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The booming growth of computational abilities in the 21st century has led to its assimilation and benefit in all horizons of
engineering. For civil engineers, these advancements have led to groundbreaking technologies such as BIM, automation, and
optimization. Unfortunately, even in an era of dwindling resources and dire need for sustainability, optimization has failed to
attract implementation in practice. Despite an exponential growth as an area of research interest, the optimization of engineering
structures such as reinforced concrete (RC) is still a complex task that requires multidisciplinary knowledge, hindering its
practicability. Although past review papers have delved into this topic, they have only been able to cover the breadth of in-
formation available by covering broader aspects of optimization of structures. This study on the other hand aims to cover this topic
in depth to uncover problem specific trends and issues, by focusing only on optimization of RC cantilever retaining walls.
Although there is an abundance of research studies on this topic, there is an absence of any critical review to tie them up, and
concurrently with its broader scope, it suffers the same lack of applicability in the field. The in-depth review presents a
summarization of all the online publications including research articles, conference papers, and theses to the best of authors’
knowledge on the topic of RC cantilever retaining wall optimization. Geographical trends, regional developments, and prominent
journals have been identified. The design codes, problem formulation, objectives, constraints, variables, and their optimization
techniques are tabulated for ease of understanding. Unique areas of development investigated by the different researchers have
been highlighted. Lastly, comprehensive recommendations for future works have been detailed with a focus on improving its
applicability and assimilation into the construction industry.

1. Introduction

Concrete is the most common construction product in the
world; in fact in terms of consumption it is second only to
water [1]. This rise is directly related to the success of
reinforced concrete (RC) which offers better durability,
strength, resilience, and insulation in an affordable cost
range compared to other construction materials [2]. How-
ever, it also carries certain disadvantages that are drastically
exacerbated as the global concrete production reached to an
all-time high of 10 billion m’. The construction sector is
responsible for 40% of global energy consumption and 30%
of all greenhouse gases emissions [3, 4]. Cement has a
massive role to play in these negative effects as 85% of the

CO, emissions in construction are related to cement pro-
duction [5]. This sector is also responsible for 15% of total
industrial energy used [6]. It is suffice to say that to achieve
sustainability moving forward is not possible unless the most
used material in construction is somehow improved. In-
tensive research is being carried out on green materials and
alternatives to make construction sector more environment-
friendly; however, the current trends suggest that there has
been a growing interest in computational design optimi-
zation [7]. The focus is to replace the conventional iterative
design practice with the optimized designing as the con-
ventional design is largely dependent on the experience of
the designer and does not guarantee the most economical
design.
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Optimization is the selection of the best possible solution
under a certain set criterion; it is to be performed for specific
objective which is selected by the user. The process of op-
timization is defined by formulation of the problem in a
mathematical form, defining the objective of problem and
the variables, and then application of feasible ranges and
constraints according to provisions of construction [8].
After the mathematical modeling, optimization algorithms
are applied, which can be of deterministic nature requiring
continuous solutions or heuristics that are of probabilistic
nature. Although the first case of optimization of RC
structures dates back to 1960’s, it had to face a standstill due
to the complex nature of variables involved in these real
world problems [9]. It was not until the advent of high level
processors and improvements in their computing power that
optimization of objectives became much easier.

Consequently, since the last decade extensive work has
been carried out on optimization in civil engineering. Milaji¢
et al. [10] provide a brief review of optimization of RC
structures and critique the difficulties in implementation.
Rajput and Datta [11] summarize the optimization tech-
niques utilized for material’s blend and structure design.
Evins [12] covers optimization but from the prospect of
sustainable building systems design. The review of Dede
etal. [13] provides a broad review of optimization within the
different fields of civil engineering. Rahmanian et al. [14]
provided a detailed review of optimization of RC beams, and
Afzal et al. [15] provide a critical review regarding opti-
mization of all RC structures. These literature reviews show
that although significant work has been done, there is little
progress in the practical application of optimization in
design practice. Hence, it is imperative that a more in-depth
critical review should be conducted so that this new subject
area can reach its full potential. For this purpose, the sole
focus of this paper is the optimization of RC cantilever
retaining walls.

Although there are multiple types of Earth retaining
structures, the cantilever retaining wall is the most com-
monly used type because of its economic potential in the
height range of up to 10 m [16]. Due to this reason, this study
only focuses on cantilever walls. Several researchers have
worked on optimizing the design of RC cantilever retaining
walls. One of the first such studies is by Pochtman et al. [17]
who performed optimization of an anchorage cantilever
retaining wall using random search algorithm. Dembicki
and Chi [18] tried to optimize the shape of cantilever
retaining wall using the coordinates as variables using
Monte-Carlo simulation of developed Pareto optimal
equations. However, the novel study was of Saribas and
Erbatur [19] which solidified the direction taken by re-
searchers for problem formulation of RC cantilever retaining
walls and is the most common reference study used by
subsequent researchers. Since then multiple theses (Med-
hekar [20], Purohit [21], Naeem [22], Rahbari [23], and
Schmied and Karlsson [24]), conference papers (Bhatti [25],
Ahmadi-Nedushan and Varaee [26], Villalba et al. [27], Pei
and Xia [28], Papazafeiropoulos et al. [29], Uray and Tan
[30], Al Sebai et al. [31], Srivastavaa et al. [32], and Yiicel
etal. [33]), and journal articles (Ceranic et al. [34], Chau and
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Albermani [35], Babu and Basha [36], Yepes et al. [37],
Khajehzadeh et al. [38], Ghazavi and Bonab [39], Kaveh and
Abadi [40], Khajehzadeh et al. [41], Camp and Akin [42],
Khajehzadeh and Eslami [43], Sable and Patil [44], Sable and
Patil [45], Kaveh and Behnam [46], Kaveh et al. [47], Kaveh
and Khayatazad [48], Khajehzadeh et al. [49], Sheikho-
leslami et al. [50], Talatahari and Sheikholeslami [51],
Gandomi et al. [52], Kaveh and Mahdavi [53], Singla and
Gupta [54], Bekdas et al. [55], Kaveh and Farhoudi [56],
Sheikholeslami et al. [57], Temtir and Bekdas [58], Aydogdu
[59], Kaveh and Laien [60], Gandomi et al. [61], Gandomi
et al. [62], Kumar and Suribabu [63], Rahbari et al. [64],
Ukritchon et al. [65], Kayhan and Demir [66], Mohammad
and Ahmed [67], Kalateh-Ahani and Sarani [68], Moayyeri
et al. [69], Oztiirk and Tirkeli [70], Uray et al. [71], Dag-
deviren and Kaymak [72], Kaveh et al. [73], Kaveh et al. [74],
Kayabekir et al. [75], Konstandakopoulou et al. [76], Mergos
and Mantoglou [77], Kalemci et al. [78], Kayabekir et al.
[79], Hoang and Cong [80], Millan-Paramo et al. [81],
Kashani et al. [82], Uray et al. [83], Ravichandran et al. [84],
Yiicel et al. [85], Kaveh et al. [86], Sharma et al. [87], Mevada
et al. [88], Uray and Carbas [89], Tousi et al. [90], Eroglu
et al. [91], Uray et al. [92], Linh et al. [93], Dodigovic et al.
[94], Tutus et al. [95], Uray et al. [96], Yiicel et al. [97], Tutus
etal. [98], Temiir [99], Shakeel et al. [100], Khajehzadeh et al.
[101], Uray et al. [102], and Khajehzadeh et al. [103]) have
been written on this topic. Despite ample work conducted
that demonstrates the potential of optimization in this field,
its acceptance in practical works is still little to none
[100, 104, 105]. The subject also suffers from a lack of an
extensive review that effectively briefs the plethora of works
conducted and guides the future researchers towards the
crux of difficulties that hinder its acceptance in construction
industry.

Consequently, the aim of this study is to provide an
exhaustive literature review on the optimization of RC
cantilever retaining walls. This paper summarizes the works
conducted into a concise yet perspicuous manner so that
meaningful information can be extracted for future research.
The thought process for collection of data and the regional
trends is detailed in Section 2. Section 3 details the problem
formulation, i.e., the objective functions, the variables, the
constraints, and the different algorithms used by each study.
All the data is tabulated to convey the bigger picture and
reveal the diversity of works conducted till date. Section 4
summarizes the scope of all the research works published
with a highlight on their novelties. Lastly, Section 5 presents
the gaps in research conducted and recommendations for
future works.

2. Methodology

There are two purposes of this detailed review. First is to
summarize all the research that has been conducted on this
topic in a manner of ease of comprehension. The second
objective is to identify key deficiencies and potential research
scopes for the advancement of research and acceptance in
industry in the field of RC cantilever retaining wall opti-
mization. To achieve a comprehensive database, a structured
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methodology was adopted. All research studies, to the best of
authors’ knowledge, that were accessible online have been
considered. The databases used to gather the literature in-
clude Google Scholar, Springer, Taylor and Francis, ASCE,
and Scopus. A collection of 87 research articles, conference
papers, and theses on the specific topic of cantilever
retaining walls and their optimization is obtained. A vast
variety of regions, journals, objectives, optimization tech-
niques, and problem formulation methodology is utilized in
all the studies. It is necessary to split them in a manner where
the data can be converted into meaningful information. This
is accomplished by a detailed tabulation, to convey progress
and complexity of works conducted. Firstly, the regions,
journals, and building codes of active research are presented.
Secondly, a breakdown of problem formulation compo-
nents, i.e., objectives, variables, constraints, optimization
techniques, and software applications used, are presented.
Lastly, the gaps in literature and recommendations for future
work are elaborated to promote research in the area and
increase its practicability.

2.1. Regional Trends. A total of 86 research articles, con-
ference papers, and theses matching the exact requirements
mentioned in methodology are gathered. Roughly 84% of the
database or a total of 73 papers are research articles, 65 of
which have been published after 2010 and onwards. This
trend is graphically visible in Figure 1, which shows a drastic
rise in publications in the past 5 years (2016-2021). A record
high of 18 papers published in 2021 shows the growing
interest as an area of research.

Majority of research papers (20) have been published in
Springer, followed by ASCE (7), Elsevier (5), MDPI (5), and
Techno-Press (4). In terms of countries in which works have
been published, USA (10), UK (9), Germany (9), Turkey (9),
Switzerland (8), Iran (6), and India (7) are identified as major
contributors. The share of contribution of the above countries
and the rest of the contributors can be visualized from Figure 2.

However, in terms of authors/institutional origin, there is a
clear hegemony of Turkish institutes with 24 papers from their
country, followed by 22 from Iran, 10 from India, and 10 from
the USA. This certain trend is due to certain authors and their
massive contribution in the field of RC cantilever retaining wall
optimization throughout the decade. Another factor could be
the earthquake activity in these countries. Iran, Turkey, USA,
and India all lie on active seismic faults. This can lead to in-
crease in construction of RC cantilever retaining walls in such
countries and that they are designed for earthquake forces.
These forces can lead to heavier designs which in turn could
have more potential for objective based optimization, hence,
the greater research interest in optimization of retaining walls
in these specific countries. The share of contribution of authors’
countries of origin is shown in Figure 3.

2.2. Journals of Interests. Another area investigated is the top
journals in which work has been published on the topic of
cantilever retaining wall optimization. Multiple civil engi-
neering journals exist whose aims and scopes are specifically
related to optimization. The “Journal of Structural and

Multidisciplinary Optimization,” “Engineering Optimiza-
tion,” “International Journal of Optimization in Civil En-
gineering,” and “Structural Engineering and Mechanics” are
a few such journals. As optimization covers the aim of
sustainability as well, journals relating to that topic are also
under the umbrella of published works. Apart from that,
journals with multidisciplinary subject considerations such
as computer science and civil engineering, mathematics and
civil engineering, and artificial intelligence and civil engi-
neering are also key areas for publication. Table 1 sum-
marizes the top 10 journals in which the research work
under consideration has been published.

3. Problem Formulation

Optimization must be defined by formulation in a mathe-
matical form; Arora [8] defines it as an objective function
f(x) calculated using the design variables x,, as shown in

min— ormin—: f(x) = f(x), %, X5... X,,). (1)

This function is subject to various conditions as shown in
equation (2). Equality or inequality constraints are given by
h(x) and g (x), respectively, where p and m are number of
constraints to be applied, x;U are upper bounds, and x;L are
lower bounds on ith variable (x).

% subjectto§ m (2)

Their ranges are defined by requirements pertaining to
architectural restraints. Some bounds are given by design
codes, such as the minimum and maximum reinforcement
ratios, and some bounds are derived by experience, like for
concrete sections as described by Saribas and Erbatur [19]
and Bowles [106]. The former study especially has been
crucial to problem formulation in optimization of RC
cantilever retaining walls and has also often been the subject
of comparative analysis for later studies. After the devel-
opment of problem formulation, algorithms are applied.

3.1. Building Codes. RC retaining walls are designed to
mostly resist lateral loads exerted by the retained Earth;
however, considerations for seismic loads can also be made.
The decision of different loads applied is based on multiple
factors such as site conditions, function of wall, ground
water conditions, service life, and serviceability limits. These
limits and their respective safety factors for uncertainty in
loads are defined by building codes. These codes ensure
adequate capacity has been obtained against any type of
failure in each portion of the retaining wall, i.e., stem, heel,
and toe, by treating them as individual members. Provision
of resultant, constrained within the middle third portion of
the base and design checks for overturning moment, sliding
moment, and bearing capacity are applied. The codes also
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FIGURE 1: Trend of research publication on RC cantilever retaining wall optimization by year.
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define the limiting geometric and reinforcement values for
construction of a safe retaining wall. The ACI code domi-
nates with 53 studies using it, followed by IS-456 with 10
studies and Euro code with 9 studies. All the building codes
and a breakdown of ACI codes used are shown in Figure 4.
Apart from building codes, highway codes like AASHTO
and TDOK and seismic codes like EC-7, TBEC-18, and
DBYBHY have also been used.

3.2. Objective Function. Traditionally, minimum weight of
structure had been the chosen objective as this function
bodes well for steel structures or plain concrete structures.
However, RC is a composite material and the weight con-
tribution is not an effective measure to develop a fitness
function to achieve the most economical section. For
reinforced concrete, the cost based function provides the
best results [9]. The function takes into account the total
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TaBLE 1: Journals with most works published on optimization of cantilever retaining walls.

