
Research Article
Automatic Classification System of Drainage Hole Blockage
Based on Convolution Neural Network Transfer Learning

Jianbing Lv,1 Weijun Wu,1 Xiaoyu Kang,1 Juan Huang ,1 Gongfa Chen,1 Shuai Teng,1

and Hejie Gao2

1School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
2CCCC Fourth Navigation Engineering Bureau Co., LTD., Guangzhou 510000, China

Correspondence should be addressed to Juan Huang; cvjuanhuang@gdut.edu.cn

Received 22 February 2022; Revised 9 April 2022; Accepted 10 May 2022; Published 15 July 2022

Academic Editor: Nhat-Duc Hoang

Copyright © 2022 Jianbing Lv et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e blockage or failure of the drainage holes will endanger the stability of the slopes and tra�c safety of a highway tunnel. �is
paper studies an algorithm for the automatic classi�cation of drainage hole blockage degree based on convolutional neural
network transfer learning to explore the intelligent detection method of drainage hole blockage. �e model transfer method is
adopted to input drainage hole image samples to retrain the pretrained network to classify new images. Experiments are
performed on the collected samples of drainage hole images, and the accuracy of di�erent networkmodels is compared, ResNet-18
being the best. �e ResNet-18 performance is compared using di�erent transfer strategies and parameters. �e results show that
when the SGDM gradient optimisation algorithm is used and the learning rate is 0.0001, the identi�cation e�ect of these samples is
the best. �e validation accuracy can reach 91.7%, test accuracy is 90.0%, and the e�ective classi�cation of drainage hole blockage
to di�erent degrees is realised under the transfer learning strategy of ResNet-18 model 1–34 frozen layers. Furthermore, with an
expansion of the samples in the future, the identi�cation accuracy will be further improved.�e automatic classi�cation system of
the blockage degree of drainage hole greatly reduces the cost of manual detection, plays a guiding role in the maintenance of
drainage pipes, and e�ectively improves the safety of highway tunnels and slopes.

1. Introduction

With the continued extension of tunnels to mountains and
o�shore deepwater areas, a series of complex diseases have
emerged in both tunnels under construction and in oper-
ation [1]. Severe crystal blockage of tunnel drainage pipes
generally occurs during tunnel construction and operation.
After the drainage pipes become clogged, the depressur-
isation capacity will be greatly weakened, which will easily
lead to the inability of tunnel groundwater to be drained and
a sudden rise in external water pressure [2]. �is causes
structural water leakage, cracked lining and damaged blocks,
inverted arch uplift, and other diseases [3–5], all of which
have a serious impact on the tunnel structure’s safe oper-
ation, ranging from road blockage to casualties. To e�ec-
tively avoid the occurrence of tunnel disasters caused by the
blockage of the drainage holes, it is necessary to conduct

rapid and accurate inspections of the drainage holes regu-
larly. Currently, the tunnel drainage hole blockage detection
relies primarily on visual inspection and recording by in-
spectors on the spot, followed by maintenance by mainte-
nance personnel. �e inspection results are subjectively
a�ected by the inspectors. �e inspection tasks in the tunnel
are challenging, and the workload is heavy. Because false
detection and missed detection often occur, it is urgent to
explore an intelligent detection method.

