigated (Figure 11(b)). It can be
seen that, as tw increases, the trend of R increases pro-
portionately, regardless of the value of Fyf. Similar to the
previous analysis, when Fyf is less than or greater than
300MPa, the value of R increases significantly. When tw is
between 10 and 11.5mm and Fyf is less than 300MPa, R

reaches its maximum value. When tw is between 4mm and
7mm and Fyf ranges from 350MPa to 600MPa, R reaches
its minimum value.

Figure 11(c) illustrates the PDP relationship between the
yield strength of web (Fyw) and Fyf and their effect on
R.Different from the two previous cases, a relatively large region
can be observed in which R is minimized. &e heatmap shows
that such a zone is obtained when Fyf varies between 380 and
600Mpa and Fyw varies between 400 and 990MPa.When both
Fyf and Fyw are at their smallest possible values within the
corresponding ranges, R reaches its maximum value. However,
when the values of Fyw and Fyf are within the remaining range,
R undergoes a nonuniform value change. Combining the an-
alyses with respect to Fyf, it could be stated that a high value of R
could be obtained when Fyf is outside of the range from 380 to
600 Mpa. &e maximum R value is obtained when Fyf is about
300MPa, and L and Fyw are minimized, whereas tw is
maximized.

Figure 11(d) illustrates the 2D-PDP interaction between
L, tw, and R. In general, R values increase when tw increases
and L decreases. &e smallest region of R is discovered when
tw is less than 6mm and L is more than 3000mm. When tw
has the greatest value and L has the lowest value within the
boundaries of these inputs, R achieves its maximum value.

&e diagram showing the relationship between L, Fyw
and their effect on R is shown in Figure 11(e). R reaches its
minimum value when L is close to 4000mm, and Fyw
fluctuates over a wide range, from 300MPa to 990MPa. In
general, regardless of Fyw, when the L value decreases, R
tends to increase. R reaches its maximum region when both
L and Fyw have small values in the dataset’s limited range.

Figure 11(f ) illustrates the dependence of tw and Fyw
with respect to R. As can be seen, R tends to increase as tw
increases, regardless of the value of Fyw. However, with
constant values of tw, the change of R is insignificant as Fyw
increases from 300 to 990MPa. &is is also the region in
which R reaches its minimum values when tw varies between
4 and 6mm. On the contrary, when Fyw is below 400 Mpa,
and tw is superior to 8mm, R has the largest value.

Overall, R has a rather complex relationship with input
parameters, especially the four that significantly impact R,
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Figure 10: Feature importance analysis of 7 variables used in this
study.
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resulting from the feature importance analysis and evalu-
ation based on 2D-PDP. Based on the histograms developed
in this study, the EDTmodel can assist engineers in selecting
the appropriate geometric dimensions and material prop-
erties for the structure design phase.

5. Conclusion

Determining the rotation capacity of wide-flange beams has
always been a critical topic in the building industry, par-
ticularly in extreme situations like earthquakes. &is work

constructed and developed the EDT model to handle this
challenge. A database containing 77 experimental results has
been compiled from respectable international journals. &e
correlation between the EDT model’s outputs and experi-
mental values was evaluated using CC, RMSE, and MAE.
According to the findings, the developed EDT model pre-
dicted the rotation capacity of wide-flange beams with great
accuracy (CC� 0.925). Furthermore, the relationship be-
tween input parameters and wide-flange beam rotation
capacity can be determined using sensitivity analysis and
2D-PDP analysis. Overall, the proposed numerical tool
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Figure 11: 2D-PDP analysis showing the relationship between input and output parameters considered in this study.
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based on EDT could be used by structural engineers to
quickly estimate the rotation capacity of wide-flange beams
using the input variables of the current work.
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