Journal Publisher Journal Studies
country
. . . Kaveh et al. [47]; Temiir and Bekdas [58];
Structural Engineering and Mechanics Techno-Press South Korea Khajehzadeh et al. [103]
.. . . Korean Society of Civil Talatahari and Sheikholeslami [51]; Sheikholeslami
KSCE Journal of Civil Engineering Engineers Germany et al. [57]; Ukritchon et al, [65]
Structural and Multidisciplinary Springer Germany Gandomi et al. [61]; Dagdeviren and Kaymak [72];

Optimization Mergos and Mantoglou [77];
Kalateh-Ahani and Sarani [68]; Kaveh et al. [73];

Khajehzadeh et al. [101]
Turkey Uray et al. [71]; Kayabekir et al. [79]; Eroglu et al. [91]

Periodica Polytechnica Civil Engineering  Budapest University Hungary

Challenge Journal of Structural Mechanics TULPAR Academic

Publishing
International Journal of Engineering Irphouse India Sable and Patil [44]; Sable and Patil [45]; Milldn-
Research and Technology P Paramo et al. [81]
Engineering Structures Elsevier UK Yepes et al. [37]; Gandomi et al. [52]
Journal of Structural Engineering ASCE USA Chau and Albermani [35]; Camp and Akin [42]
Mathematics MDPI Switzerland Moayyeri et al. [69]; Uray et al. [102]

Sustainability MDPI Switzerland Kayabekir et al. [75]; Yiicel et al. [85]
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FIGURE 4: Distribution of building codes used in optimization of retaining walls.

volume of concrete (V) while for steel it accounts for the
total weight (W,). These values can then be multiplied
by unit costs (C, for cost of concrete and C, for cost of
steel) to obtain total costs, by unit emission rates to obtain
total carbon emission or added (by first converting vol-
ume of concrete to weight) to obtain the total weight of
structure.

The paper of Afzal et al. [15] shows an evolution of
objective functions which boils down to material efficiency
(minimum weight) as shown in equation (3), material and
cost efficiency (minimum cost) as shown in equation (4),
environmental performance (minimum carbon emission) as
shown in equation (5), safe design (maximum factor of
safety (FOS) or minimum displacement), and sustainable
design (multiobjective design). The study illustrates that
most work has been done on RC frame structures and
signifies a dire need for research of multiobjective optimal
design of structures. The analysis of literature only on
retaining walls also shows a similar pattern. The most used
categories are cost optimization, weight optimization, car-
bon emission optimization, and factor of safety optimiza-
tion. However, cost optimality is the premier function with
74 studies using it for the development of their optimization
problem. A detailed breakdown of objective function taken
by research studies is illustrated in Figure 5.

f (weight) = W, + 100V y,, (3)
f(cost) =CW, +C.V,, (4)
f (emission) = C,(co,)V + C,(co,)Wy,. (5)

The cost of concrete can be expanded to include the cost
of formwork, transportation, labor, vibration, Earth re-
moval, and cost of backfill as done by Naeem [22], Villalba
et al. [27], Al Sebai et al. [31], Ceranic et al. [34], Yepes et al.
[37], Camp and Akin [42], Sable and Patil [45], Kaveh et al.

[47], Talatahari and Sheikholeslami [51], Kaveh and Far-
houdi [56], Temiir and Bekdas [58], Mohammad and
Ahmed [67], Moayyeri et al. [69], Konstandakopoulou et al.
[76], Mergos and Mantoglou [77], Tousi et al. [90], and
Dodigovi¢ et al. [94]. The cost of varying concrete and steel
strength can also be used for optimization as done by
Villalba et al. [27], Yepes et al. [37], Kaveh et al. [47],
Kalateh-Ahani and Sarani [68], Konstandakopoulou et al.
[76], Tousi et al. [90], and Shakeel et al. [100]. The research of
Mohammad and Ahmed [67] has used cost ratios to simplify
the results and lessen the effect of local currency on optimal
results. The second most used objective is weight minimi-
zation. It is simply an amalgamation of weight of concrete
sections and weight of reinforcement. In case of key the
weight of key is also included in the formulation as done by
Camp and Akin [42], Sable and Patil [45], Gandomi et al.
[52], Gandomi et al. [61], Kalemci et al. [78], Milldn-Paramo
et al. [81], Kashani et al. [82], Sharma et al. [87], and Uray
et al. [102]. Recently the carbon emission minimization
objective has also been an area of interest; optimization with
such an objective has been paired under the umbrella of
sustainable design. Schmied and Karlsson [24], Villalba et al.
[27], Khajehzadeh et al. [49], Oztiirk and Tirkeli [70], and
Kayabekir et al. [75] have tried to optimize the carbon
emissions of retaining walls. Their methodologies involve
taking values of unit carbon emissions for concrete and steel
from reputable databases and multiplying them with total
volume or weight of concrete to obtain total carbon emis-
sions. This value can be then set as objective to be optimized.

The multiobjective optimization is still a developing
concept and has been applied by Purohit [21], Kaveh et al.
[47], Khajehzadeh et al. [49], Rahbari [23], Rahbari et al.
[64], Kalateh-Ahani and Sarani [68], Kayabekir et al. [75],
Ravichandran et al. [84], Uray et al. [92], Dodigovi¢ et al.
[94], and Tutus et al. [95]. The study of Kayabekir et al. [75]
has also attempted to vary the cost of concrete and steel to
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FIGURE 5: Distribution of objective functions used in optimization of retaining walls.

study their effects on optimization with respect to eco-
nomical and sustainable design. Only 11 research studies
have investigated the multiobjective optimization aspect; a
breakdown is provided in Figure 6.

The factor of safety objective is often analyzed as a
multiobjective problem. The problem can be modeled to
maximize safety factors to ensure a safe design in high
seismicity prone regions (Purohit [21] and Dodigovi¢ et al.
[94]) or to minimize to indirectly create an economical
design (Uray and Tan [30] and Uray et al. [92]). However,
one of the first studies to investigate this objective was
Dembicki and Chi [18]. Their study aimed to minimize the
weight of wall while maximizing its stability by deriving
nonlinear Pareto solutions using every point that describes
the geometry of the retaining wall (coordinates of the wall).

3.3. Design Variables. In RC cantilever retaining wall op-
timization, variables are categorized in three groups: con-
crete geometric sections, steel reinforcement bars/areas and
their spacing, and material strengths. All these variables
must be provided with their upper and lower bounds;
otherwise an infeasible section may be obtained. A penalty
function must be applied while using continuous variables
without bounds to ensure the algorithm rejects the infeasible
answer and moves on to a better solution as done by Saribag
and Erbatur [19], Medhekar [20], Srivastava et al. [32], Camp
and Akin [42], Khajehzadeh and Eslami [43], Sheikholeslami
et al. [50], Kaveh and Laien [60], Kumar and Suribabu [63],
Moayyeri et al. [69], Kayabekir et al. [75], and Temiir [99].
The placement and bar diameter of steel plays a vital role and
has been neglected by many studies making it an area of
interest. Consequently, studies of Schmied and Karlsson
[24], Villalba et al. [27], Al Sebai et al. [31], Yepes et al. [37],
Camp and Akin [42], Kaveh et al. [47], Gandomi et al. [61],
Gandomi et al. [62], Bekdas et al. [55], Kayhan and Demir
[66], Moayyeri et al. [69], Oztiirk and Tirkeli [70], Kalemci
et al. [78], Tousi et al. [90], Tutus et al. [95], Temiir [99], and
Uray et al. [102] have tried to optimize steel areas while

keeping in mind the practicality of available rebars and their
spacing. This is achieved by generating a pool of predefined
steel bars and indexing them in tabular form while pro-
gramming. A basic RC cantilever wall with the generic
variables defined is shown in Figure 7.

3.4. Constraints. Constraints are ranges for parameters
which must be specified to obtain values that conform to
structural requirements. They are specified by regional
building codes and ensure that the structure remains within
the limit states to maximize safety and comfort. Constraints
are categorized into three groups: geotechnical require-
ments/external stability, structural requirements/internal
capacities, and geometric feasibility. They are usually applied
as inequality equations to ensure the optimization algo-
rithms do not violate the preset conditions. The following
section broadly explains the type of constraints usually used
for optimization.

3.4.1. External Stability/Failure. The first constraint is to
avoid any type of failure in retaining walls and it is ensured
by applying sufficient FOS on the obtained values of re-
sistances. Overturning failure is caused when overturning
moments (M) due to lateral loads are larger than stabi-
lizing moments (Mp) due to vertical loads applied on the
wall. These resistive forces include gravity load of soil and
overburden, self-weight of wall, and toe of the wall. The
factor of safety for overturning (FS,) about the toe is defined
as in the following equation:

_IM,
° XMy

FS (6)

Sliding failure is caused by pressure applied by backfill
soil and surcharge. The horizontal components of pressure
forces are taken as the total applied horizontal sliding force
(FR). They tend to push the wall away from soil and are
resisted by driving forces (Fp) formed by a combination of
weight of soil, self-weight, and soil on the passive side. In
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FIGURE 7: RC cantilever retaining wall with prominent variables defined.
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case of drastic forces, a key can be provided for another block
of passive soil resistance to horizontal forces. Factor of safety
for sliding (FS,) is defined as in

SRy

FS, = <X
D

(7)

Bearing failure is a failure in which the maximum load
on soil exerted by the base of the wall is greater than the
capacity of the soil. There are two bearing pressures: g,,,,, on
toe due to more overturning moment applied on it and g,,,;,,
on heel having little or negative pressure caused by uplift of

the heel. It is determined by equation (8) and must satisfy the
conditions in equation (9) as well:

Vtota.l < 6€>
.= 1+—1, 8
Imax | min B B ( )
2 max
subject to =1 (9)
Amin 2 O’

where V.., is the total vertical forces, B is the width of the
base, e is the eccentricity of resultant forces, and g, is the
ultimate bearing capacity of soil. g,, is derived through soil
investigations and different capacity calculation theories. The
final check is to ensure that no uplift occurs at the heel of the
wall for which there should be no negative bearing pressure at
the heel, meaning its value must be greater than zero.

3.4.2. Internal Capacity of Sections. The capacity of sections
in shear and flexure must be checked for all three arms of the
cantilever retaining wall. The moments at each section are
calculated and the shear checks are applied at d (effective
depth of section) distance from the face of the stem and at
the face for base slabs. The basic concept is that capacity
(¢Mn and ¢Vn) of the section must be more than the de-
mand (Mu and Vu) at that section. For stem, heel, and toe,
equations (10) and (11) must be true for the capacity check to
be satisfied. In case a key is provided, its capacity check must
also be done.

¢Mn > Mu, (10)

¢Vn>Vu. (11)

3.4.3. Geometric Requirements and Deflection Check.
These bounds ensure that the geometric values of walls are
within a feasible range and yield practical results. A con-
straint in equation (12) to ensure total base width (B) is equal
to the sum of the heel (W), toe (W,), and stem base (T'y,)
widths and a constraint for resultant force (R) in equation
(13) to be acting within the middle third portion have been
applied. Such geometric feasibility checks have been
incorporated by multiple studies to improve the practica-
bility and constructability concerns of optimization
[18, 25, 25, 28, 39, 42, 52, 58, 61, 62, 67, 70-72, 78, 80, 82,
87, 89, 92-94, 98-101]. Apart from these controlling con-
straints, settlement can also be calculated by Newmark’s
sliding block method to control design as performed by

Konstandakopoulou et al. [76]. Settlement can also be cal-
culated for a parametric investigation concerning the width
of the retaining wall as done by Gandomi et al. [61]. De-
flection check is another factor taken as a part of service-
ability limit state of retaining wall. Extensive work was done
by Yepes et al. [37] on deflection limits and they concluded
that a value of 1/150 of stem height is sufficient for practical
optimized design of retaining walls. A deflection check has
been included by the studies of Villalba et al. [27], Al Sebai
et al. [31], Yepes et al. [37], Khajehzadeh et al. [41], Kha-
jehzadeh and Eslam [43], Kaveh et al. [47], Khajehzadeh
et al. [49], and Ravichandran et al. [84].

B>W, +T,, (12)
h sb

Mg — =M
R="2R 0

(13)
VTotal

3.4.4. Eccentricity As discussed earlier, due to large overturning
moments, uplift can be generated at heel. To mitigate this,
pressure at heel must not be negative and an additional check for
eccentricity (e can be applied as done by various studies
[17, 20, 21, 39, 41, 43, 47, 49, 54, 63, 68, 71, 80, 83, 88, 93, 101].
Generally it is defined as in equation (14); it should not be greater
than one-sixth of the total base width (B.

B (EMg-=M,)
e=——-————">".

(14)
2 VTatul

3.4.5. Maximum and Minimum Reinforcement. The area of
steel utilized must be bounded as well to ensure ductile
failure of wall. The bounds for steel are provided by the
building codes of the region. As reinforcement is provided in
each arm of cantilever retaining wall, their bounds are also
calculated separately. It can be either applied as reinforce-
ment ratios or area of steel calculated. Equation (15) must be
satisfied for stem, heel, and toe to attain a feasible design.

Asin S AS< As, (15)
According to ACI code limits of reinforcement are de-

fined as in equations (16) and (17), where p is reinforcement

ratio, b is unit length of wall, and d is effective depth:

Amin = pminbd’ ( 16)

Ay = 0.75p,...bd. (17)

3.4.6. Development and Hook Lengths. All sections of RC
cantilever retaining wall are to be provided with develop-
ment length () or hook lengths (I ,) to develop full
strength against applied forces. This can be applied as an
additional constraint for each section in the mathematical
model [42, 59, 61, 62, 69, 70, 78, 82, 90, 95, 98, 100, 102].
Applied in two phases, first development length according to
the design code being utilized is checked and provided
against available space; in case of insufficient space a hook is
to be provided that satisfies all minimum hook development
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criteria. The heel is developed as top bar and toe as bottom
bar. The hook can be provided with further reduction if
sufficient cover has been provided in design. Equations
(18)-(21) must be satisfied for a feasible design.

Lapstem <T ¢ = Covg, (18)
L stem < T¢—Covg, (19)
Lipheet W, + Ty, — Covy, (20)
Liptoe <Wp + Ty — Covy. (21)

T is footing thickness, Cov is footing cover, Covy is
stem cover, Ty, is stem thickness at bottom, W, is width of
toe, and W, is width of heel.

