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After drilling a borehole in the ground and in a rocky environment, the materials around the borehole are crushed and separated
in layers from the borehole wall; this causes the borehole cross section to lose its original circular shape, which redistributes
stresses and further failure. )is type of episodic failure, which occurs symmetrically and V-shaped on both sides of the borehole
and along the minor principal stress, is called breakout. )e dimensions of breakout, i.e., its depth and width, are two important
indicators that have recently been used in estimating in situ stresses; however, the dimensions of the breakout area depend on the
in situ stresses and mechanical properties of the rock, which have not been well addressed so far. )is paper presents a
comprehensive investigation of breakout dimensions using finite element numerical analysis. )e proposed numerical model is
based on the equations governing the two-dimensional breakout phenomenon under nonisotropic in situ stresses and plane strain
condition. According to the results, increasing the failure function of the area around the breakout tip causes the breakout to
expand, until the failure function is less than 1 for all points around the breakout tip, at which point the breakout expansion is
stopped and breakout reaches stability. In the other part of the article, using 121 datasets obtained from numerical analysis, an
artificial neural network is trained to predict breakout dimensions based on the input parameters of the problem.)emain finding
of this section is a model that shows that among the parameters affecting the borehole breakout, the internal friction angle of the
rock has the greatest impact on the dimensions of the breakout.

1. Introduction

Drilling a borehole in a rock mass under nonisotropic in situ
stresses creates a concentration of stress around the borehole
that causes failure of the rock material; this type of shear
failure is known as borehole breakout, during which the
borehole wall collapses. During this failure, the crushed rock
layers gradually separate from the borehole wall and
breakout failure develops until the in situ stresses reach
equilibrium with the rock strength. Because the compressive
stress concentration is greater along the minor principal
stress, the development of breakout failure occurs along the
minimum principal stress. According to what is called field
observation, the developed form of breakout failure is dog
eared or V-shaped, which has two characteristics of width in
the borehole wall (θB) and depth (rB) (Figure 1). Studying

the breakout phenomenon and examining its geometric
dimensions are important for two reasons; first, breakout
can cause borehole instability, and secondly, because one of
the effective parameters in breakout is in situ stresses. )is
phenomenon can be used along with other methods such as
hydraulic fracturing to estimate in situ stresses and their
direction [1–7]. In addition to field observations, breakout
can be examined in a laboratory, theoretical, or numerical
manner, some of which are summarized below.

Various laboratory studies have been performed on the
breakout phenomenon and determination of the failure area
using cubic or cylindrical rock samples [8–12]. Laboratory
studies show that the breakout geometry is affected by rock
microstructure such as mineral type, porosity, grain
strength, and intergranular strength [2, 12–14]. Laboratory
results also show that two types of shear failure mechanism
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and tensile failure mechanism can occur in breakout; the
mechanism of tensile failure often occurs in hard crystalline
rocks, such as granite, due to the strong cementation and
bonding between the grains [13, 15–19], and shear failure in
soft rocks such as dolomite, limestone, and sandstone occurs
due to poor bonding between the grains [1, 19, 20]. In most
laboratory studies, the dog eared area has been observed for
breakout; laboratory study also confirms that the depth and
width of the breakout failure area shown in Figure 1 are
correlated, therefore, due to this correlation, only one of the
stresses can be obtained in estimating in situ stresses using
breakout dimensions [21, 22]; in other words, if the vertical
stress is considered equal to the overburden pressure, and
minor horizontal stresses are obtained using the hydraulic
fracturing test [23], then major horizontal stresses can then
be estimated by the breakout geometry [24].

Breakout has also been studied theoretically and nu-
merically [1, 25]. In the classical theory solution, by
substituting the stresses around the borehole calculated from
the Kirsch’s relations in the failure criterion, the failure area
around the borehole is obtained, but with this method, only
the first layer of failure is calculated [26], while breakout goes
step by step to achieve stability. Progressive breakout failure
has also been investigated using numerical techniques
[25, 27–30]. In numerical solution, it is assumed that the
initial failure width in the borehole wall remains constant
and the failure depth increases, something similar to what
happens in laboratory experiments [27]. For example, Shen
et al. [19] used the numerical method of boundary element
to predict the dog eared failure area for various breakout
failure mechanisms, taking into account the different ratios
of in situ stress and fluid pressure; they observed that in
many cases, the shear failure mechanism plays a role in the
final formation of the breakout and the tensile failure
mechanism alone cannot cause the formation of the
breakout. Li et al. [31, 32] examined breakout in oblique
boreholes and observed that breakout occurs on the plane
with minor horizontal stress direction. Rahmati et al. [33]
used a discrete element method to simulate breakout and