Computer vision-based methods can intuitively and
e�ectively detect structural damage, image binarisation [6],
and edge detection [7]. Two methods have been widely used
in vision-based structural health monitoring. Ho [8] et al.
proposed a method for dynamic displacement measurement
of infrastructure based on multipoint vision. Ye [9, 10] et al.
proposed a long-distance noncontact distributed structural
displacement monitoring method for large-span bridges
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based on computer vision, which is also based on digital
image processing correlation theory and multipoint tem-
plate matching algorithm, and realised the kilometre-scale
on-site structural displacement monitoring. However, this
method still suffers from limitations due to the effects of
illumination and distortion-induced noise [11]. Structure
damage detection methods based on deep learning have
been rapidly developed in the field of civil engineering, given
the rapid advancement of artificial intelligence technology
[12, 13]. Yeum et al. [14] proposed a vision-based bridge
crack detection technology through automatic processing of
object detection and grouping. Makantasis et al. [15]
achieved tunnel crack detection by employing a shallow
convolutional neural network (CNN) with two convolu-
tional layers and one fully connected layer. Cha et al. [16]
used a CNN deep structure to detect concrete cracks. Xu
et al. [17] established a framework for surface crack iden-
tification of steel structures based on the restricted Boltz-
mann machine. Chen [18] proposed a CNN crack detection
method based on naive Bayesian data fusion to improve the
overall performance and robustness of the recognition al-
gorithm. Bao et al. [19] proposed an abnormal data diagnosis
method for structural health monitoring based on computer
vision and deep networks. Konovalenk et al. [20] evaluated
the application of residual neural networks in the identifi-
cation of three types of industrial steel defects and
researched and developed a model of rolling steel surface
defect identification and classification based on deep re-
sidual neural network. Xue et al. [21] proposed an improved
mask-RCNN (region-based CNN) model to realise auto-
matic detection of tunnel lining leakage. In the drainage
pipeline system disease detection, a defect classification
system of sewer pipeline systems on closed-circuit television
(CCTV) inspection videos based on CNN is proposed
[22–24]. However, no research has been conducted on an
automatic method for detecting the degree of slope in
drainage hole blockage.

In this paper, deep learning is applied to detect blockages
in drainage holes. As shown in Figure 1, many drainage hole
disease samples were collected and taken as input. By
comparing different pretrained CNNs, the CNNmodel most
suitable for these samples was selected. By comparing the
performance of the model under different migration strat-
egies (freezing different layers) and the influence of different
network hyperparameters on the network prediction effect, a
CNN model, which is most suitable for the experimental
samples, is finally obtained. In this paper, the automatic
classification method of the blockage degree of drainage
holes is proposed for the first time. *e method combining
transfer learning and CNN is adopted to overcome the
shortcomings of training traditional CNNs, such as insuf-
ficient samples and long training time, and to realise au-
tomatic classification of the blockage degree of drainage
holes while avoiding the defects of manual detection, such as
high cost, long time, error detection, and leak detection.

Section 2 introduces the collection of experimental
samples and image preprocessing, as well as pretraining
models and transfer learning methods. Section 3.1 shows the
results of transfer learning for different pretraining models.

Section 3.2 compares ResNet-18 under different transfer
strategies. Section 3.3 compares the effects of different
network hyperparameters on the prediction performance of
the model. Section 3.4 presents the visualisation results of
the convolutional process of a CNN. Section 4 shows the
conclusion and prospects of this paper.

2. Experimental Data and Network Model

In this paper, the drainage hole blockage detection model
retrains a pretrained CNN to classify a new set of images by
using a model transfer learning method. Compared with
training the network from the start with randomly initialised
weights, fine-tuning the network through transfer learning is
faster and simpler, owing to the transfer learning network’s
excellent feature extraction and classification capabilities.
Fine-tuning the network through transfer learning is faster
and easier than training the network from scratch with
randomly initialised weights, and the learned features can be
quickly transferred to new tasks with a smaller number of
training images, resulting in efficient and accurate classifi-
cation and detection of drainage hole blockage diseases.
Figure 2 shows the detection process of the automatic de-
tection model of drainage hole blockage.

2.1. Experimental Data Preprocessing. *e original samples
of this experiment were personally shot in the tunnel and
slope because there are no public samples on the blockage of
drainage holes on the Internet. *e proportion of picture
target and background is quite different, owing to the in-
fluence of shooting angle, drainage hole position and other
factors. As a result, the image must be preprocessed. First,
the collected image samples are appropriately cropped, and
the size is uniformly scaled to adapt to the input size of the
network (224× 224). Additionally, in the process of training
the network, image enhancement techniques of translation
and rotation are used to enhance the robustness of the
network and improve the generalisation ability of the
network.

All pictures were manually classified, and qualitative
analysis was carried out according to the degree of blockage.
Furthermore, the blockage of drainage holes was divided
into four categories, namely, slight blockage, moderate
blockage, heavy blockage, and no blockage. Slight blockage
occurs when the blockage crystallisation of drainage holes is
less than about 1/4 of the drainage hole area, moderate
blockage occurs when the blockage crystallisation is greater
than about 1/4 but less than 3/4, and heavy blockage occurs
when the blockage crystallisation is greater than about 3/4.
Figure 3 depicts the exact classification.