3.5. Optimization Techniques. A plethora of mathematical
techniques exists to solve linear and nonlinear engineering
problems. The advancements of computers has also enabled
that thousands of such calculations can be done in a matter
of seconds. But the complexities of real world problems are a
multifaceted problem. Although all safety related issues can
be modeled, when it comes to inducing practicability, the
preexisting techniques do not bode well. Real world civil
engineering structures have discrete, nonlinear, and non-
convex solution spaces. It means that gradient based non-
linear programming techniques do not always yield a global
solution and often get stuck in local minima. In these
conditions stochastic methods are the most feasible as they
do not require continuous bounds or gradients and find
solutions based on probabilistic methods with enough it-
erations that solution gets out of a local minima solution to
find the global optimum solution. A summarization of the
entire problem formulation structure of each study is pre-
sented in Table 2. Based on the element of randomness
involved, two general approaches can be derived which are
defined as follows.

3.5.1. Deterministic Approaches. These techniques utilize the
problem function and its gradient information to search a
continuous solution space for optimized solution. This
process is hence possible with continuous variables and they
also require an initial starting point from which it can move
step by step until optimality condition is satisfied. Some
popular techniques to search directions are the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) and Quasi-Newton
method with line search. Gradient based techniques are fast
and efficient as they rely on derivative information; they can
have superlinear rate of convergence for second-order
methods. The benefit of high speed is, however, offset by
uncertainty in achieving global solution as the gradient
methods can at best guarantee local optimality. Therefore,
deterministic approaches are not the best for the optimal
design of RC structures. Only a few studies
[17, 19, 20, 25, 31, 36, 44, 65] have applied nonlinear
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programming (NLP) techniques as the vastly superior
metaheuristic techniques have made their use redundant.
However, studies are being done to combine metaheuristic
techniques with NLP techniques to improve their search
capabilities and computational speeds [31, 49, 93].

3.5.2. Metaheuristic Approaches. Heuristic means “to dis-
cover by trial and error” while meta means “beyond.”
Metaheuristics are advanced heuristic techniques that utilize
best solution to get directions to search in right directions.
Both these methods use probability factors to determine the
next solution, making them stochastic in nature. Meta-
heuristic methods not only provide a global solution but also
do not utilize a lot of computational time. They are best
suited for nonlinear, complex problems with multiple var-
iables. They also have the advantage of not requiring gra-
dients, explicit constraints, and working in a discrete space.
These methods utilize diversification and intensification to
determine which solution is to be examined next and how it
will be produced. Their probabilistic approach does not let
them get stuck in a local minima solution and leads them to
global optimal solution.

4. Research Scope and Novelties

This section details the scope of works conducted and
tabulated above. The uniqueness of these research studies is
presented along with their findings. The review expands
upon the research conducted to shine light on the trend of
works and identify gaps left in this field of study.

4.1. Classical Optimization Algorithms and Their
Advancements. Two major types of algorithms exist to apply
heuristic approaches, namely, population based or evolu-
tionary and swarm based techniques. Evolutionary tech-
niques treat a solution as a chromosome and through the
concept of survival of the fittest, update the entire population
of solution in consecutive iterations. On the other hand
swarm based optimization treats the solution as a particle
and updates its position in solution space. On the basis of
behavioral patterns algorithms can be divided into four
types, namely: biology inspired, art inspired, science in-
spired, and social inspired. Some of the major algorithms
utilized for RC cantilever retaining wall are briefly discussed
here.

4.1.1. Genetic Algorithm (GA). One of the more popular
algorithms is an evolutionary based stochastic technique.
Genetic algorithms developed by Holland [107] involve
biological concepts of evolution and survival of the fittest.
They are heavily influenced by the initial starting values and
parameters. Two main operators, i.e., crossover and muta-
tion, are applied on a solution which is converted into a
binary code and termed as a chromosome. A group of
chromosomes forms a population of solution to ensure
diversification. The crossover ensures intermixing of
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TABLE 2: Summarization of the formulation of RC cantilever retaining wall optimization problem of all available literature.

Ref. Study Objective Variables Constraints Opuml'zauon
No technique
.. . . Constralnt.s. Random search
[17] Pochtman et al., 1988 Minimum cost 5 variables (T, T'f, B, hynchors Fanchor) (internal stability aloorithm
and eccentricity) 8
Minimum 17 constraints
[18] Dembicki and Chi, we}ght; 8 variables (coordinates of wall) (external stabl%lty M.onte—C?arlo
1989 maximum and geometric simulation
factor of safety requirements)
Saribag and Erbatur, Mlm.m.um cost; 7 variables (B, W,, Ty, T ¢, ASgerms ASheel> 19 constraints Nonlinear
t> Lst> 4 f stem heel
[19] 1996 minimum As (internal and rogramming (NLP)
weight toe external stability) prog J
11 constraints
. (internal and .
[20] Medhekar, 1990 Minimum cost 8 variables (T, Tty Ty Wi Wi ASgem: external stability, Interior Penalty
ASpees ASpoe) L function
slip circle, and
eccentricity)
Minimum €osts g 0 obles (T, Topy T W W, As (intil(')rrllaslt rsi:;tislity
[21] Purohit, 2014 maximum s> Sst> 2 f> TTR TRE S0stem> D NSGA-II
ASpeel> ASoe) external stability,
factor of safety -
and eccentricity)
. 9 constraints
[22] Naeem, 2016 Minimum cost 9 variables (Wy, Wi, T Ty Wiep They (internal and GA
Covy, Covy) s
external stability)
Minimum cost; Constraints
[23] Rahbari, 2017 maximum 4 variables W,, W,, T, T f) (internal and NSGA-II
robustness external stability)
Constraints
(internal and
Minimum cost; external stability,
[24] Schmied and minimum 7 variables (T, T T ¢ (t0¢)> deflection, crack  Pattern search (PS);
Karlsson, 2021 carbon T f (heety> T f (between steman dslab) W W) width, and GA
emissions minimum
reinforcement
spacing)
Constraints
(internal stability, ~Generalized reduced
[25] Bhatti, 2006 Minimum cost 5 variables (T, Ty, B, Wy, Ty) external stability, gradient (GRG)
and geometric solver
requirements)
Ahmadi-Nedushan M1n1p1}1m cost; 7 variables (B, W,, T, Ty,» ASgem> ASpeels 10 constraints Particle swarm
t st sb stem heel
[26] minimum (external and N
and Varaee, 2009 . As;,) . s optimization (PSO)
weight internal stability)
Mlgﬁ:ﬁiﬁlsst 20 variables (T, Ty, W), W,, 4 for f. and (extce?rllljlt rsfitleill)tislit
[27] Villalba et al., 2010 f,» 12 variables for primary, secondary, and . - Y SA
carbon Y h internal stability,
.. shear reinforcement) .
emissions and deflection)
25 constraints
. (internal stability,
[28] Pei and Xia, 2012 Minimum cost 9 variables (T, T, Tf > Wi Wi ASgiem(top)> external stability, Complex method
Asstem(b()n)’ Asheel’ Astoe) and geometric (CM)’ GA; PSO’ SA
requirements)
Constraints
[29] Papazafeiropoulos Minimum 6 variables (W), W,, Ty, T 1 (heel)> T Ftoe) (&niffrtna;lnsc'l[::illlllz, an
et al., 2013 volume of wall Df) PIL

shear, and
displacement)
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Ref Study Objective Variables Constraints Optlml.zatlon
No technique
7 constraints
. . (external stability,
[30]  Uray and Tan, 2019 Minimum 4 variables (B, T.f >, W, slope of base of slope stability, and HS
factor of safety retaining wall) !
geometric
requirements)
23 constraints
Minimum cost (internal stability, = Covariance matrix
. (reliability 10 variables (W, W, Ty, Ty, T, D, external stability, adaptation-evolution
(311 Al Sebai et al, 2021 based design ASgem (top)> ASstem (bot.)> ASheel> AStoe) deflection, and strategy (CMS-ES);
optimization) geometric SQP
requirements)
Minimum cost: 12 constraints
Srivastavaa et al., . " 12 variables (T, Ty, W,W),, Wiy, Tiy»  (internal stability,
[32] minimum Y Y . PSO
2022 . ASgem> ASheel> ASpoe) external stability,
weight -
and eccentricity)
16 constraints
(internal stability,
. .. . external stability, TLBO; JA; GA; PSO;
[33] Yiicel et al., 2021 Minimum cost 5 variables (Tf, T, T, Wy, W) and maximum and DE
minimum
reinforcement)
[34]  Ceranic et al, 2001  Minimum cost 7 variables (T'y, T'q,, W, W,, T £, Wiey Tey) Constraints Simulated annealing
2 st % sb> T FRe 2 f> Tlkey Tkey (external stability) (SA)
Chau and Albermani, . . . . . Constramt.s. . .
[35] 2003 Minimum cost 3 variables (T Iz bar diameter, bar spacing) (internal stability Genetic algorithm
and crack width)
Target reliability
index (reliability Constraints Method of Lagrange
[36]  Babu and Basha, 2008 based design B (external stability) multipliers
optimization)
20 variables (T Iz Ty, Wy, W,, Constraints
[37] Yepes et al., 2008  Minimum cost Setstem» fe(tooting> f y(stemp> f y(tooting> 12 (internal stability, SA
’ variables for primary, secondary, and shear external stability,
reinforcement) and deflection)
Constraints Particle swarm
[38] Khajehzadeh et al,, Minimum cost 8 variables (W, Wy, T, Ty, T> ASgtems (internal and optimization w1t.h
2010 ASpee> ASie) external stability) passive congregation
Y (PSOPC)
20 constraints
(external stability,
Minimum cost; eccentricity,
Ghazavi and Bonab, .. > 8 variables (T, Ty, T, Wy, Wy, ASgem geometric Ant colony
[39] minimum sb> Zst> © f B> = stem ; L
2011 . ASpeet> ASpoe) requirements, and optimization (ACO)
weight .
maximum and
minimum
reinforcement)
9 constraints Harmony search
Kaveh and Abadi, . . . (HS); improved
[40] 2011 Minimum cost 7 variables (T, T, T ¢> Theys Wi W, Byp) exi:;:;n;la;ﬁi : harmony search
Y (IHS)
s o orc
[41] Khajehzadeh et al,, Minimum cost 8 variables (T, T, Ty Wi, Wy, Asgem external stability, modified particle

2011

ASpeets ASpoe) swarm optimization

eccentricity, and (MPSO)

deflection)
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ief. Study Objective Variables Constraints Optlml.zatlon
o technique
26 constraints
(internal and
external stability,
Minimum cost; . ge(?metrlc . .
[42] Camp and Akin, 2012 minimum 12 variables (T, T'qp, Tf, Wy, Wy, Wi requirements, Big bang-big crunch
weight Tkey> Brey» ASstem> ASpeet> AStoer ASiey) development (BB-BC)
length, hook length,
and maximum and
minimum
reinforcement)
Constraints
[43] Khajehz:.ideh and Minimum cost 8 variables (T, T, Tp, Wy, Wy, ASgies ex(tleI;;earln :tla;rill(iity, Grayity search
Eslami, 2012 ASpeet> ASpoe) eccentricit q algorithm (GSA)
y, an
deflection)
21 constraints
(internal and
Minimum cost; . external stal?ility, . .
[44] Sable and Patil, 2012 minimum 12 variables (T, T, Tg, W, Wy, Wi geometric Interior point
weight Tieys Brey> ASstem> ASpeer> AStoer ASkey) requlr.ements, and method (IPM)
maximum and
minimum
reinforcement)
21 constraints
(internal and
Minimum cost; . external stal?ility, . .
[45]  Sable and Patil, 2012 minimum 12 variables (T, T, Ty, Wiy Wy, Wi geometrlc Interior point
weight Tkey> Brey» ASctem> ASpeet> AStoer ASiey) requirements, and method (IPM)
maximum and
minimum
reinforcement)
Constraints
(internal and
[46] Kaveh a;(?l ?1)3 ehnam, Minimum cost 7 variables (T, T, T ¢> Theyr Wi W, Byp) af:c(itir;firsrfztr)rth;yr; q S;?i;gfgssg;t;;ls
minimum
reinforcement)
Constraints
Minimum cost; 35 variables (T, T, T > Tiepp» Wis Wy, Bieys (internal and . .
[47] Kaveh et al.,, 2013 minimum S etstemy fe(footing)> 15 ffor bayr diameter an}él external stability, ai\lzlrlist(})lrrnngNggﬁﬁ)
congestion 11 for bar spacing) eccentricity, and 8
deflection)
Kaveh and . . Constraints Ray optimization
[48] Khayatazad, 2014 Minimum cost 7 variables (T, T, T 5> Theys Wi W, Bygp) (internal apfl (RO); PSO; CSS
external stability)
Minimum cost; 1.1 constfainzls gravitjzgifltallvzearch
Khajehzadeh et al,, minimum 8 Variables (T, Ty, T, Wy, Wy, Asgps (interna ane algorithm with
[49] 5014 b " Af external stability,
carbon Sheel> AStoe) eccentricity, and pattern search
emissions deﬂectio;l) (AGSA-PS); GSA;
BB-BC
. . . Constraints Improved firefl
[50] Sheikholeslami et al., Minimum cost 11 variables (T'y, T, Ty Wi W, Treys hmp, (internal and harpmony searc}}:
2014 Asstem’ Asheel’ Astoe’ Askey) (IFA-HS); ACO

external stability)
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Ref. Study Objective Variables Constraints Optlml.zatlon
No technique
Enhanced charged
Constraints system search
[51] Talatahari and Minimum cost 11 variables (T'q, T, T 1, Wi Wi, Teys By (internal and (ECSS); hybrid big
Sheikholeslami, 2014 As , As , Asy., As;,,) . bang-big crunch
stem (top) stem (bot.) heel toe external stablhty)
(HBB-BC); CSS;
PSO; BB-BC
Constraints
(internal ar.l(.l Accelerated particle
Minimum cost; external stability, swarm optimization
[52] Gandomi et al, 2015 minimum 12 variables (T, To, T, Wi Wi, Wiy geometrlc (APSO); firefly
weight Tieys Breys ASstem> ASpeet> AStoer ASiey) requirements, and algorithm (FA); PSO;
maximum and ’ ’
. cuckoo search (CS)
minimum
reinforcement)
Democratic particle
. Constraints swarm optimization
[53) Kaveh a;gllswahda“’ Minimum cost 7 variables (T, Ty, T> Troyr Wi Wy, b)) (internal and (DPSO); colliding
external stability)  bodies optimization
(CBO); PSO; THS
Constraints
(internal and
. external stability,
[54] Singla ggf SGup % Minimum cost 3 variables (Tf, Ty, W) eccentricity, and  Parametric equations
maximum and
minimum
reinforcement)
17 constraints
(internal and
external stability, Teaching learning
[55] Bekdas et al., 2016 ~ Minimum cost 10 var1a}?les (T Tf > Wi Wt.’ 6 for bar spacing of bars, based optimization
diameter and bar spacing) concrete cover, and
. (TLBO)
maximum and
minimum
reinforcement)
. Constraints Dolphin echo
[56] Kaveh arzlf)lllgarhoudl, Minimum cost 7 variables (T, T, T 5, They Wi, W, Bygp) (internal and location (DEO); HS;
external stability) IHS; CSS
(57 Sheikholeslamietal, . T variables (T, To T Wi Wi Ty hiop (Sﬁ::;z‘;‘:d IFA-HS; IFA; HS;
2016 ASgtems ASpeets AStoer ASpey external stability) ACO
29 constraints TLBO; improved
(internal and teaching learning
external stability,  based optimization
[58] Temiir and Bekdas, Minimum cost 11 variables (T'y, Ty, Wy, W, T, 6 for bar geometric (ITLBO); modified
2016 diameter and bar spacing) requirements, and  teaching learning
maximum and based optimization
minimum (MTLBO); PSO; BB-
reinforcement) BC; IHS
Constraints
(internal and
external stability, ~Biogeography based
13 variables (B, W, Wy, ), Ty, T» Ty» Ty,  spacing of bars,  optimization (BBO);
[59] Aydogdu, 2016 Minimum cost Bieys ASgtem(top) ASstem (bot.y> ASheel> development biogeography based
Stoe> ASey) lengths, and optimization with

maximum and
minimum
reinforcement)

Levy flight (LFBBO)




Advances in Civil Engineering

TaBLE 2: Continued.