investigate the effect of microstructure on failure geometry;
according to their results, several factors such as particle
stiffness, cementation between particles, and porosity, lead
to the formation of fracture-like breakout. Lin et al. [30]
investigated the effect of borehole diameter on breakout
failure using PFC code; in their modeling, the borehole
radius varied between 2 and 12mm, and they concluded that
the smaller the borehole radius, the greater the stress that
initiates breakout failure.

As mentioned above, the breakout area is V-shaped and
occurs symmetrically along the minor principal stress. Al-
though the failure mechanism of breakout is due to shear
stresses, so far numerical analysis has not addressed why the
failure area is V-shaped. In other words, the main question is
that with the separation of the first crushed layer of the rock
from the borehole wall, what causes the subsequent layers of
rock to separate? On the other hand, the parameters af-
fecting the borehole breakout and the failure area include the
mechanical properties of the rock and the in-situ stresses,
but they have not been addressed so far, which of the pa-
rameters has a greater impact on the failure dimensions and
whether a significant relationship can be found between the
breakout dimensions and the parameters affecting the
breakout or not?

To answer the above questions, a numerical model using
the finite element method based on the equations governing
the breakout phenomenon is presented; this numerical
model is able to show the step-by-step progress of the
breakout failure to achieve stability. )us, by using step-by-
step analysis and examining the failure function for different
points, we get a clear understanding of how a breakout is
formed. To answer the second issue, an artificial neural
network (ANN) is trained that is able to predict the di-
mensions of the breakout based on the input parameters of
the problem; using this neural network and sensitivity
analysis, the parameters affecting the breakout phenomenon
are evaluated.

For breakout analysis, it is assumed that the problem
environment is subject to three in situ principal stresses of
σh, σv, σH, in such a way that σh < σv < σH and σv are along
the borehole axis. Assuming plane strain conditions, a
borehole cross section is considered (Figure 2). After drilling
the borehole, the stress distribution in the ground is dis-
turbed and the stress around the borehole increases or
decreases, and the distribution of stress can be obtained from
Kirsch’s theory [35]. Along the minimum principal stress
(σh), a compressive stress concentration occurs that can
cause the rock to failure, and the crushed layer of rock is
assumed to separate from the borehole wall. After the first
layer of crushed rock separates from the borehole wall, the
cross-sectional area of the borehole is no longer circular and
changes to another shape, changing the borehole cross
section and redistributing the stress around the borehole,
but the new stress distribution can no longer be obtained
fromKirsch’s analytical relations, and the numerical method
must be used to obtain them; to achieve the aforesaid, in this
article, the finite element numerical method is used. Using
the new stresses, the failure criterion is checked to see if
another layer of rock in the borehole wall is crushed, and this

θB rB

Figure 1: V-shaped breakout observed in laboratory experiments
on Alabama limestone (σh � 28MPa, σH � 83MPa) [34].
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is repeated until another layer does not fail, in which case the
breakout is stopped and the problem becomes stable.

In the next section of the article, the Mogi-Coulomb
criterion, which is the failure criterion used in the numerical
model, is introduced, and then the equations governing the
breakout phenomenon and its numerical solution procedure
by finite element method are given. To achieve the breakout
failure progress step by step, an iterative algorithm is needed,
which is explained in Section 5 of the article. After validating
the model and comparing it with laboratory studies, the
changes in the failure function around the borehole are
evaluated and at the end, the results related to the neural
network are given.