A total of 943 samples were used in this experiment, 101
of which were taken as test sets. *e remaining 842 samples
were 299 with slight blockage, 230 with moderate blockage,
71 with heavy blockage, and 242 with no blockage. Ap-
proximately 90% (758) were randomly selected as training
and 10% (84) as the validation set. Table 1 presents the
allocation of the specific sample.
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Figure 4: Network structure of the ResNet-18 model. Conv#� convolution; pool#� pooling; FC� full connection.

Table 1: Sample allocation.
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2.2. Model Transfer LearningMethod. CNN is a feedforward
neural network that first appeared in the BP [25] algorithm
in 1986. Compared with ordinary neural networks, it has the
advantages of partial connection and weight sharing and is
applied in the field of image recognition and target classi-
fication. In this paper, eight classical CNN models (AlexNet
[26], SqueezeNet [27], VGG-16 [28], VGG-19, Resnet-18
[29], ResNet-50, ResNet-101, and GoogLeNet [30]) were
selected as pretraining network models. All CNNmodels are
composed of convolutional layers, activation layers, pooling
layers, and fully connected layers. On the other hand,
stacking layers make it difficult to improve the model’s
learning ability and cause model degradation and gradient
explosion [31]or disappearance. Unlike other networks,
ResNet uses shortcut connections to solve the problem of
model degradation in deep neural networks, as shown in
Figure 4. Adding an identity map behind the shallow net-
work with equal input and output improves accuracy and
transforms the model into a shallow network while im-
proving the accuracy of the model.

*e pretrained network has been trained on over one
million images and can classify images into 1000 object
categories, including keyboard, mouse, pencil, and many
animals, as well as images of civil engineering. As a result, the
network has learned rich feature representations for a range
of different images. Since the three last layers of the pre-
trained network are configured for 1000 classes, these three
layers must be fine-tuned for our new classification problem,
as shown in Figure 5. All but the last three layers are
extracted from the pretrained network. By replacing the last
three layers with new fully connected layers, softmax and
classification layers, the fully connected layer is set to the
same size as the number of classes in the new data, which is
four for these experimental samples. In most networks, the

last layer with learnable weights is fully connected. In
SqueezeNet, the last learnable layer is a 1 × 1 convolutional
layer, which is replaced by a new convolutional layer with
the same number of filters as the number of classes.

3. Analysis of Results

*e experimental platforms used in this article are as follows:
Microsoft Windows 10 (operating system), i5-1035G1
central processing unit (CPU), NVIDIA GeForce MX350
8GB graphics processing unit (GPU), 512GB solid-state
drive, and Matlab R2020a.

3.1.NetworkModelComparison. All network models use the
same network parameters with the specific parameters
presented in Table 2. All network layers are trained, and the
experimental results are comprehensively evaluated with
four evaluation metrics, namely, validation accuracy, pre-
cision, recall, and F1-score.

*is paper selects the validation set to evaluate the
network, which contains 143 images, 30 of which are slight
blockage, 23 are moderate blockage, 7 are heavy blockage,
and 24 are no blockage. Different network models are
compared in terms of validation accuracy, precision, recall,
F1-score, test accuracy, and training time. Table 3 presents
the performance of each network model. Figure 6 shows the
training and validation accuracy, as well as the loss iteration
curves during the training process. As can be observed,
SqueezeNet has the shortest training time while having the
lowest validation accuracy. *e accuracy of the VGG-16/19
network is higher, but it takes a long time, and the test
accuracy of VGG-19 is lower than the validation accuracy,
resulting in overfitting. As the depth of the ResNet series
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Figure 5: Model-based transfer learning.
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network increases, so does the training time, but the ac-
curacy decreases. In a comprehensive comparison, ResNet-
18 has the highest validation accuracy and precision for each
classification, recall, and F1-score. *e verification accuracy
and test accuracy rate are 90.5% and 91.0%, respectively.
Although it is slightly lower than the VGG series network,
the training time is 1/50 of it. As a result, ResNet-18 per-
forms best in this experiment for the drainage hole target
classification task.