15

ief. Study Objective Variables Constraints Optlml.zatlon
o technique
. Vibrating particle
[60] Kaveh and Laien, Minimum cost 7 variables (T, T, T ¢, Trpys Wiy Wy, by, ) (i(rjl(i::rtg;lg:lsd system (VPS);
2017 st Ssb> 2 f> “key> T THe> Ttop external stability) enhanced colliding
Y body (ECBO); CBO
26 constraints
(internal and
external stability,
Minimum cost; . reifl(i)felri[glcts, BBO; GA.; differential
[61] Gandomi et al., 2017 minimum lévarla};)les (ZSE” T“ATf ’ ‘/Xh’ WtA’ Wiey» development elvo1ut10n (DE);
weight key> Brey> ASstem> ASpeet> ASioer ASiey) lengths, hook evo utlongrsy strategy
lengths, and (ES)
maximum and
minimum
reinforcement)
26 constraints
(internal and
external stability,
geometric
Minimum cost; . requirements, .
[62] Gandomi et al., 2017 minimum 12 variables (T, T, Ty Wi We Wieys djvelopment Interior search

weight Tkey’ Bkey’ Asstem’ Asheel’ Astoe’ Askey) lengths, hook
lengths, and
maximum and
minimum
reinforcement)
10 constraints
[63] Kumar and Suribabu, Minimum 7 variables (B, Ty, Ty Wy, ASgem> ASpee»  (internal stability,

2017 weight As,,,) external stability,
and eccentricity)
Minimum cost; Constraints

[64]  Rahbari et al., 2017 maximum 4 variables (W, W, Ty, T§) (internal and
robustness external stability)

11 variables (W, W,, Ty, Ty, Ty, Df, (ijfe :ﬁiﬁ;ﬁ?ﬁi
[65] Ukritchon et al, 2017 Minimum cost  Asg,,,, ASy.p» ASy> 2 for coordinates of ey
wall) external stability,

and slip circle)
15 constraints
(internal and
external stability
and maximum and
minimum
reinforcement)
20 constraints
(internal stability,
MXE?:;??OT ;1 d Minimum cost 6 variables (T'y,, Ty, Wy, Wy, Asg,,,, Asy)  external stability,
’ and geometric
requirements)
Constraints
(internal and
Kalateh-Ahani and M1n1.r11}1m cost 9 variables (B, Ty, Wy, Wi, Wiy, Theys By external‘ §tab111ty,
Sarani. 2019 mlnlmum ¥ ¥ ‘ y y y eccen.tr1c1ty, and
’ displacement c(stem)> J c(footing) maximum and
minimum
reinforcement)

Kayhan and Demir,

[66] 2018 Minimum cost 7 variables (T, T, T 5, They Wi, W, Bygp)

(67]

algorithm (ISA)

Differential
evolution algorithm
(DEA); PSO

NSGA-II

NLP

Differential genetic
algorithm (DGA)

Evolutionary
algorithm (EA)

NSGA-II
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ief. Study Objective Variables Constraints Optlml.zatlon
o technique
26 constraints
(internal and
external stability,
geometric
. requirements,
[69] Moayyeri et al., 2019 Minimum cost 12Tvarle;;)les (IZ“’ TS”ATf ’ Vxh’ WZ Wiey: development PSO
key> Pkey> Sstem> “3Sheel> “AStoe> Skey) lengths, hook
lengths, and
maximum and
minimum
reinforcement)
25 constraints
(internal and
external stability,
) Minimum cost; recg;?rrzrizlrfts
[70] Oztiirk and Tirkeli, minimum 12 variables (T'y, Ty, T B W, Wiy, Tke),, development’ Jaya algorithm (JA)
2019 carbon Bieys ASgtems ASpeet> AStoer ASiey) lengths, hook
emissions ’
lengths, and
maximum and
minimum
reinforcement)
Constraints
[71]  Uray et al, 2019 M;Z‘irgn}ftm 4 variables (B, W, T, angle of footing) (eﬁfﬂ”glzloit;lt’rl?cty HS
requirements)
12 constraints
. . (internal stability, Artificial bee colony
[72] D;gdewlzer; aznd Minimum cost © variables (TSZ’ T Zf > Wi Wi Asgiems external stability, ~ (ABC); parametric
aymak, 2020 Sheet> ASroe) and geometric equations
requirements)
Imperialist
competitive
algorithm (ICA); tug
of war optimization
Constraints (Z\YZC?r’th\ilziler
[73] Kaveh et al,, 2020  Minimum cost 7 variables (T, T, Ty Tiey Wi Wy hmp) (internal and N ti}r)nization
1 stability) p .
externa Y (WEO); cyclical
parthenogenesis
algorithm (CPA);
BB-BC; TLBO; CS;
CSS; RO; VPS; ABC
Shuftled shepherd
Constraints al SEEE?;Z?;ISOS A);
[74] Kaveh et al, 2020 Minimum cost 7 variables (T, T T'f Trey» Wi Wi by ) (internal and BgB-BC; cs; CSS;)
external stability) ICA; RO; TWO;
WEO
16 constraints
Minimum cost; (internal and
. minimum 8 variables (T, T, T, W,, W,, As,., external stability, Flower pollination
[75]  Kayabekir et al,, 2020 carbon Sfﬁsh;t,, Aj;me) e e maximum andy algorithnf (FPA); HS
emissions minimum
reinforcement)
Konstandakopoulou .. . Constralnts . .
[76] et al,, 2020 Minimum cost 4 variables (B, Ty, Ty, Tp) (internal and Parametric equations

external stability)
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Ref. Study Objective Variables Constraints Optlml.zatlon
No technique
Constraints
(external stability,
Mergos and . . eccentricity, and ) .
[77] Mantoglou, 2020 Minimum cost 6 variables (Tf, Ty, Ty, Wy, Wy, Tkey) maximum and FPA; PSO; GA
minimum
reinforcement)
26 constraints
(internal ar}fi Grey wolf
external stability, A
. optimization
geometric (GWO);
.. . requirements, L7
[78]  Kalemdi et al,, 2020 Minimum 12 variables (T, Ty, T, W, B, Wi, T 0 dgvelopment backtracking search
? weight Bieys ASgioms> ASpeels ASioer ASkey) algorithm (BSA); BB-
y Y lengths, hook
lengths, and BG; GA; DE; ES:
o PSO; APSO; FA; CS;
maximum and
.. ISA
minimum
reinforcement)
16 constraints
(internal and
[79] Kayabekir et al., 2020 Minimum cost 8 variables (Tip, Tsts Tps Wi Wi ASstomy exterl}al stability, JA
ASpeet> ASpoe) maximum and
minimum
reinforcement)
12 constraints
(internal and
Hoang and Cong, Minimum . external stability, Differential
[80] 2020 weight 7 variables (T, Ty, T Wi Wy, H, Df) eccentricity, and evolution
geometric
requirements)
21 constraints
(internal and
external stability, . .
Millan-Paramo et al., Minimum 12 variables (T, T, T s/, W,, B, W, Trors geometric M0d1ﬁed s1mul.a ted
[81] sb> st S f 7t key> = key annealing algorithm
2020 weight Bieys ASctem> ASpeer> AStoes Askey) requirements, and (MSAA)

maximum and
minimum
reinforcement)
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ii)ﬁ Study Objective Constraints Ofetglnriizgltlleon
PSO; MPSO;
improved particle
swarm optimization
(IPSO);
comprehensive
learning particle
swarm optimization
(CLPSO);
heterogeneous
26 constraints comprehensive
(internal and learning particle
external stability, —swarm optimization
geometric (HCLPSO);
Minimum cost; . requirements, extraordinary
[82]  Kashani et al., 2020 minimum 12Tvar1a;)les (ZSb’ T“ATf ’ ‘/Xh’ WZ Wiey: development particle swarm
weight key> Phey> 43 Shect> AStoer AStey) lengths, hook optimization
lengths, and (EPSO); fractional-
maximum and order Darwinian
minimum PSO (FDPSO);
reinforcement) improved random
drift PSO (IRDPSO);
autonomous particle
groups for particle
swarm optimization
(AGPSO); time
varying acceleration
particle swarm
optimization
(TACPSO)
7 constraints
. . external stability,
[83] Uray et al., 2020 Minimum 7 variables (B, Ty, T, W, Wi, ( geometric i ABC
weight Ty, Batter slope) 5
requirements, and
eccentricity)
Minimum cost;
Ravichandran et al., . ’ . Target reliability
[84] 2020 rmoiilsr?ntt; 4 variables (B, W,, T, T f) and deflection NSGA-II
16 constraints Adaptive hybrid
(internal and harmony search
. .. . external stability, = (AHHS); AHS; HS;
[85] Yiicel et al., 2021 Minimum cost 5 variables (Tf, Ty Ty Wy, W) maximum andy GA: DE: PSO; FA;
minimum ABC; TLBO; FPA;
reinforcement) GWO; JA
14 constraints
Minimum cost; ex(tterll'f:ln ztlairill(ii Plasma generation
[86] Kaveh et al., 2021 minimum 7 variables (T, T T f> Theyr Wis W, Byp) cometric v, optimization (PGO);
weight & CS; TLBO
requirements, and
angle of footing)
1§ constraints Butterfly
(internal and .
Minimum cost; external stability, alg(z)git':ﬁlr;z?;oonA)'
[87]  Sharma et al., 2021 minimum 12 variables (T, T Ty Wi B, Wiy, Tiey geometric g Symbiosis organism
weight ASpeer> AStoer ASgey) requirements, an search (SOS)

maximum and
minimum
reinforcement)

algorithm; h-
BOASOS
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TaBLE 2: Continued.

Ref. Study Objective Variables Constraints Optlml.zatlon
No technique

10 constraints
8 variables (T', T'¢, Tharter» Wi Wis AStoms (internal and
ASpeer> ASypp) external stability,
eccentricity)
9 constraints
Uray and Carbas (external stability in
[89] 2021 > Minimum cost 5 variables (T'f, T, Ty Wy, Wy) static and dynamic ~ HS; MABC; PSO
case, geometric

requirements)

23 constraints

(internal and

external stability, Gases Brownian
maximum and  motion optimization
minimum algorithm
reinforcement, (GBMOA); bacterial
development foraging
lengths, stem slope optimization BFOA;
control, and ACO; NLP
minimum depth of
footing)

12 constraints
(internal and
external stability,
maximum and
minimum
reinforcement)

7 constraints
(external stability,
4 variables (B, Ty, W, batter slope) slope stability, and HS
geometric
requirements)
12 constraints
(internal and

. Minimum . external stability,
[93] Linh et al., 2021 weight 5 variables (T, B, W, W,, hy,,) eccentricity, and

[88] Mevada et al, 2021 Minimum cost FPA; NSGA

20 variables (B, T, T, Tf, W,, 12 for

Minimum cost; . d
[90] Tousi et al., 2021 minimum ASstom> ASpect Asio, (compressive an

weight tensile) and f ), 2 fo.r S etstemys fe(footing) and
bar diameter)

[91] Eroglu et al,, 2021 ~ Minimum cost 7 variables (T, T, Ty, W), Wy, h

stem)

Minimum

[92] Uray et al,, 2021 factor of safety

DE-feasibility rule-
based constraint-
handling (FRBCH)

geometric
requirements)
Minimum cost;
maximum . .
factor of safety COIlSltralll;Fls.
[94] Dodigovi¢ et al., 2021 (sliding); 2 variables (B, Df) (external stability NSGALI
maximum an.d maximum
factor of safety reinforcement)
(bearing)

26 constraints
(internal and
external stability,
geometric
requirements,
development
lengths, spacing of CS

reinforcement,
maximum
reinforcement,
minimum
reinforcement, and
minimum cover)

Minimum cost;
[95] Tutus et al., 2021 minimum
weight

12 variables (T, Ty, T, Wy B, Wi, T s
Bkey’Asstem’ Asheel’ Astoe’ Askey)
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Ref. Study Objective Variables Constraints Optlml.zatlon
No technique
Minimum 7 constraints
weight (robust (external stability,
[96] Uray et al., 2021 gdesign 4 variables (B, Ty, W, batter slope) slope stability, and  Scatter search (SS)
optimization) geometric
requirements)

16 constraints
(internal stability, ~ Flower pollination

. . . external stability, algorithm based
[97] Yiicel et al., 2021 Minimum cost 5 variables (T'f, Ty, T, Wy, W) and maximum and artificial neural
minimum network (FPA-ANN)
reinforcement)

30 constraints
(internal and
external stability,

geometric
Minimum cost; Igg\tlc}f(f;)nn:g:lst’ Improved flower
[98] Tutus et al., 2021 minimum 12 variables (T, T Ty, Wi, B, Wy T lengths, spacing of pf)lhnatlon
weight Breys ASctem> ASpeet> AStoer ASiey reinforcement algorithm (IFPA);
. > FPA,PSO, DE; GWO
maximum
reinforcement,
minimum
reinforcement, and
minimum cover)
Constraints Hybrid teaching
(internal and learning based
24 variables (B, Ty, Ty, Ty, WsByey» Wiy,  external stability, optimization
[99] Temiir, 2021 Minimum cost Tey» 16 for primary and secondary geometric (HTLBO); TLBO;
reinforcement in stem, heel, toe, and key) requirements, and BB-BC; BBO; FPA;

reinforcement HS; PSO; GWO; JA;
spacing) Rao-1; Rao-2; Rao-3
23 constraints
(internal and
external stability,
geometric
. requirements,
[100] Shakeel et al., 2022  Minimum cost 10 variables (W, W, Ty, Ty T s ASitems de(:lvelopment EA
Asheel’ Astae’ fc’ fy) lengths, hook
lengths, and
maximum and

minimum
reinforcement)
16 constraints Particle swarm sine-
(internal and cosine algorithm

. external stability, (PSSCA); sine-cosine
Minimum cost ° variables (g, Ty T Wi We At eccentricity, an}é algorithm (SCA);
ASheets AStoe) maximum and tunicate swarm
minimum algorithm (TSA);
reinforcement) GSA; GWO

Khajehzadeh et al,,

[101] 2022
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TaBLE 2: Continued.