2. Mogi-Coulomb Failure Criterion

Among the criteria for shear failure in rock, Mohr-Coulomb
failure criterion is more applicable and more common,
according to this failure criterion (equation (1) major and
minor principal stress components are linearly related to
each other, but the effect of intermediate principal stress is
not considered in the failure criterion [36]):

σ1 � 2 c tan
π
4

+
ϕ
2

  + σ3 tan
2 π

4
+
ϕ
2

 , (1)

where σ1, σ2, and σ3 are the major, intermediate, and minor
principal stresses, respectively, and c, ϕ are cohesion and
internal friction angle of the rock material. In 1971, based on
a number of multiaxial compression tests (true triaxial) and
considering the effect of intermediate principal stress, Mogi
proposed the Mogi failure criterion for the rock as given
below [37]:
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2
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Al-Ajmi and Zimmerman [38] presented a linear rela-
tionship for the Mogi criterion using laboratory data. )ey
estimated the two parameters of the linear relationship by
the Mohr-Coulomb failure criterion, and therefore the
Mogi-Coulomb criterion is introduced according to the
following equation:

τoct � A + B σm,2, (5)

where

A �
2

�
2

√

3
c cos ϕ,

B �
2

�
2

√

3
sin ϕ.

(6)

For this criterion, the failure function is defined as:

F �
τoct

A + B σm,2
. (7)

Using this failure function, it is determined which point
around the borehole is failed; in a way,

the failure function is calculated by the stresses at each
point. If the failure function becomes more than one, it
means that the point has failed, otherwise that point remains
intact; in other words, the condition of breakout failure is
F〉 1 [39].

3. Governing Equations and Numerical
Solution Procedure

)e governing equations for the breakout problem in the
plane strain condition are Cauchy’s equation of equilibrium,
strain-displacement relations, and constitutive relations,
respectively, as follows:

∇.σ + f � 0,

ε �
1
2
∇u + ∇uT

 ,

σ � Dε,

(8)

where f is the body force; σ, ε are stress and strain tensors,
respectively; and u is the displacement vector, for plane
strain condition

D �

λ + 2μ λ 0

λ λ + 2μ 0

0 0 μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (9)

)e numerical technique used in this paper to solve the
governing equations is the finite element method. )is
method is used to solve problems that are expressed by
partial differential equations or that can be formulated as a
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Figure 2: )e geometry of the problem.
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functional minimization. In this method, the problem area is
divided into finite elements that are connected to each other
by several nodes; the displacements inside each element are
then approximated by a Rayleigh-Ritz function. If the
problem formulation becomes a differential equation, the
Galerkin method is usually used to solve it, otherwise the
potential energy functional is calculated in terms of nodal
displacements for all elements, and then, by minimizing the
potential energy functional, a system of equations in terms of
displacements is obtained.

In the finite element numerical method, to achieve the
general equilibrium equation, the following procedure is
performed; first, strain vector of each element is defined in
terms of nodal displacements:

εe � Bede, (10)

where de is a vector containing the nodal displacements and
Be contains appropriate derivatives of shape functions, and
index e corresponds to the element. So the stress tensor is as
follows:

σe � DeBede. (11)

)e energy stored in each element is equal to

Ue �
1
2


vol
εT

e DeεedV �
1
2
d

T
e Kede, (12)

where Ke � volB
T
e DeBedv is the stiffness matrix, and thus,

the total energy stored in all elements is equal to:
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e
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2
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T
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2
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T
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where K � e Ke , is the global stiffness matrix, and the
potential energy functional is obtained as

Π �
1
2
d

T
Kd − d

T
R, (14)

where R is the total load vector, and finally, by minimizing
energy functional relative to the nodal displacements
components, the global equilibrium equation is obtained as:

Kd � R. (15)

4. Numerical Model of Progressive Breakout
Failure and Validation

Numerical analysis of geotechnical problems by the finite
element method is often mesh-dependent. Even when the
material constitutive model is the strain-softening model,
the dependence of the result on the mesh size is significant;
however, some researchers used special analytical techniques
to reduce the dependence of the model on mesh size [40, 41].
Numerical analysis performed in this paper also showed the
dependence of the results on mesh size, and for a given
borehole diameter, the finer the mesh, the more accurate the
model is in obtaining the corners of the breakdown area; on
the other hand, as the mesh becomes finer, the analysis time
increases a lot. )e appropriate mesh size can be obtained in

two ways; one method is sensitivity analysis and the other
method is by comparing the geometry of failure obtained in
the first step with the geometry obtained from analytical
relations. In this paper, using the second method, by
combining the stress distribution relationships around the
borehole with the failure function, the failure geometry was
obtained for the first step and compared with the geometry
predicted by the numerical method, and based on this, the
appropriate mesh size was selected.