3.2. Comparison of Transfer Strategies. In Section 3.1, the
optimal network model ResNet-18 is obtained using transfer
learning.*is section continues to compare the performance
of the model under different transfer strategies. Choose to
freeze the weights of the different network layers by setting

the learning rate to zero. *e parameters of the frozen layer
will not be updated during training. Because the gradient of
frozen layers does not need to be calculated, freezing the
weights of multiple initial layers can significantly accelerate
the network training time. If the new samples are small,
freezing the shallower network layer also prevents those
layers from overfitting the new samples. To test the ad-
vantages of transfer learning, the ResNet-18 network
without pretraining was also used in this experiment.

ResNet-18 comprises 71 layers, including 8 residual
boxes. In this experiment, the layer from the first to the layer
behind each residual box is frozen sequentially, that is, layers
1–11 (after the first residual box), layers 1–18 (after the
second residual box), layers 1–27 (after the third residual
box), layers 1–34 (after the fourth residual box), layers 1–43

Table 3: Network model performance comparison.

Network Classify Accuracy (ACC) Precision (PPV) (%) Recall (TPR) (%) F 1-score (%) Test accuracy (%) Time

AlexNet

SB

88.1

85.3 96.7 0.91

89.1 6m 10 sMB 90.9 87.0 0.89
HB 83.3 71.4 0.77
NB 90.9 83.3 0.87

ResNet-18

SB

90.5

93.1 90.0 0.92

91.0 8m 40 sMB 91.3 91.3 0.91
HB 71.4 71.4 0.71
NB 92.0 95.8 0.94

ResNet-50

SB

85.8

82.5 88.9 0.86

90.0 36m 59 sMB 93.4 82.6 0.88
HB 73.9 81.0 0.77
NB 87.5 86.3 0.87

ResNet-101

SB

84.5

80.0 80.0 0.80

86.0 353m 42 sMB 94.4 73.9 0.83
HB 77.8 100.0 0.88
NB 85.2 95.8 0.90

GoogLeNet

SB

88.1

75.0 100.0 0.86

88.0 13m 15 sMB 100.0 69.6 0.82
HB 100.0 85.7 0.92
NB 100.0 91.7 0.96

VGG-16

SB

86.9

86.7 86.7 0.87

93.0 421m 11 sMB 90.0 78.3 0.84
HB 58.3 100.0 0.74
NB 100.0 91.7 0.96

VGG-19

SB

90.5

80.6 96.7 0.88

92.0 417m 30 sMB 94.7 78.3 0.86
HB 100.0 100.0 1.00
NB 100.0 91.7 0.96

SqueezeNet

SB

82.1

85.2 76.7 0.81

91.0 5m 33 sMB 80.0 87.0 0.83
HB 85.7 85.7 0.86
NB 80.0 83.3 0.82

Table 2: Parameter setting.

Parameter Value
Solver sgdm
MaxEpoch 20
miniBatchsize 10
InitialLearnRate 0.0001
ValidationFrequency 5
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Figure 6: Continued.

Advances in Civil Engineering 7



Training Accuracy
Validation Accuracy

Training Loss
Validation Loss

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500

(d)

Training Accuracy
Validation Accuracy

Training Loss
Validation Loss

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500

(e)

Training Accuracy
Validation Accuracy

Training Loss
Validation Loss

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500

(f )

Figure 6: Continued.

8 Advances in Civil Engineering



(after the fifth residual box), layers 1–50 (after the sixth
residual box), layers 1–59 (after the seventh residual box),
and layers 1–66 (after the eighth residual box), respectively.
*e learning rate of the frozen layer is set to zero, all layers
are reconnected in the original order, and the new layer
diagram contains the same layers, but the learning rate of the
frozen layer is zero.

*e network models of different transfer strategies use
the same network parameters. Table 2 presents the specific
parameters. *e recognition effects of the ResNet-18 using
different transfer strategies are compared by freezing the
networks of different layers. Table 4 presents the specific
experimental comparison.