Ref.

No Study

Objective

Variables

Optimization

Constraints .
technique

26 constraints
(internal and

external stability, Taguchi method

Minimum cost; geometric integrated hybrid
minimum . requirements,
[102]  Uray et al., 2022 weight (robust 12 variables (B, T, Ty Ty» WeBrey> Wiy development harmony search
. Trey> ASgtems ASpeers ASoer ASiey) algorithm
design key> “Pstem> £% heel> 2 toe> “Hkey lengths, hook
optimization) len th; and (TIHHSA); BBO;
P gHs, GA; DE; ES
maximum and
minimum
reinforcement)
17 constraints Sperm swarm
(internal stability, optimization (SWO);
[103] Khajehzadeh et al,, Minimum cost 8 variables (T, T, Ty, Wy, Wy, ASgems external' stability, adaptlve. sperm
2022 ASpeer> Aspy,) and maximum and swarm optimization
minimum (ASSO); GSA; GWO;
reinforcement) SCA

successful parent chromosome to obtain a better solution
while the mutation factor randomly changes an individual
component of the binary code, termed as gene, to again
ensure diversification of population. The genetic algorithm
(GA) is one of the most successful techniques used due to its
simplistic design and ease of application. In case of retaining
walls, multiple studies have either successfully applied the
GA to obtain optimized designs or have used GA for
comparative analysis (Purohit [21], Naeem [22], Rahbari
[23], Schmied and Karlsson [24], Pei and Xia [28], Papa-
zafeiropoulos et al. [29], Yicel et al. [33], Chau and
Albermani [35], Kaveh et al. [47], Gandomi et al. [61],
Rahbari et al. [64], Kayhan and Demir [66], Kalateh-Ahani
and Sarani [68], Mergos and Mantoglou [77], Kalemci et al.
[78], Ravichandran et al.[84], Mevada et al. [88], Dodigovi¢
etal. [94], and Uray et al. [102]). The above studies prove the
effectiveness of GA in providing optimized results; however,
it is seen that modern algorithms perform slightly better in
terms of percentage of optimization and significantly better
in terms of rate of convergence. The above studies do
conclude GA as being superior to other classical techniques
such as differential evolution (DE) and evolutionary strategy
(ES). The improved form of GA, i.e., nonsorting genetic
algorithm (NSGA-II), performs significantly better and
comparable to modern algorithms. The NSGA-II is also able
to handle multiple objectives which is the reason for its ever
increasing popularity among multiobjective studies.

4.1.2. Harmony Search (HS). It is another population based
evolutionary technique developed by Geem et al. [108]. They
are art inspired algorithms mimicking the improvisation of a
musician. The goal is to seek the fantastic harmony or the
best function determined by aesthetic estimation. This is
achieved by recombination of variable values stored in its
harmony memory (HM) and tweaked by parameters such as
the harmony memory size (HMS), the harmony memory
considering rate (HMCR), and the pitch adjusting rate
(PAR). The harmony search (HS) is also able to perform

local and randomization searches and replace bad solutions
with those of good harmony due to its memory function. It
has also been used by several studies to optimize retaining
wall design and has proven its effectiveness and robustness;
see, for example, the papers of Uray and Tan [30], Kaveh and
Abadi [40], Kaveh and Behnam [46], Sheikholeslami et al.
[50], Kaveh and Mahdavi [53], Kaveh and Farhoudi [56],
Sheikholeslami et al. [57], Temiir and Bekdas [58], Uray et al.
[71], Kayabekir et al. [75], Yiicel et al. [85], Uray and Carbas
[89], Uray et al. [92], Temiir [99], and Uray et al. [102]. The
HS has also been improved over the years by updating its
memory considering rate, randomization, and local search
capabilities. Kaveh and Abadi [40] researched on improved
harmony search and evidenced improvement in results
especially in convergence rate. Sheikholeslami et al. [50] and
Sheikholeslami et al. [57] combined firefly algorithm (FA)
with HS to form improved firefly algorithm-harmony search
(IFA-HS) which had significantly better local search capacity
and provided better results than improved firefly algorithm
(IFA) and HS considered individually. Uray et al. [102] have
tried to solve the computationally exhaustive process of
metaheuristic algorithms by combining it with a statistical
technique called Taguchi method. The Taguchi method
utilizes orthogonal array for the parameters involved and
calculation of signal to noise ratios (S/N ratio) to decrease
number of trials required and the variance in the mean value.
This drastically improves the performance of HS algorithm,
which is evidenced by its superior performance against
biogeography based optimization (BBO), GA, DE, and ES.
Lastly, HS has also been utilized in multiobjective studies by
Kayabekir et al. [75] and Yiicel et al. [85], the later of which
developed adaptive hybrid harmony search (AHHS) and
compared it with adaptive harmony search (AHS) and HS.
AHHS is a composite algorithm being a mixture of Jaya
algorithm (JA) and HS. The result is a robust algorithm with
a significantly decreased standard deviation rate and
variance.
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4.1.3. Particle Swarm Optimization (PSO). It is a swarm
based optimization that mimics the social behavior and the
movements of insects or animals in swarms. Developed by
James and Eberhart [109], it considers each solution as a
particle moving through the solution search space. Each
particle is given a specific velocity and position in the search
space. The particles are attracted to local best and the global
best positions and move accordingly. It combines the local
and global searches by inducing a weighting or inertia factor
to the velocity to act as tradeoft between two searches. After
iteration the positions of the particles are updated and the
solution moves closer to global optima. Particle swarm
optimization (PSO) is also a popular algorithm to optimize
structural design and as opposed to evolution based algo-
rithms like GA, PSO is a swarm based technique. It has been
successfully employed by Ahmadi-Nedushan and Varaee
[26], Pei and Xia [28], Srivastavaa et al. [32], Yiicel et al. [33],
Khajehzadeh et al. [38], Khajehzadeh et al. [41], Khajehzadeh
and Eslami [43], Talatahari and Sheikholeslami [51], Gan-
domi et al. [52], Kaveh and Mahdavi [53], Temiir and Bekdas
[58], Kumar and Suribabu [63], Moayyeri et al. [69], Mergos
and Mantoglou [77], Kalemci et al. [78], Kashani et al. [82],
Uray and Carbas [89], Tutus et al. [98], and Temiir [99] to
optimize RC cantilever retaining walls. The above studies
evidence the speed of convergence of PSO and standard
deviation is superior to other classical algorithms. Despite
this, over the years research has been conducted to further
improve upon the PSO. Khajehzadeh et al. [38] used an
improved form of PSO using passive congregation, i.e.,
particle swarm optimization with passive congregation
(PSOPC) with newly derived velocity equations. They
concluded that PSOPC can significantly improve the con-
vergence rate and improves search performance on objective
functions when compared with PSO. Gandomi et al. [52]
utilized accelerated form of PSO, i.e., accelerated particle
swarm optimization (APSO), and compared it with other
swarm techniques. In APSO, the particle’s best position
parameter is removed to accelerate the algorithms, and a
new velocity vector equation is generated. They demon-
strated that although APSO is quicker, its fast convergence
affects its results and it performs poorly compared to other
swarm techniques. Khajehzadeh et al. [41] further improved
the PSOPC by providing an updated particle velocity
equation by introducing a restriction factor. This velocity
restriction factor is the base of the new modified particle
swarm optimization (MPSO). Kaveh and Mahdavi [53]
researched on optimization using democratic particle swarm
optimization (DPSO) and compared it with PSO and other
swarm algorithms. DPSO works by enhancing the perfor-
mance of PSO by helping the agents receive information
about good regions of the search space and letting some poor
particles to be retained in swarm. For this purpose a new
term is added to the velocity vector of PSO which represents
this democratic effect. They concluded that DPSO performs
better optimization than PSO by addressing its premature
convergence problem. The latest study of Kashani et al. [82]
provides perhaps the most comprehensive study on PSO
algorithm for retaining wall optimization. It compares a
plethora of PSO algorithms, ie., PSO, MPSO, improved
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particle swarm optimization (IPSO), comprehensive learn-
ing particle swarm optimization (CLPSO), heterogeneous
comprehensive learning particle swarm optimization
(HCLPSO), extraordinary particle swarm optimization
(EPSO), fractional-order Darwinian PSO (FDPSO), im-
proved random drift PSO (IRDPSO), autonomous particle
groups for particle swarm optimization (AGPSO), and time
varying acceleration particle swarm optimization (TACPSO)
in an effort to provide a comprehensive review and to
discover the superior technique. Their results indicate all
PSO algorithms are capable of solving the retaining wall
optimization problem; however, in terms of mean and
standard variation the superiority of HCLPSO and EPSO
was evident.

4.1.4. Simulated Annealing (SA) Algorithm. The simulated
algorithm (SA) was developed by Kirkpatrick et al. [110] and
it mimics the process of annealing of metals. Annealing is a
type of heat treatment of metals in which a metal is heated to
specific temperature and then allowed to cool down till its
lowest energy state. The recrystallization which occurs this
way improves the properties of metal. The algorithm uses the
same analogy to bring an objective function to a minimum
(lowest energy state). A solution is randomly generated with
high energy and temperature and monitored by Boltzmann
factor. The temperature is decreased in each iteration by a
factor called cooling coefficient and a number of iterations
allowed at each step are called Markov chain. When the
temperature drops to zero or is minimum an optimal so-
lution has been obtained. It has been successfully employed
for optimization of a retaining wall problem by Villalba et al.
[27], Pei and Xia [28], Ceranic et al. [34], and Yepes et al.
[37]. Recently, the study of Millan-Paramo et al. [81] pro-
posed the modified simulated annealing algorithm (MSAA)
which improves the performance of SA by introducing three
stages of cooling and new parameters that improve the
search capabilities of the algorithm.

4.2. Application of Advanced Metaheuristic Algorithms.
Many studies have worked on developing methodologies to
optimize the design of RC cantilever retaining walls by more
advanced and newly developed algorithms. The success of
newly developed algorithms is tested by comparative anal-
ysis and its robustness is tested through a sensitivity analysis.
The objective is to find the most potent algorithm that can be
easily applied or handle the difficulties of real world
problem.

4.2.1. Gravitational Search Algorithm (GSA).
Khajehzadeh and Eslami [43] developed methodology to
apply gravitational search algorithm (GSA) that mimics the
law of gravity and mass interactions on retaining walls. It is a
swarm based optimization algorithm that considers indi-
vidual solutions as agents with masses calculated using
fitness functions. All of the objects attract each other by the
gravity force and the heaviest masses (good solutions) have
the biggest pull. Hence, after some time all agents will be
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attracted to a region of optimum solution. They compared it
to PSO and GA and demonstrated its effectiveness in
comparison to the classical algorithms. GSA has further been
used by Khajehzadeh et al. [101] and Khajehzadeh et al. [103]
for comparative analysis with other algorithms and im-
proved upon in Khajehzadeh et al. [49] as adaptive gravi-
tational search algorithm with pattern search (AGSA-PS). It
combines an improved form of GSA called adaptive grav-
itational search algorithm (AGSA), which has improved
global search capabilities due to inclusion of opposition-
based learning. The improved AGSA is then combined with
pattern search (PS), which is an NLP technique which
improves its local search capabilities. The end result is an
algorithm that has improved performance over GSA and big
bang-big crunch (BB-BC) algorithm.

4.2.2. Dolphin Echo Location (DEO). Kaveh and Farhoudi
[56] worked on a nature inspired algorithm called dolphin
echo location (DEO). It has self-adaptive capabilities and it is
based on the communication method of dolphins, i.e.,
echolocation (use of sound waves and their reflections to
evaluate surroundings). In this optimization method user
feeds a predefined convergence curve on which optimization
needs to be performed based on convergence factor. The
algorithm optimizes the curve and reduces search space in
each loop until desired fitness is achieved. Comparisons with
HS, improved harmony search (IHS), and charged system
search (CSS) are detailed which show DEO achieved better
results and higher convergence than its counterparts.

4.2.3. Teaching Learning Based Optimization (TLBO).
Temiir and Bekdas [58] optimized the design of a retaining
wall using teaching learning based optimization (TLBO). It
mimics the process of learning in a classroom by declaring
the set of solutions as a class of students. The best solution is
assigned as teacher and the class learns from it and then the
students interact with each other and improve themselves
further in learning phase. Based on changes in equations of
the algorithm’s parameters, modified TLBO (MTLBO) and
improved TLBO (ITLBO) were also proposed. They con-
cluded by demonstrating the effectiveness and robustness of
the TLBO algorithms as compared to the traditional heu-
ristic algorithms such as PSO, BB-BC, and IHS. It has also
been used by studies of Yiicel et al. [33], Bekdas et al. [55],
Kaveh etal. [73], Kaveh et al. [86], and Temiir [99]. The study
of Temiir [99] proposes an improved version of TLBO which
uses equations of different algorithms like flower pollination
algorithm (FPA), JA, Rao-1, Rao-2, and Rao-3 for pop-
ulation generation and then applies TLBO for optimization
of selected population. The end result is a more robust al-
gorithm compared to TLBO, BB-BC, FPA, PSO, BBO, HS,
grey wolf optimization (GWO), and Rao algorithms.