For numerical modeling of progressive breakout failure,
the geometry of Figure 3 is considered.

A square with dimensions of 4 × 4m2; in the middle of
the square, there is a hole with a diameter of 0.2meters as a
borehole. )is geometry was meshed with 6400 4-node iso-
parametric elements; this type of element generally has
curved boundaries, which is important in the vicinity of the
borehole, because they can mesh the borehole border
properly. Two-dimensional modeling of plane strain is based
on the governing equations mentioned in the previous
section.

It should be noted that although the model is two-di-
mensional, there is an effect of the second principal stress
through theMogi-Coulomb failure criterion (equation (5) in
the problem). Following are the steps of numerical analysis
of borehole breakout failure to reach the final shape of
breakout and stability.

(1) )e first step is to calculate the stresses around the
borehole based on the finite element formulations
mentioned in the previous section.

(2) In the second step, with the stresses calculated in
each element, the failure function is calculated based
on the Mogi-Coulomb criterion ((7) Of course, first
the principal stresses must be computed from the
local stresses obtained from the numerical model. If
the failure function for a given element is greater
than one, that element will fail and be removed from
the model.

(3) For the new model geometry and for all the
remaining elements from the previous section, the
stresses are recalculated. )en, the new failure
function is calculated for the elements and the
previous steps are repeated until the failure function
does not exceed one in any element; at this time, it
can be said that the failure has reached a stable state
and the final shape of the breakout has been
obtained.

(4) For the final shape of the breakout, the depth and
width of the failure are obtained.

A program in MATLAB software is written based on the
formulation of governing equations, in which the above
steps are performed. )e stress distribution around a cir-
cular borehole in an elastic medium under nonisotropic
stresses is obtained by the Kirsch’s relations [35]. To validate
the numerical algorithm and the written code, the stress
distribution around the borehole along the minor principal
stress obtained from the numerical solution is compared
with the Kirsch’s analytical relations. Figure 4 shows the
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stresses obtained from both numerical and theoretical
methods for the rock properties presented in Table 1. As seen
in this figure, there is good agreement between the stresses
obtained from the finite element code with analytical
solution.

5. Breakout Progress and Failure
Function Changes

For the rock properties presented in Table 1, progressive
numerical analysis of breakout is performed, the result of
which is shown in Figure 5. According to Figure 5, it can be
seen that the breakout reaches stability and stops after 8
stages; it is also observed that breakout expansion occurred
along the minor principal stress. )e depth and width of the
breakout failure are shown in the final breakout shape
obtained from the last step of the analysis. It is also observed
that the breakout width obtained in the first step is the same
as the final breakout width, but the breakout depth increases
in each step compared to the previous step.

To take a closer look at how the breakout failure
progresses, the value of the failure function F is obtained
according to equation (7) for elements located in specific
directions, and the selected directions in the finite element
network of a quarter of the studied problem are shown in
Figure 6. In this figure, 6 directions are specified, three of
which are inside the breakout failure area and three di-
rections are outside the breakout area.

Figure 7, for example, shows the value of the failure
function F for the first 32 elements located in directionA and
for the 8 steps of the failure progress. In this figure, 9 curves
can be seen; curve 1 shows the values of the failure function
for the elements located along direction A, exactly after
drilling the borehole. As can be seen in the first step and in
the direction A, the failure function becomes more than one
for only one element (element number 1), and therefore, this
element must be removed. By removing this element and all
the elements whose failure function has become more than
one in other directions, stress redistribution occurs in the
environment and the failure function of the remaining el-
ements changes. Curve 2 shows the failure function after the
first step of breakout failure, element number 1 no longer
exists because it is failed, and the failure function for element
number 2, which was previously less than one, becomes
more than one, due to the new stress distribution. By re-
moving the second element in path A, element number 3,
whose failure function was less than one, becomesmore than
one and becomes a candidate for deletion in the next step;
thus, the reason for the expansion of breakout failure step by
step is that, with the failure of a number of elements in the
previous step, stress concentration occurs in the subsequent
elements, which causes the failure to progress. By removing
8 elements in this direction and completing the eighth step
of the breakout advance, the failure function in element
number 9 increases, but does not exceed one, and this means
the end of the breakout failure expansion, and it is clear that
the failure along direction A has the greatest depth.