*rough comparison, it is discovered that as the network
freezing depth increases, the training time becomes shorter
and shorter due to the fewer parameters that must be
trained. When layers 1–11 are frozen, network validation
accuracy and test accuracy suffer noticeably. When layers
1–18 are frozen, network verification accuracy is higher than
that of training all layers of accuracy, but testing accuracy is
lower. Network validation accuracy and test accuracy are
significantly lower when layers 1–27 are frozen, but verifi-
cation accuracy and evaluation indexes of the network are
the highest when layers 1–34 are frozen, with validation
accuracy and test accuracy of 91.7% and 90.0%, respectively.
Following that, as the number of frozen layers increases, the
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Figure 6: Accuracy and loss of different network models. (a)Accuracy and loss in the AlexNet training process. (b) Accuracy and loss in the
ResNet-18 training process. (c) Accuracy and loss in the ResNet-50 training process. (d)Accuracy and loss in the ResNet-101 training
process. (e)Accuracy and loss in the GoogLeNet training process. (f ) Accuracy and loss in the VGG-16 training process. (g) Accuracy and
loss in the VGG-19 training process. (h) Accuracy and loss in SqueezeNet training process.
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Table 4: ResNet-18 different transfer policy comparison.

Transfer strategy Classify Accuracy
(ACC)

Precision (PPV)
(%)

Recall (TPR)
(%)

F 1-score
(%)

Test accuracy
(%) Time

Train all layers

SB

90.5

93.1 90.0 0.92

91.0 8 m
40 s

MB 91.3 91.3 0.91
HB 71.4 71.4 0.71
NB 92.0 95.8 0.94

Freeze 1–11 layers after first residual
module

SB

82.1

79.3 76.6 0.78

87.1 8 m 5 sMB 89.5 73.9 0.81
HB 85.7 85.7 0.86
NB 79.3 95.8 0.87

Freeze 1–18 layers after second
residual module

SB

92.9

90.0 100.0 0.95

86.1 7 m
33 s

MB 100.0 82.6 0.90
HB 85.7 85.7 0.86
NB 92.0 95.8 0.94

Freeze 1–27 layers after third residual
module

SB

83.3

81.8 90.0 0.86

86.1 7 m
21 s

MB 83.3 65.2 0.73
HB 75.0 85.7 0.80
NB 88.0 91.7 0.90

Freeze 1–34 layers after forth residual
module

SB

91.7

96.4 90.0 0.93

90.0 7 m 3 sMB 91.3 91.3 0.91
HB 100.0 85.7 0.92
NB 85.2 95.8 0.90

Freeze 1–43 layers after fifth residual
module

SB

81.0

74.4 96.7 0.84

80.0 7 m 9 sMB 100.0 60.9 0.76
HB 55.6 71.4 0.63
NB 90.9 83.3 0.87

Freeze 1–50 layers after sixth residual
module

SB

81.0

78.8 86.7 0.83

88.1 6 m
35 s

MB 88.9 69.6 0.78
HB 75.0 85.7 0.80
NB 80.0 83.3 0.82

Freeze 1–59 layers after seventh
residual module

SB

78.6

69.8 100.0 0.82

78.2 6 m 7 sMB 84.6 47.8 0.61
HB 71.4 71.4 0.71
NB 95.2 83.3 0.89

Freeze 1–66 layers after eighth
residual module

SB

69.1

66.7 80.0 0.73

69.3 5 m
33 s

MB 63.2 52.2 0.57
HB 63.6 100.0 0.78
NB 83.3 62.5 0.71

Untrained network

SB

64.3

54.2 86.7 0.67

58.4 8 m
52 s

MB 73.3 47.8 0.58
HB 71.4 71.4 0.71
NB 85.7 50.0 0.63
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Table 5: ResNet-18 different model parameter comparison.

Solver name Initial learn rate Classify Accuracy (ACC) Precision (PPV) Recall (TPR) F1-Score (%) Test accuracy (%) Time