4.2.4. Jaya Algorithm (JA). Oztiirk and Tiirkeli [70] formed a
framework to apply the newly developed Jaya algorithm (JA)
to minimize emissions of a retaining wall. The algorithm
tries to achieve success by moving towards good solutions
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and avoids failure by moving away from bad solutions. Jaya
algorithm is superior in the sense that it does not require any
other parameters except population size and number of
generations. They demonstrated JA as an effective tool to
apply optimization by a parametric analysis. Further studies
which have successfully employed the JA are Yiicel etal. [33],
Kayabekir et al. [79], Eroglu et al. [91], and Temiir [99].

4.2.5. Flower Pollination Algorithm (FPA). Mergos and
Mantoglou [77] proposed a framework for a newly devel-
oped nature inspired algorithm, namely, flower pollination
algorithm (FPA). The FPA follows the process of pollination
by biotic process (global search) and abiotic pollination
(local search) by pollinators. It also takes into effect the
flower constancy meaning only specific flowers may be
selected to extract nectar while ignoring others. The can-
didate solution is representation of a flower and solution
space is formed by n number of flowers. The Levy flight
factors are applied to generate movement of pollination
process which leads to an optimum solution. A detailed
parametric analysis was carried out for algorithm parameters
of FPA to standardize a framework. Apart from that,
comparisons with GA and PSO were drawn which showed
that FPA outperforms GA and PSO in terms of variability.
Kayabekir et al. [75], Mevada et al. [88], and Temiir [99] also
utilized FPA and evidence its capabilities and effectiveness.
Yiicel et al. [97] produced a hybridized algorithm by
combining the metaheuristic technique of FPA with a
machine learning technique called artificial neural network
(ANN). It involves application of FPA and then ANN
successively. FPA performs the optimization and ANN
performs the predication process to improve the direc-
tionality of parameters and objective functions, reducing
errors and improving solution search in each iteration.
Lastly, Tutus et al. [98] have developed an improved form of
FPA, namely, improved flower pollination algorithm
(IFPA). It improves upon the global search capabilities of
FPA by combining it with DE algorithm. The IFPA is shown
to have better statistical performance than FPA, DE, PSO,
and GWO algorithms.

4.2.6. Shuffled Shepherd Optimization Algorithm (SSOA).
Kaveh et al. [74] optimized the cost of a retaining wall using
a newly developed shuffled shepherd optimization algorithm
(SSOA). SSOA is a population based algorithm inspired by
herding behavior of shepherds. The candidate solution is
considered as a herd of sheep which is then ranked based on
penalty functions and then divided into smaller herds. Each
sheep (solution) is considered as a shepherd one by one and
improved by the horses (better solutions) by moving their
positions. Hence, it first randomly generates candidate so-
lutions, ranks them in ascending order using penalized
objective function, divides the solutions into subsets, de-
termines a step size for each element, and applies exploi-
tation and exploration on good and bad candidate solutions
using factors. Again, elements are ranked but now are
replaced by newer generation based on penalty functions.
An extensive comparative study with multiple heuristic
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algorithms was performed. They concluded that SSOA has
an effective optimization algorithm on par with other al-
gorithms while having better standard deviations, average
function value, and faster convergence rates.

4.2.7. Plasma Generation Optimization (PGO) Algorithm.
Kaveh et al. [86] designed the most economical retaining
wall using a recently developed population based algorithm,
namely, plasma generation optimization (PGO) algorithm.
Inspired by process of plasma generation it has two parallel
phases; one is excitation/deexcitation phase and other is
ionization phase. It considers the solution as atomic and free
electrons with specific energy levels represent the quality of
solution. The excitation phase is an intensification technique
where electrons search near the higher energy electron
determined through penalizing objective function. The
deexcitation phase is an exploration phase that randomly
shifts higher energy electrons to lower energy electrons
based on deexcitation rate (DR). The other phase is ioni-
zation phase in which free electrons move to higher energy
electrons based on step size obtained by multiplying Levy
flight and energy difference between two compared elec-
trons. This represents the diversification phase of PGO; both
processes continue in parallel until the plasma with the
highest density of ions is generated, i.e., the optimum so-
lution. The authors performed a comparative study with
TLBO and cuckoo search (CS) while also detailing a para-
metric analysis of all three algorithms. Their findings showed
that PGO’s effectiveness is on par with the other two al-
gorithms with PGO giving slightly better optimization.

4.2.8. Hybrid-Butterfly Optimization Algorithm Symbiosis
Organism Search (H-BOASOS). Sharma et al. [87] devel-
oped a methodology to combine two algorithms, namely,
butterfly optimization algorithm (BOA) and symbiosis or-
ganism search (SOS), and form a novel hybrid algorithm,
i.e., h-BOASOS. The BOA is a population based nature
inspired algorithm while SOS is swarm based algorithm. The
BOA mimics the behavior of butterflies in nature while SOS
is applied through the ecosystem’s interactive behavior with
different organisms. BOA works by two phases. The first is
global search where candidate solution, i.e., the butterflies,
has a specific fragrance which all butterflies can sense. The
butterfly with the most fragrance (good solution) attracts the
rest of the butterflies towards it to create a social mobili-
zation. The second phase is local search where butterfly
cannot sense a fragrance and it randomly searches its sur-
roundings. The SOS algorithm is based on interactions of
organisms and is applied through three phases: mutualism
phase (two organisms interact and both benefit), com-
mensalism phase (two organisms interact and only one
benefits), and parasitism phase (two organisms interact, one
benefits, and the other is harmed). Each solution is updated
by three phases and then evaluated by the fitness function. It
can be seen from above explanation that BOA can perform
better global search which affects exploration and SOS
performs better local search but diversification worsens and
premature convergence occurs. The authors combined the
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algorithms by performing BOA and then SOS to form h-
BOASOS. They used the algorithm to optimize cost and
weight of two different height retaining walls and compared
it with the results of BOA, SOS, and Optimtool. Their
findings demonstrated significant performance improve-
ment and higher degree of optimization achieved through h-
BOASOS.

4.3. Multiobjective Optimization and Novel Objectives.
Traditionally cost and weight minimization had been the
preferred objectives for the optimization process. However,
some researchers have considered other objectives to achieve
specific desired results. Generation of sustainable or low
emission design structures has become top priority in recent
years. Studies of Villalba et al. [27], Khajehzadeh et al. [49],
Oztiirk and Tiirkeli [70], and Kayabekir et al. [75] utilize the
carbon objective function separately or in conjunction
(multiobjective) to optimize the design and obtain a sus-
tainable section. It is seen that the least emission section is
not the most economical section. This is due to opposite
fronts formed, i.e., steel minimization for cost and concrete
minimization for emission objective; hence, in multi-
objective a Pareto front or a compromise between two
objectives is formed. Kaveh et al. [47] present a unique
problem of cost and bar congestion minimization. The
congestion objective is dependent on number of bars ob-
tained from bar spacing divided by dimension along which
bar is provided. Cost minimization prefers smaller diameter
bars with smaller spacing which increases congestion. They
concluded for their example that the minimum cost design
decreased cost by 25% but increased congestion by 68.7%
while minimum congestion problem increased cost by 32%
but decreased congestion by 40%. Purohit [21] performed a
detailed parametric study for a multiobjective optimization
for cost minimization and safety maximization. The study
tried to maximize factors of safety of overturning, sliding,
bearing, and eccentricity while decreasing cost using NSGA-
II. It was observed that there is a steady increase of cost till a
factor of safety of 4.0 for bearing but after that FOS does not
change appreciably with cost increase. It was also concluded
that sliding failure was the controlling parameter for opti-
mized design. Rahbari et al. [64] developed a methodology
for design of retaining wall in high seismicity locations. They
considered cost minimization and robustness maximization
of the retaining walls as objective functions. The robustness
index contained standard deviation and signal to noise ratio.
Another Pareto front problem is formed and the design is
optimized using NSGA-IL They discovered that decreasing
the standard deviation or increasing signal to noise ratio
tried to decrease risky design which yielded greater volume
per unit length, which in turn yielded a more costly design.
Kalateh-Ahani and Sarani [68] performed simultaneous
optimization of cost and permanent displacement mini-
mization. They considered permanent displacements in high
seismic zones under AASHTO limit state constraints and
calculated the deflections using Newmark sliding block
method. The optimization is applied for three cases of walls:
with toe and heel, without heel, and without toe. Two
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extreme cases were presented for each wall, high risk
(minimum cost) and low risk (minimum displacement), and
their design plans were drawn.

A new novel area of research is reliability based design
optimization (RBDO). This type of optimization considers
factors of safety as insufficient especially as they do not cover
uncertainties in design parameters. Reliability based designs
impart probability based linkage between design parameters
and failure. In optimization process, this can be achieved by
applying reliability based constraints that ensure that a so-
lution moves from global optimum towards a reliable opti-
mum. The study of Al Sebai et al. [31] performed cost based
optimization using reliability constraints, which include 20
hard constraints and 3 soft constraints, all with their co-
variance defined as per degree of uncertainty. All 10 variables
used have their covariance and marginal distribution func-
tions defined as well. A target reliability index of 3 is fixed and
Covariance Matrix Adaptation-Evolution Strategy (CMS-ES)
is used to determine a feasible solution space. Within this
feasible space, nonlinear based sequential quadratic pro-
gramming (SQP) is used to determine the minimal cost
satisfying the reliability criteria. The study of Babu and Basha
[36] used the method of Lagrange multipliers for optimiza-
tion. Their study includes 10 modes of failures (overturning,
sliding, eccentricity, bearing, shear failure of toe, heel, and
stem, and moment failure of toe, heel, and stem). Calculation
of factors of safety is done, followed by verification of con-
straint violation. If no constraint is violated, first-order re-
liability method (FORM) is used to calculate reliability indices
of each failure mode. These indices must be above the set
target reliability index. Their study also develops charts be-
tween geometric proportions and target reliability index for
5% and 10% covariance. Their study indicates significant cost
savings for target reliability index between 3 and 3.2 with
lower covariance values.

Another novel area of research is robust design optimi-
zation (RBO). Although metaheuristic algorithms have
proven their capability as an effective optimization technique
they come with a complexity of their own. The algorithms
have predefined value of specific parameters that are used for
exploration of a solution space. The value of these parameters
may become the difference between finding a global optimum
solution and waste of computational effort. It is necessary to
perform extensive number of trials to judge the effectiveness
of undertaken parameters. However, RBO attempts to
overcome this issue by minimizing the variations on per-
formance caused by these parameters and consequently de-
velop a robust optimization model. The studies of Rahbari
[23], Rahbari et al. [64], and Ravichandran et al. [84] in-
vestigate the optimization of shredded tyre-filled backfill
under seismic loadings. Due to the high level of variability
involved in the type of loading and the type of backfill ma-
terial, RBO is used. A dynamic finite element analysis is
performed while keeping geometric dimensions of wall as
variable and applying first ten seconds of the acceleration-
time history of El Centro earthquake. This is done to obtain
wall displacement and then the wall tip displacement history.
To access the validity of this result, response surface method is
applied using regression analysis and results are compared
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with the finite element analysis. Three statistical techniques
are applied to measure the variance of data. After the vali-
dation of good results from these methods, this data was
utilized in design optimization. The design optimization in all
three papers has been modeled as a multiobjective problem,
optimized using NSGA-II. The first objective is cost and the
second objective is either minimization of standard deviation
(SD) or maximization of signal to noise ratio (S/N ratio). A
Pareto front is formed using optimization which can be used
to extract the optimum solution. The studies of Uray et al. [96]
and Uray et al. [102] also perform robust optimization using
scatter search and harmony search algorithms. Using a sta-
tistical technique called Taguchi method, they evidence a
boost in performance of algorithms while simultaneously
decreasing the number of iterations required to obtain op-
timum results.

4.4. Optimization Tools and Parametric Equations.
Optimization can be applied through multiple programming
software; however, due to their complexities civil engineers
often choose simpler programming languages such as
MATLAB (Schmied and Karlsson [24], Pei and Xia [28], Al
Sebai et al. [31], Srivastavaa et al. [32], Babu and Basha [36],
Khajehzadeh et al. [38], Khajehzadeh and Eslami [43], Sable
and Patil [44], Sable and Patil [45], Kaveh and Behnam [46],
Kaveh et al. [47], Khajehzadeh et al. [49], Gandomi et al.
[52], Kaveh and Mahdavi [53], Gandomi et al. [61], Oztiirk
and Tirkeli [70], Uray et al. [71], Kalemci et al. [78],
Kayabekir [79], Kashani et al. [82], Mevada et al. [88], Uray
et al. [92], Tutus et al. [95], Khajehzadeh et al. [101], and
Khajehzadeh et al. [103]), Fortran (Villalba et al. [27] and
Ukritchon et al. [65]), C#NET (Linh et al. [93]), Python
(Dodigovic¢ et al. [94]), and C++ (Dagdeviren and Kaymak
[72]). Studies have also tried to combine analysis software
such as ABAQUS, ANSYS, PLAXIS 2D, and GeoSlope
(Rahbari [23], Papazafeiropoulos et al. [29], Uray and Tan
[30], Rahbari et al. [64], and Ravichandran et al. [84]) with
optimization. Research studies of Singla and Gupta [54],
Dagdeviren and Kaymak [72], and Konstandakopoulou et al.
[76] have tried to tackle the optimization problem by de-
veloping regression equations and eliminating the need of
programming but with certain limitations. Research of
Saribas and Erbatur [19] developed RETOPT and Ceranic
et al. [34] developed GENOD, which are computer programs
to apply optimization to the design of RC retaining walls but
none of the above programs are commercially available.
Recent studies have used built-in or add-in optimization
tools such as Solver of Excel or Maple (Bhatti [25],
Ukritchon [65], and Mohammad and Ahmed [67]) and have
proven them to be effective in achieving optimization for
retaining wall design. Hoang and Cong [80] and Shakeel
et al. [100] have built upon these solvers to develop user-
friendly tools for designers to readily apply optimization on
a design without dealing with the jargons of algorithms.

4.5. Comparative Analysis of Metaheuristic Algorithms.
The ability of metaheuristic techniques in escaping local
solutions and achieving global optimum solutions lies in
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their probabilistic nature. However, this ability also makes
direct comparison difficult as the variability involved may
result in a different solution in each optimization run. Apart
from that, the complexities and differences in problem
formulation modeling and the optimization problem
modeling make a like-for-like comparison among the many
metaheuristic algorithms ambiguous. The differences in
optimization parameters, different types of parameters, and
the stopping criteria may also cause slight variances.
However, many researchers have attempted to perform a
comparative investigation in order to determine the su-
perlative algorithm for optimization among the many
successful algorithms.