)e same thing happens with other directions at the
same time. )e failure function of the elements located in
direction B experiences such changes, but the end of the
seventh step is the end of the breakout failure progress along
this direction. Due to the similarity with direction A, failure
function changes is not given in this direction. Direction C is
located near the corner of the breakout failure area and only
three elements fail along this direction. )e changes of the
failure function F for the 32 elements located along this line
are plotted in Figure 8.)e elements of directionsD, E, and F
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Figure 4: Comparison of stresses around the borehole for θ � 00,
obtained from numerical solution with Kirsch’s analytical relations.

Table 1: Rock material properties and in situ stresses used in
numerical analysis.

Parameter Symbol Unit Value
Cohesion c MPa 30
Friction angle ϕ (°) 52.5
Young’s modulus E GPa 59
Poisson’s ratio ] 0.25
Maximum horizontal stress σH MPa 200
Vertical stress σV MPa 50
Minimum horizontal stress σh MPa 40

σh

σH

Figure 3: Geometry, meshing, and boundary conditions of the
model used in numerical analysis.
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are not in the breakout failure area, and as shown in
Figures 9–11, the failure function for these elements is less
than one, although they change as the breakout progresses.
)e elements that have failed in the successive steps of
breakout failure are marked with a red dot in their center, as
shown in Figure 6. By considering the symmetry for this
quarter of the studied environment, the failure area of the
breakout is almost V-shaped.

6. Comparison of Numerical Solution with
Laboratory Results

In this section, the depth and width of the breakout failure
area obtained from the results of experiments performed on
Westerly granite rock samples [42] are compared with the
results obtained from numerical analysis presented in this
paper. Westerly granite used in laboratory experiments has
the mineralogical characteristics presented in Table 2, this
type of crystalline rock is widely used in laboratory studies.
Westerly granite is assumed to be homogeneous, isotropic,
and have an elastic behavior, and because it conforms to the
assumptions of the analytical-numerical model presented in
this paper, it is a good example for comparison. According to

Initial state Step 1 Step 2

Step 3 Step 4 Step 5

Step 6 Step 7 Step 8

σh θBσh

σH

σH

θB rB

Figure 5: Different stages of breakout progress to achieve stability.

direction: A
B

C
D

EF

σH

σh

Figure 6: A quarter of the numerical model, the red elements are
failed during the breakout progress.
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the triaxial experiments performed on samples of Westerly
granite, and by drawing the Mohr-Coulomb envelope, the
internal friction angle for this type of rock is 56.90 and its
cohesion is 28.7MPa [42]. )e experimental process was
similar to the numerical modeling process; blocks of
Westerly granite with dimensions of 11 × 11 × 11 cm3 are
placed under the loading machine and then a hole with a
diameter of 2.23 cm is drilled in them while the sample is
subjected to field stresses from three sides.

)e results obtained from the laboratory model and
numerical analysis for the depth and width of the breakout
failure area are given in Table 3. As can be seen, the nu-
merical model with the Mogi-Coulomb failure criterion is in
good agreement with the laboratory results for the depth of
breakout failure and for various field stresses; in this case, the
maximum absolute error is 0.06. However, the failure width

obtained from the numerical model is different from the
failure width obtained from the laboratory model. )is
difference is small for some values of in situ stresses; the
maximum absolute error between the failure width of the
numerical model and the failure width of the laboratory
model is 16.8. In general, the breakout width obtained from
the numerical model is larger than the laboratory model.)e
difference between the numerical model and the laboratory
model in predicting breakout width can be due to two
reasons; the first reason is the size effect, which is ignored in
the laboratory model while being important and influential
on the results. Of course, the effect of size cannot be ex-
amined by the numerical model presented in this paper, and
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the second is the effect of rock microstructure on the di-
mensions of the breakout failure area, which has not been
investigated in the laboratory model and numerical study. In
short, the breakout area obtained from the laboratory model
is narrower than the area obtained from the numerical
model.