SGDM

0.01

SB

75.0%

69.4% 83.3 0.76

62.40 7m 13 sMB 75.0% 52.2 0.62
HB 57.0% 42.9 0.49
NB 82.1% 95.8 0.88

0.001

SB

86.9%

78.4% 96.7 0.87

87.1 9m 48 sMB 94.7% 78.3 0.86
HB 75.0% 85.7 0.80
NB 100.0% 83.3 0.91

0.0001

SB

91.7%

96.4% 90.0 0.93

90.0 7m 3 sMB 91.3% 91.3 0.91
HB 100.0% 85.7 0.92
NB 85.2% 95.8 0.90

Adam

0.01

SB

75.0%

60.0% 90.0 0.72

71.3 7m 58 sMB 100.0% 65.2 0.79
HB 100.0% 85.7 0.00
NB 83.3% 65.2 0.73

0.001

SB

84.5%

89.7% 86.7 0.88

83.2 8m 7 sMB 85.7% 78.3 0.82
HB 50.0% 71.4 0.59
NB 91.7% 91.7 0.92

0.0001

SB

83.3%

80.0% 80.0 0.80

91.0 7m 45 sMB 80.0% 87.0 0.83
HB 77.8% 100.0 0.88
NB 95.0% 79.2 0.86

RMSProp

0.01

SB

47.6%

41.7% 100.0 0.59

47.5 7m 46 sMB 100.0% 4.3 0.08
HB 100.0% 28.6 0.44
NB 77.8% 29.2 0.42

0.001

SB

79.8%

84.8% 93.3 0.89

85.1 7m 37 sMB 95.2% 87.0 0.91
HB 87.5% 100.0 0.93
NB 95.5% 87.5 0.91

0.0001

SB

85.7%

79.4% 90.0 0.84

93.0 7m 30MB 82.6% 82.6 0.83
HB 85.7% 85.7 0.86
NB 100.0% 83.3 0.91

Solver name Initial learn rate Classify AP mAP

SGDM

0.01

SB 57.81%

50.02%MB 39.15%
HB 24.45%
NB 78.65%

0.001

SB 75.81%

74.38%MB 74.15%
HB 64.28%
NB 83.30%

0.0001

SB 86.76%

84.36%MB 83.36%
HB 85.70%
NB 81.62%
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accuracy of the network model gradually decreases. Fur-
thermore, the network without pretraining is compared.*e
results show that, for the same number of training rounds,
the training time of the network without pretraining is
comparable to that of the network with pretraining for all
layers. However, the accuracy is far lower than that of the
pretrained network.

3.3. Comparison of Model Parameters. In the previous sec-
tion, different migration strategies were compared, among
which ResNet-18 frozen layers 1–34 performed best. Based

on this, we compared the prediction effects using three
different solvers (Adam, SGDM, and RMSProp) when the
model’s initial learning rate was 0.01, 0.001, and 0.0001,
respectively. Figure 7 shows the validation accuracy of
different solver models when the initial learning rate is
0.0001. As presented in Table 5, the model accuracy im-
proves dramatically when the learning rate decreases, and at
the same learning rate, Adam outperforms RMSProp while
SGDM outperforms Adam. When the solver is SGDM, the
model verification accuracy is the highest (91.7%); when the
learning rate is 0.0001, the test accuracy ranks third at 90.0%,

Table 5: Continued.

Solver name Initial learn rate Classify Accuracy (ACC) Precision (PPV) Recall (TPR) F1-Score (%) Test accuracy (%) Time
Solver name Initial learn rate Classify AP mAP

Adam

0.01

SB 54.00%

64.80%MB 65.20%
HB 85.70%
NB 54.31%

0.001

SB 77.77%

66.17%MB 67.10%
HB 35.70%
NB 84.09%

0.0001

SB 64.00%

71.66%MB 69.60%
HB 77.80%
NB 75.24%

RMSProp

0.01

SB 41.70%

24.33%MB 4.30%
HB 28.60%
NB 22.72%

0.001

SB 79.12%

83.25%MB 82.82%
HB 87.50%
NB 83.56%

0.0001

SB 71.46%

74.11%MB 68.23%
HB 73.44%
NB 83.30%

Predict: MB(99) Predict: MB(99)Predict: SB(100) Predict: SB(100)Predict: HB(100)

Predict: NB(99) Predict: SB(99)Predict: MB(100) Predict: HB(100)Predict: NB(99)

TrueLabel: MB6 TrueLabel: MB12TrueLabel: SB29 TrueLabel: SB13TrueLabel: HB8

TrueLabel: NB17 TrueLabel: SB31TrueLabel: MB20 TrueLabel: HB7TrueLabel: NB27

Figure 8: Test results.
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Input layer

Convolution layer

Relu layer

Pooling layer Output layer
=

res2a

res2b

res3a

res3b

res4a

res4b

res5a

res5b

Addition layer

Figure 9: Frozen layer of ResNet-18.

(a) (b) (c)

Figure 10: Feature images of res2a and res2b. (a) Raw image; (b) feature images of res2a (64 images); (c) feature images of res2b (64 images).

(a)

Figure 11: Continued.
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and other evaluation indexes are optimal. Figure 8 shows
partial test results; the values in parentheses are the predicted
confidence.