Pei and Xia [28] perform a comparative analysis between
a random search technique called complex method (CM)
and classical heuristic methods like SA, GA, and PSO. They
optimize a retaining wall having 9 design variables (without
a shear key) for minimum cost. In accordance with the
literature, CM is unable to compete with other algorithms as
it gets stuck in local minima for such large scale problems.
Although the results evidence that no single heuristic al-
gorithm outperforms the other, they do conclude PSO as
their recommendation due to its lower number of com-
putations with respect to time consumed in order to obtain
similar results as SA and GA. Talatahari and Sheikholeslami
[51] optimize a cantilever retaining wall for total material
cost using 7 variables. They compare the best and average
results of 20 optimization runs using enhanced charged
system search (ECSS), hybrid big bang-big crunch (HBB-
BC), BB-BC, and PSO algorithms. The optimized values
evidence ECSS as having better convergence rate and per-
centage of optimization. However, no statistical analysis is
performed to determine which algorithm obtained the better
mean results. Gandomi et al. [52] performed a compre-
hensive comparison between PSO, APSO, FA, and CS for
three examples of retaining walls (with and without shear
key) using 12 variables. The analysis was conducted for 100
optimization runs for cost and weight of the retaining wall.
The best, worst, mean, and standard deviations of all three
examples for both objectives are presented. Although the
results vary widely among the examples, APSO consistently
performs faster convergence. In terms of worst, mean, and
standard deviation, PSO and CS perform identically; on the
other hand, APSO and FA perform comparatively worse.
Kaveh et al. [73] present one of the most comprehensive
comparisons of cost optimization of retaining walls by using
11 different metaheuristic algorithms. Their study considers
varying levels of seismic loadings and utilized both the
Coulomb method and the Rankine method for determining
the lateral Earth pressures in its problem formulation. The
optimization for all algorithms is fixed at 5000 maximum
evaluations. The results indicate that all algorithms perform
relatively well and can converge to quality optimum designs
rapidly. However, slight differences exist when the best
results, average results, standard deviations, and conver-
gence histories are compared. For the best optimized cost
using the Coulomb method, artificial bee colony (ABC),
cyclical parthenogenesis algorithm (CPA), vibrating particle
system (VPS), BB-BC, and TLBO give the best results, while

Advances in Civil Engineering

for the best optimized cost, using the Rankine method,
imperialist competitive algorithm (ICA), CPA, CSS, TLBO,
and VPS give better results. However, when average opti-
mized cost and standard deviations are considered, BB-BC,
CSS, and TLBO have better performances.

Kaveh and Mahdavi [53] considered a retaining wall
with 7 variables including a shear key and seismic loadings in
the problem formulation. They compare the results of
colliding bodies optimization (CBO), PSO, IHS, and DPSO
for various backfill cases and soil lateral load estimation
theories. Their results evidence the robustness of CBO and
DPSO as better than the other two algorithms. Kaveh and
Farhoudi [56] performed a comparative analysis between
DEO, HS, IHS, and CSS for two different types of backfill
soils. The results are compared for the best optimized value
achieved. Their analysis indicates that DEO takes less than
half the number of iterations of other algorithms to achieve
the best result. Kaveh and Laien [60] extend the work done
in their previous studies. They compare the results of THS,
DPSO, DEO, and CSS as reported in their previous studies
[53, 56] with enhanced colliding body (ECBO), VPS, and
CBO. The convergence histories show that the newly de-
veloped VPS algorithm performs better optimization in
terms of speed of convergence among the 20 independent
runs. VPS and ECBO also have a much smaller standard
deviation than CBO for two different types of backfill soil
cases. However, all algorithms perform identically with
regard to the optimized value of the objective function.
Another area of interest is comparing metaheuristic algo-
rithms of the same category. Gandomi et al. [61] performed
such a comparative investigation for evolutionary algo-
rithms. They compare the results of DE, ES, BBO, and GA.
Three different retaining walls are optimized for cost and
weight using each algorithm and results of 100 runs are
reported. The standard deviations, best, mean, and worst
values are extracted and convergence rate plots are drawn.
Their results indicate BBO as the superior algorithm in all
categories. It is also noticed that the performance and degree
of optimization of BBO increase with heavier designs which
include a base shear key.

Some researchers have also compared the performance
of hybridized algorithms with their root algorithms. The
study of Sheikholeslami et al. [57] optimizes two examples of
retaining wall for cost using IFA-HS and then compares
their results with optimization using IFA and HS. The results
indicate that the IFA-HS is comparatively more efficient,
achieving an optimized result in just 4,200 evaluations
compared to 6,700 for IFA and 4,700 for HS. Further tuning
of IFA-HS is also conducted using a sensitivity analysis
which reduces the number of evaluations to 4,180. Kaveh
and Abadi [40] performed a comparative investigation be-
tween HS and IHS algorithms. The model contains 7 vari-
ables, optimized for the total cost of a retaining wall with a
shear key. The updated form of the HS algorithm, i.e., IHS, is
evidenced to have slightly better efficiency and robustness in
its results, the main contributor being the HS parameter
called pitch adjusting rate (PAR). The calculation of PAR is
converted from a fixed value as used in HS to a dynamically
generated value with each generation in IHS leading to a
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boost in performance. Khajehzadeh et al. [41] compare PSO,
PSOPC, and MPSO for a retaining wall with 8 design
variables for minimum cost. A detailed statistical compar-
ison is made by running the algorithm 50 times and
comparing the best, average, and worst results. Multiple
statistical tests are applied to differentiate between the
performances of the algorithms. First, the Kolmogorov-
Smirnov test is applied to match results with the normal
distribution curve. Afterwards, the Kruskal-Wallis non-
parametric test and Mann-Whitney U test are applied to
compare the mean ranks of each algorithm. The results
evidence the mean rank of MPSO as the best among the
compared algorithms. Apart from that, MPSO also had the
fastest convergence rate and performed significantly better
in earlier iterations. Kashani et al. [82] have published a
detailed review on PSO algorithms and their variants used
for the optimization of geotechnical structures. As a part of
their study, they also ran simulations for optimizing a
cantilever retaining wall for cost and weight. They compared
PSO and its 11 other variants for 9 different seismic load
combinations. The results of 100 runs are extracted and the
best, mean, and standard deviations are compared. All PSO
algorithms are successfully able to reach optimum results.
However, HCLPSO and EPSO perform better than others,
while RDPSO recorded the poorest performance. The
Friedman statistical test is further used to rank the per-
formance of each algorithm which also confirms the effi-
ciency of HCLPSO and EPSO in optimization. Yiicel et al.
[85] also performed a comparative investigation of HS al-
gorithm and its variants and compared it to 10 different
metaheuristic algorithms. Optimization for the cost of a
retaining wall with 5 geometric variables was applied for 4
different cases. Each case included differing values of op-
timization runs, heights, and wall parameters. The best cost,
average cost, and standard deviations were compared.
Variations of HS parameters and their effect on HS, AHS,
and AHHS are also tabulated. It was noted that GA, DE,
PSO, and GWO had high standard deviations while AHS,
AHHS, JA, TLBO, and FA could converge to a minimum
solution but with extremely minor values of standard
deviation.

Lastly, testing out the capabilities of newly developed
algorithms and comparing their results to popular meta-
heuristic algorithms is also a common trend in research.
Kaveh et al. [74] performed a comparative analysis for the
newly developed SSOA. They compared SSOA optimization
with the results of 11 algorithms analyzed in a previous study
[73]. Optimization was conducted by considering seismic
loading cases, Rankine theory, and Coulomb theory sepa-
rately. Among all cases, it was demonstrated that SSOA had
more efficient results than any other compared algorithms.
Kalemci et al. [78] also performed optimization using a
newly developed algorithm, namely, GWO. They optimized
two retaining walls for total weight and compared their
results with other studies using the same examples. GWO
was run 30 times and the best and mean optimized weight
were obtained for all runs. The values were compared with
optimized results of 12 other algorithms, taken from 5 other
studies. It was concluded that GWO gave up to 1.5% lighter
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sections than other algorithms. However, the authors also
pointed out that this could be due to discrepancies in the
problem formulation and the number of optimization runs
between the different studies. The research of Sharma et al.
[87] tested three newly developed algorithms, BOA and SOS
and a proposed hybrid algorithm (h-BOASOS). However,
unlike previous studies, optimization was not tested on a
case study retaining wall but on 35 different benchmark
(modal and unimodal) functions. They compared the per-
formance of these three algorithms with 10 other algorithms
for 30 optimization runs with 10,000 maximum iterations.
Performance evaluation is done through the statistical
method of Friedman’s rank test. According to the analysis,
h-BOASOS has rank 1, ABC has rank 2, SOS has rank 3, and
BOA has rank 4. After this, cost and weight optimization is
applied on two examples of a retaining wall with 12 variables
using BOA, SOS, and h-BOASOS. Comparisons are also
made with a study from literature which used the Optimtool
[45]. In all cases, the efficiency of h-BOASOS is evident over
other algorithms.

4.6. Structural and Geotechnical Design Investigations.
Multiple studies have performed a sensitivity analysis with
regard to soil parameters involved in design of retaining
walls (Yepes et al. [37], Camp and Akin [42], Sable and Patil
[45], Singla and Gupta [54], Temiir and Bekdas [58],
Gandomi et al. [61], Mohammad and Ahmed [67], Millan-
Paramo et al. [81], Uray et al. [83], Kaveh et al. [86], Tousi
et al. [90], Uray et al. [92], Uray et al. [96], and Tutus et al.
[98]). The trend of all the studies is similar and indicates that
increasing the height of wall, depth of soil on toe, unit weight
of soil, backfill slope, and surcharge load is directly related to
the cost, while increasing bearing capacity, cohesion, and
internal angle of friction is indirectly related to the cost of
wall.

Although the design codes advise coarse aggregates as
prescribed material for backfill, it may not be feasible to
provide them in all cases. Some studies have researched this
aspect and tried to optimize the design for backfill with
different types of soil with different cohesion, unit weight,
bearing, and internal angle of friction values (Al Sebai et al.
[31], Srivastavaa et al. [32], Yepes et al. [37], Kaveh and
Abadi [40], Kaveh and Behnam [46], Kaveh and Laien [60],
Konstandakopoulou et al. [76], Uray et al. [83], Uray and
Carbas [89], and Dodigovic¢ et al. [94]). The backfill included
coarse granular fill (gravel), granular soils with more than
12% of fines (GW, GS, SM, and SL), and fine soils with more
than 25% of coarse grains (CL-ML). It is clearly evidenced
that soils with better mechanical properties like gravel and
sand perform better and are more economical.

Another important factor in terms of geotechnical pa-
rameters is the bearing capacity of the soil. In design op-
timization of retaining walls most studies have simply taken
the value of safe bearing capacity as is provided in the
undertaken design example. However, the research of
Moayyeri et al. [69] is unique as it varied the bearing capacity
equations used in literature. The study uses the theories of
Meyerhof, Hansen, and Vesic to determine ultimate bearing
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capacity of soil. The study concluded that the Meyerhof
method gives more optimization; however, the difference
decreased with increase in height of wall. Apart from these
theories Terzaghi’s bearing capacity theory has also been
used by the studies of Uray et al. [92], Tutus et al. [98], and
Uray et al. [102] to calculate the bearing capacity. Inclusion
of a bearing capacity calculation in problem formulation
instead of requiring a direct input of safe bearing capacity
provides a more in-depth model capable of handling site
specific complexities. Another unique research is of Gan-
domi et al. [61] which included the calculation of retaining
walls settlement. The study optimized the wall for cost and
weight and drew relation between settlement and base width
of wall for different values of modulus of elasticity and
Poisson ratio. It was demonstrated that increasing the width
of wall increases the vertical load on it and consequently
increases the settlement of wall. However, the increasing
elastic modulus of soil decreases the total settlement.

The application of Coulomb or Rankine theory is an-
other intricately investigated problem conducted by multiple
studies (Kaveh and Mahdavi [53], Kaveh et al. [73], Kaveh
et al. [74], Konstandakopoulou et al. [76], Kaveh et al. [86],
Uray and Carbas [89], and Tousi et al. [90]). The difference is
that Rankine theory considers the wall face on soil side as
frictionless while Coulomb theory is more detailed and takes
into account the wall friction angle which is dependent on
soil’s internal angle of friction. It is also due to this reason
that all studies conclude that Rankine method gives a more
expensive wall as it overestimates the pressure to simplify the
design.

4.7. Effect of Seismic Loads. Earthquake loading as a part of
optimized retaining wall design is another matter investi-
gated by multiple researchers (Naeem [22], Kaveh and
Mahdavi [53], Aydogdu [59], Kalateh-Ahani and Sarani
[68], Kaveh et al. [74], Konstandakopoulou et al. [76],
Ravichandran et al. [84], Kaveh et al. [86], Eroglu et al. [91],
Temiir [99], Khajehzadeh et al. [101], and Khajehzadeh et al.
[103]). The potential of optimization is significantly in-
creased in case of heavier designs, developed to withstand
large seismic loads. The seismic lateral pressures are cal-
culated by the Mononobe-Okabe equation which is derived
from Coulomb’s sliding wedge theory. The equation is used
to calculate the equivalent static loads which are then used in
the design of retaining walls. In this method, the seismic
inertia angle is calculated, which is then used to determine
active (K,,) and passive (K,,) Earth coefficients due to
earthquake. These coefficients are used to determine the
active and seismic pressures. The value of seismic inertia
angle is reliant on vertical earthquake acceleration (K,) and
horizontal earthquake acceleration (Kj,). These values
contain high degree of uncertainty and are dependent on
multiple factors such as soil classification, peak ground
acceleration (PGA), and frequency and duration of seismic
waves. In terms of optimization, increasing seismic forces
and cost of wall, their effects on factors of safety, provision of
key, and weight of retaining wall have been analyzed. The
results show that increased lateral loads lead to heavier and
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costly sections. In fact in case of weak clayey soils, the design
becomes economically infeasible. It is also concluded that
RC cantilever retaining walls are impractical for height
above 7.5m in a zone with PGA greater than 0.25g. The
provision of key is evidenced to improve safety factors and
decrease cost and weight as compared to a T-shape retaining
wall in case of increasing seismic loads.