7. Artificial Neural Network Model

)e purpose of this section is to find the relationship be-
tween input parameters of borehole breakout phenomenon
and the final geometry of the breakout failure area. Such a
relationship is very important in determining in situ stresses
using the final dimensions of breakout. Another purpose of
this section is to know the effect of each of the input pa-
rameters on the width and final depth of breakout. To
achieve these goals, an artificial neural network will be used.
In recent years, the use of artificial intelligence and especially
artificial neural network in finding the relationship between
effective parameters and output parameters in physical,
laboratory, and numerical phenomena has grown widely
[44–47]. Each artificial neural network has at least three
layers, the input layer, the hidden middle layer, and the
output layer, and each layer has elements known as neurons;
communication between neurons has a certain weight. )e
hidden layer contains weighted inputs and biases; the bias is

basically a weight with a fixed input of 1. If a sufficient
amount of data is available, a suitable neural network can be
trained to be able to predict the values of the output pa-
rameters based on the input parameters. Each network has
three important components: learning law, transfer func-
tion, and network architecture [48].

7.1. Input and Output Parameters. According to the Mogi-
Coulomb failure criterion, and the governing equations
presented in Section 4, the effective parameters in the
borehole breakout phenomenon include in situ stresses and
mechanical properties of the rock, and the selected range for
these parameters is presented in Table 4. According to the
limits specified for each parameter, 121 datasets have been
prepared, the list of which is given in Table 5. Output pa-
rameters include the width and depth of the breakout failure
area, which are often used in estimating in situ stresses.

7.2. Training. Based on the multilayer perceptron, to de-
termine the network with the best performance, different
models were examined in which the number of intermediate
(hidden) layers and the number of neurons in each layer
were changed to obtain the optimal network with error. In
network training, the Levenberg-Marqwardt algorithm was
used to achieve high convergence speed; first, the data need
to be normalized between 0 and 1, as follows:

x �
x − xmin

xmax − xmin
, (16)

and then from the 121 datasets, 70% is used for training and
the rest for validation and testing.

After several analyses on different networks to find the
least error, the activation function for the hidden layers, the
tan-sigmoid (TANSIG) function was selected, which is a
nonlinear tangent sigmoid function, and the activation
function for the output layer, the purelin function, which is a
linear transfer function, was selected [49]; the relations of
these two functions are given below, respectively, and are
also shown in Figure 12.

f(x) �
e

ex − e
− ex

e
ex + e

−ex
,

f(x) � Purelin(x).

(17)

7.3.NetworkArchitecture. To determine the appropriate and
optimum neural network model to estimate the geometric
parameters of breakout (rB, θB) based on the mechanical
properties of the rock material and the values of in situ
stresses, it is necessary to analyze various network archi-
tectures with different hidden layers and neurons. )e best
architecture should have a minimum root mean square error
(RMSE) and a maximum correlation coefficient (R) between
the values obtained from numerical analysis and the pre-
dicted values of the breakout failure area dimensions; in the
following, the root mean square error (RMSE) relation and
correlation coefficient (R) are given, respectively,
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Figure 11: Failure function changes for 32 elements located along
direction F.

Table 2: Westerly granite mineral compositions [43].

Mineral type Volume in percentage
Quartz 27.5
Microcline 34.4
Plagioclase 32.4
Muscovite 1.3
Biotite 3.2
Opaque accessories 0.8
Other accessories 0.4
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where n is the number of datasets, Pi and Oi represent the
predicted values and the values obtained from numerical
analysis, respectively, and O is the average of the values
obtained from numerical analysis. According to the above,
several networks were examined, the results of which are
summarized in Table 6. As seen in this table, topology 5-6-2
has almost the minimum root mean square error (RMSE)
and the maximum correlation coefficient for rB and θB; for
this architecture, the RMSE for the normalized failure depth
and width is 0.06 and 0.09, respectively, and the correlation
coefficient is 0.92 and 0.95, respectively. )e architecture of
this network is shown in Figure 13 and the weights and
biases related to this architecture and for the connection
between the input layer and the hidden layer, and the hidden
layer and the output layer are given in Tables 7 and 8,
respectively.