3.4.Visualisationof Features. *is section shows how to feed
images to ResNet-18 CNN and the activation region of the
addition layer (res2a, res2b, res3a, res3b, and res5b) at the
end of the first 1–4 and the last residual box of the network in
Figure 9, observing which regions in the convolutional layers
are activated on the image and comparing them with the
corresponding regions in the original image to investigate
the features. When comparing the activated regions with the
original image, it was discovered that the channels in the
shallower layers learn simple features such as colour and
edges, while the channels in the deeper layers learn complex
features.

Each layer of a CNN consists of several two-dimen-
sional arrays called channels. Each block in the activation
region grid is the output channel in the conv1 layer. White
pixels indicate strong positive activation regions, and black
pixels indicate strong negative activation regions. Primarily
grey channels are not strongly activated for the input
image. *e pixel positions in the channel activation regions
correspond to the same positions in the original image. A

white pixel at a position in a channel indicates that the
channel is strongly activated at that position. Figure 10
shows the 64 feature maps obtained for each layer of res2a
and res2b. Some of the channel images show the contours
of the drainage holes.

Figure 11 shows the feature images of res3a and res3b,
with 128 feature images obtained for each layer. Compared
with res2a and res2b, the convolution process reduces the
resolution of the feature images. Some additional interfer-
ence was filtered out. *e ideal features of the drainage holes
were extracted from some of the feature images. Figure 12
shows the feature images for the last residual box addition
layer, res5b, with 512 feature images obtained for each layer.
At this point, the resolution continues to decrease, the image
becomes extremely blurred, and the visual features
disappear.

4. Conclusion and Outlook

Based on the drainage hole image samples, eight different
pretrained CNN models, that is, AlexNet, SqueezeNet,
VGG-16, VGG-19, GoogLeNet, ResNet-18, ResNet-50, and
ResNet-101, were compared. *e performance of the same
model under different migration strategies and different

(b)

Figure 11: Feature images of res3a and res3b. (a) Feature images of res3a (128 images); (b) feature images of res3b (128 images).

Figure 12: Feature images of res5b.
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hyperparameters is compared. *e ideal network model of
blockage detection of drainage holes is obtained. *rough
the analysis of the experiment, the following conclusions are
drawn.

(1) Based on the drainage hole blockage samples, eight
different pretraining network models were com-
pared, and a relatively accurate (91.5%) drainage hole
blockage detection network model based on ResNet-
18 was trained, resulting in the classification of
drainage hole blockage into four types based on
degree, that is, slight blockage, moderate blockage,
heavy blockage, and no blockage.

(2) Compared with the transfer learning model, it takes
much longer to retrain the network, and the network
accuracy is much lower. Comparing the performance
of the network model under different migration
strategies, the training time decreases as the frozen
layer increases. When selecting the appropriate
relative shallow network to freeze, keeping the basic
without accuracy reduction can decrease the net-
work training time. However, after a certain depth,
the accuracy of the model decreases as the number of
frozen layers increases.

(3) In this paper, we compare different solvers and
initial learning rates of the network model, and the
results show that as the learning rate decreases, the
model accuracy significantly increases. For these
experimental samples, the model accuracy is best
when the initial learning rate is 0.0001 and the
solver is SGDM.

*e congestion classification network model is helpful
for the detection and maintenance of drainage holes in
public infrastructure. Detection personnel can consider
using an unmanned aerial vehicle to collect drainage hole
pictures according to the planned route and then input the
collected pictures into the drainage hole blockage detection
model, which can automatically classify the blockage degree
of the drainage hole.

*e target of the image differs greatly from the back-
ground in the actual image acquisition process due to factors
such as shooting angle and drainage hole location, and the
adaptability of the model is reduced, resulting in the cor-
rectness of the trained model in this paper. An improvement
is still required compared with the application of deep
learning in other aspects. In this paper, only the target
classification is carried out for the degree of drainage hole
blockage, and the detection and positioning of the disease
location can be carried out based on this research. Using the
target detection method, several types of diseases can be
identified in a single image, and the research on this drainage
hole blockage classification network model is of great im-
portance for the maintenance of drainage pipes. Further-
more, it provides important technical support for the
development of intelligent maintenance management sys-
tems for drainage pipes at a later stage.
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