4.8. Shear Key Effect and Sloped Footed Walls. The provision
of shear key is also a topic of interest among multiple re-
search studies. While some studies have simply modeled a
retaining wall with a shear key [32, 84, 87, 95], others have
performed comparative analysis between retaining walls
with and without shear keys (Naeem [22], Ceranic et al. [34],
Sable and Patil [45], Kaveh and Behnam [46], Sheikho-
leslami et al. [50], Gandomi et al. [52], Kaveh and Farhoudi
[56], Gandomi et al. [61], Oztiirk and Tiirkeli [70], Kaveh
et al. [73], Kaveh et al. [74], Milldn-Paramo et al. [81], Uray
et al. [83], Sharma et al. [87], Tousi et al. [90], Tutus et al.
[98], and Temiir [99]). The consensus on the findings is clear
and it indicates that although the provision of key does
increase the safety factors it also increases both cost and
weight of a retaining wall. However, in regions of high
seismicity or large surcharge loadings the provision of key
gives better results as it provides extra passive resistance to
the wall. Both cost of wall and weight of retaining wall can be
significantly optimized with a shear key in regions of high
seismic or lateral loads. In case of large lateral loads in
retaining walls without shear keys, there is an increase in
reinforcement area (increase in cost) and the thickness of
footing (increase in weight) to counteract the increased
forces. However, in case of walls with keys, the passive
resistance provided by soil is often enough to resist these
forces. These results are purely theoretical and the actual
effectiveness of a shear key is dependent on other site related
factors like soil disturbance, which have not been thoroughly
investigated. Uray et al. [71] and Kaveh et al. [86] investi-
gated a sloping retaining wall footing against retaining wall
with key. Their findings suggest that, in case of low seis-
micity, a key is a more economical solution for cost and
weight minimization problem. However, in case of high
seismicity, a sloping footing is viable and has lower cost.
However, even in this case it has larger weight than a wall
with key. It was also evidenced that a sloped footed retaining
wall has higher factor of safety in overturning, sliding, and
slope stability.

4.9. Limitations. As detailed in length, a plethora of research
work has been conducted on various topics regarding opti-
mization of retaining walls. However, the majority of works
have been conducted under some limiting factors that are
necessary to be understood before integrating design opti-
mization in a project. Design optimization is often performed
with continuous variables which although providing a larger
percentage of optimization will result in constructability
concerns and will require an additional review by the engineer
before on-site application. Otherwise an optimization model
with discrete values and practical step size must be defined for
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each variable. It is also limited by the problem formulation
modeled into it; in case of cost optimization, the total cost in
most studies includes only the cost of concrete and steel.
However, a more thorough model can have cost of formwork,
labor, placement, vibration, and transportation included in it.
Another limitation is reinforcement detailing, as most opti-
mization studies have only modeled areas of reinforcement.
The variables should contain variables for bar diameters,
spacing, and development lengths or else they must be
reviewed by an engineer before finalizing the design. Simi-
larly, the effect of material strength needs to be modeled in the
development stage and linked with resulting variation in cost
to ensure practical variation and optimization occurs. The
effect of seismic forces is mostly applied using the Mono-
nobe-Okabe equation which is a conservative estimation
method to determine seismic pressure. Better dynamic
analysis methods can be applied to improve safety. Similarly,
Earth pressure is calculated using Rankine or Coulomb
theory. More accurate Earth pressures are calculated using
finite element methods. Most studies simply input maximum
bearing capacity of soil in the model; a more thorough model
that is able to take soil parameters as input would be more
suitable. Such models would be able to calculate data using
whichever theory provides better optimization. In terms of
limitations of algorithms, most algorithms can handle only
single objective optimization. Specific algorithms have to be
used to deal with multiobjective problems. As detailed above
unless robust design is applied, there exists a vast variability in
terms of algorithm parameters that may affect results. A
problem specific, sensitivity analysis must be performed to
decide the ranges for undertaken parameters. Traditional
algorithms are also time consuming and perform thousands
of iterations; hence sufficient computational capabilities are a
must to smoothly run optimization algorithms. Lastly, al-
gorithms can only work within the specified bounds; pro-
vision of effective lower and upper bounds would decrease
computational efforts. The optimization is also dependent on
initial population or position. A feasible initial population, if
provided, would greatly increase the efficiency of the opti-
mization algorithm.

5. Recommendations for Future Work

The detailed literature review mentioned above shows that
although significant advancements have been made in the
field of optimization, particularly of RC cantilever retaining
walls, the task is still very complicated and challenging.
There is a lack of optimization performed in the construction
industry on real world cantilever retaining walls despite
proven advantages. These difficulties can be attributed to the
multidisciplinary nature of the optimization of RC struc-
tures. This makes it a complex task that requires in-depth
knowledge before effective applicability. There are also some
other complications and conundrums that must be
addressed by future researchers before its acceptance and
assimilation into the construction industry. The following
section briefly mentions using the extracts from the litera-
ture review the topics of paramount importance that must be
addressed moving forward.
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5.1. Tool/Application Development and Integration. The most
critical objective identified by the analysis of the literature is
that there is a dire need for problem specific optimization
tools. It is detailed in Section 4.4 that most work on opti-
mization has been achieved through programming algo-
rithms. This type of work requires extensive knowledge of
the optimization algorithms and the ability to code in a
modern computing language. Both these tasks require
strenuous efforts along with prerequisite skills and knowl-
edge. There are add-in tools to apply optimization algo-
rithms like Solver of MS Excel (Frontline Systems Inc.),
Evolver (Palisade Corporation), and the MATLAB’s opti-
mization tool box (The MathWorks Inc.). They also require
extensive problem formulation in their respective compat-
ible environments before application of optimization. Only
the availability of user-friendly applications which can
handle the mathematical jargons of the algorithms on the
backend will make use of optimization more popular. As
evidenced by building integrated modeling (BIM) and 3D
computer aided modeling (CAD) software, only conve-
nience of usability will make use of complex technologies
norm in the practical fieldwork. Therefore, further investi-
gation is required to make it widely accepted as a design tool
for engineers. Another solution can be integration of op-
timization algorithms with finite element modeling (FEM)
environment. Tools like Abaqus2Matlab [111], for example,
are a step in the right direction. Abaqus2Matlab has the
capability to connect an FEM software like Abaqus with the
user-friendly environment of MATLAB. Users can model a
structure and perform an in-depth analysis on Abaqus and
then easily import their results in MATLAB, where opti-
mization can be applied using built-in or programmed al-
gorithms. This will drastically improve real time design
optimization while also providing designer’s flexibility and
command over structural design and analysis. The visuali-
zation aspect of the optimized geometric dimensions with
original designs will also greatly improve the value of op-
timization techniques, as they will lend the designer a
conceptual rendition of the constructed wall.

5.2. Constructability Concerns. The optimization in above
studies has mostly considered continuous variables to
achieve a more cost-effective solution, but this is not always
possible due to irregular section sizes. It is true that met-
aheuristic algorithms are able to deal with discrete variables,
an ability not possible using nonlinear programming. They
also drastically decrease the solution space, which leads to
much lower optimization effort. Future researchers must
balance these needs and provide options for setting step size
when developing their framework so that feasible structural
designs can be developed. These designs must be con-
structable on site or else the cost for modular formworks and
labor may increase costs drastically. Another critical
quandary between theoretical optimization and practical
design is the provisions of reinforcement. Most studies
utilized area of reinforcement as variable to be optimized but
on site, this quantity is to be converted into number of
reinforcement bars of certain diameters. Optimized shape of
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concrete along with later conversion from area of steel to bar
can cause congestion of reinforcement. This can be mitigated
by either taking reinforcement bar diameters and their
spacing as variables or considering bar congestion as an
objective function as well.

5.3. Material Blend and Strength Considerations. The effects
of increasing strength of concrete and steel and their vari-
ability in cost have also not been studied in detail. As op-
timization process provides the designer to choose from
infinite solutions, future researchers can focus on developing
methodologies for mix design development for specific cases
of retaining walls. This would mean problem specific
strength of concrete or material blends for sustainable ob-
jectives, i.e., proportioning of secondary cementitious ma-
terials can be done with varying cost with ease. Effects of
different type of cements can also be a topic of future dis-
cussion. Similarly, different yield strength of reinforcement
and their effects on objectives and congestion must be
studied in detail.

5.4. Parametric Investigations and Sensitivity Analysis. No
study to the authors” knowledge has investigated the effects
of layered soil, water table, and wind loads on the optimized
design of a retaining structure. These site specific issues are
best suited to be solved by an optimization algorithm owing
to their difficulty in manual design. As optimization heavily
benefits from advance computational capabilities, com-
plexities like those of lateral pressures through trial wedge
methods, development of slip circle calculations, use of
multiple theories for lateral pressures, bearing pressures,
settlement, and seismic loadings can also be easily investi-
gated. This assimilation will optimize the entire design
procedure for retaining wall design and can be extremely
beneficial for site specific problems. Another popular topic is
development of problem formulation and application of
optimization for RC cantilever retaining walls using modern
holistic algorithms. To test their dexterity and robustness
sensitivity analysis are to be performed. However, most
modern metaheuristic algorithms do not have significant
advantage over another in terms of percentage of optimi-
zation achieved. Algorithms can be vastly superior to one
another in terms of speed of optimization, their standard
deviations, and variance from mean value. Hybridization
and improvement of existing (traditional metaheuristic)
techniques is another area of interest that can be probed by
future researchers.

5.5. Advancements of Objective Functions and Pragmatic
Approach. As the focus of global research has shifted to-
wards sustainability, it is imperative that multiobjective
optimization should be the top priority for future works as
well. Sustainability is a complex objective that requires two
or more functions to be fully defined. Multiple objectives can
be experimented to prove what better constitutes sustainable
RC cantilever retaining wall design. Cost, weight, carbon
emissions, embodied energy, and cementitious material
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minimization can all contribute to this objective. Multi-
objective studies are more complex and require specific
algorithms that have nondominating sorting capabilities to
form a Pareto front for solutions. Development of algo-
rithms to solve multiobjective problems is also a task of
imperative importance. Novel objectives like coordinates of
wall, to optimize the entire shape of cantilever retaining wall,
are another unique idea that requires further investigation.
Lastly, no research compares the optimized designs of a
retaining wall with an already built retaining wall. The cost
minimization type of objectives would be best evidenced if
compared with real world structures and their total costs. An
ambitious project could be the physical construction of a
prototype of the optimized retaining wall to demonstrate the
effectiveness of objective based design in practice. Opti-
mization techniques will be more approachable and ac-
ceptable for the construction industry only after they offer
solutions to on-site problems, provide proof of effectiveness,
and do not constitute mathematical and applicability
complications.

6. Concluding Remarks

Optimization is sure to revolutionize the structural design
process as the need for objective based complex structures
becomes a priority. However, for optimization to reach at
that level, it must gain the confidence of field professionals
and become their go to tool for optimum design. To tackle
these issues this review paper provides an in-depth review on
optimization of reinforced concrete cantilever retaining
walls. The review paper summarizes all the works conducted
on this topic in a concise and effective manner. A clear trend
towards advanced and hybrid metaheuristic algorithms is
visible. These algorithms are more robust and require
smaller computational efforts compared to their traditional
counterparts. A significant lack of sustainable and multi-
objective optimization has also been identified. There is a
need to improve the practicability of algorithm based op-
timum designs. The use of discrete variables with a sufficient
and practical step size would be beneficial for field adap-
tation. Similarly, constraints must include bar diameters,
reinforcement spacing, checks for development lengths, and
inclusion of material strength parameters to make the op-
timization model pragmatic. Lack of any case study of a real
world retaining wall or a study model constructed with
modern optimization techniques is also a cause of skepticism
for engineers. A comparative study on the performance of a
built optimized retaining wall would improve its credence.
However, the most major hurdle currently is identified as
lack of any tool or program that can directly apply opti-
mization on an engineer’s initial design estimate. Easing
applicability of optimization and reducing its multidisci-
plinary complexities is the best way to improve its accep-
tance and use in construction industry. Lastly, utilizing the
core capability of optimization, i.e., superior computational
capabilities to present unique solutions to large scale
complex and multifaceted problem with ease should be the
objective for future research. Incorporating optimization
with reliability based design, mix design, finite element
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modeling capabilities, and building integrated modeling
techniques are some such unique applications that could
make optimization the definitive tool for advanced struc-
tural design.

Abbreviations

Asy Area of steel reinforcement in footing
AS (hee):  Area of steel reinforcement in heel
As,,.: Maximum area of steel reinforcement
AS, i Minimum area of steel reinforcement
AS (stem):  Area of steel in stem

AS (10 Area of steel in toe

B: Total width of footing

B ey Length from heel to face of key

Unit length of wall

C.: Unit cost of concrete

C.(co,): Unit carbon emissions of concrete
Covy: Cover of footing

(OF Unit cost of steel reinforcement

Covg: Cover of stem

C,(co,): Unit carbon emissions of steel

c: Cohesion of soil

Df: Depth of soil on toe

d: Effective depth of section

e: Eccentricity

Fonchor:  Strength of anchor

Fp: Horizontal driving forces

Fp: Resisting forces

FS,: Factor of safety (overturning)

FS;: Factor of safety (sliding)

fe Compressive strength of concrete

fy Yield strength of steel

H: Total height of retaining wall

Bynchor:  Height from top stem to anchor
stem’ Height of stem

hiop: Height of top (slim) half of stem

L Development length of bar

Lan: Hook length of bar

Mop: Overturning moment

M: Righting moment

Mu: Factored moment

Qmax/min: Maximum or minimum pressure on footing

. Ultimate bearing capacity of soil

R: Point of resultant

Ty Thickness of footing

Tiey: Depth/thickness of key

Ty Thickness of stem bottom

T: Thickness of stem top

V. Volume of concrete

V otal Total vertical load

Vu: Factored shear

W: Width of heel

Wiyt Width of key

W Weight of steel reinforcement

W, Width of toe

B: Slope of backfill soil

Ve Unit weight of concrete

Pyt Unit weight of soil
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é: Wall friction angle

Pnin Minimum allowable reinforcement ratio
Prnas: Maximum allowable reinforcement ratio
u: Coefficient of friction

¢: Internal angle of friction

dMn: Design moment capacity

¢Vn: Design shear capacity

wy: Surcharge load

Tpaer:  Thickness of battered portion of stem.
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