7.4. Performance of the Neural Network Model. In this sec-
tion, an evaluation of the performance of the neural network
model with 5-6-2 architecture is performed by comparing the
depth and width of breakout predicted by the neural network
model with the depth and width of breakout obtained from
numerical analysis. Figure 14 shows the comparison between

the normalized width of the failure, predicted by the neural
network and obtained from the numerical solution. )e
correlation coefficient between the de-normalized failure
depth obtained from the numerical model and the de-nor-
malized failure depth predicted by the neural network is 0.924
with RMSE � 0.026, and the correlation coefficient between
the de-normalized failure width obtained from the numerical
model and the de-normalized failure width predicted by the
neural network is 0.95. Figures 15 and 16 show the rela-
tionship between the real values obtained from the numerical
method and the predicted de-normalized values for the depth
and width of the failure, respectively; in these figures, the line
y � x is also drawn for comparison.

From these figures and high correlation coefficients, the
good performance of the neural network model results.

7.5. Comparison of Neural Network Model with Laboratory
Model. As presented in Section 6 and Table 3, a comparison
between the numerical model and laboratory results is
presented. In this section, a comparison between the depth
and width of breakout predicted by the neural network with
the results of breakout experiments performed on Westerly
granite is given, and the comparison results are presented in
Table 9. )e values of in situ stresses are the same as in
Table 3; as can be seen in this table, the depth of failure
predicted by the neural network is in good agreement with
the depth of failure of the laboratory model, and in this case,
the maximum absolute error between the two models is 0.2.
However, comparing the failure width, it can be seen that for
some in situ stress ratios, the difference between the labo-
ratory model and the values predicted by the neural network
is significant. )e reason for the difference is clear; because
the neural network is trained for the values obtained by the
numerical model, and as in Table 3 for breakout width, there
was a difference between the numerical model and the
laboratory model, there is the same difference between the
laboratory model and the values predicted by the neural
network.

7.6. Sensitivity Analysis. What has not been addressed in
laboratory and numerical studies so far is to find parameters
that have a greater impact on the breakout phenomenon
and specifically on the depth and width of breakout

Table 3: Comparison between failure depth and width obtained from numerical analysis and laboratory model.

Test no. σh (MPa) σV (MPa) σH (MPa)
(rB/a) θB(°)

Numerical Laboratory Absolute error Numerical Laboratory Absolute error

1 20 40 160 1.21 1.260 0.05 44.89 42.44 2.45
2 20 40 180 1.25 1.268 0.02 53.64 42.62 11.02
3 20 40 200 1.3 1.283 0.02 62.91 46.11 16.80
4 20 60 160 1.16 1.168 0.01 36.14 32.12 4.02
5 20 60 180 1.21 1.242 0.03 44.89 40.92 3.97
6 20 60 200 1.25 1.287 0.04 53.64 44.82 8.82
7 40 60 180 1.16 1.139 0.02 36.14 30.88 5.26
8 40 60 200 1.25 1.280 0.03 53.64 39.68 13.96
9 50 60 180 1.16 1.209 0.05 36.14 32.82 3.32
10 50 60 200 1.21 1.271 0.06 44.89 42.24 2.65

Table 4: Range of input parameters.

Parameter Symbol Unit Minimum Maximum
Cohesion c MPa 20 55
Friction angle ϕ (°) 32.5 52.5
Maximum horizontal
stress σH MPa 70 200

Vertical stress σV MPa 30 60
Minimum horizontal
stress σh MPa 20 50

Advances in Civil Engineering 9



Table 5: Datasets used in neural network models.

Symbol ϕ c σh σV σH θB rB/a

unit (∘) MPa MPa MPa MPa (∘)

Datasets no.
1 32.5 25 20 30 80 72.14 1.35
2 32.5 25 30 40 70 62.91 1.3
3 32.5 25 30 40 80 81 1.4
4 35 25 20 30 70 62.91 1.51
5 37.5 20 20 30 70 72.14 1.51
6 37.5 20 50 60 70 81 1.57
7 37.5 25 30 40 70 53.64 1.35
8 37.5 25 40 50 80 62.91 1.57
9 40 25 20 30 75 53.64 1.3
10 40 25 40 50 90 62.91 1.4
11 42.5 20 20 30 80 72.14 1.51
12 42.5 20 30 40 70 53.64 1.3
13 42.5 20 30 40 85 72.14 1.51
14 42.5 25 20 30 80 53.64 1.3
15 42.5 25 20 30 95 62.91 1.45
16 42.5 25 30 40 115 81 1.69
17 45 20 20 30 80 62.91 1.35
18 45 20 30 40 80 53.64 1.3
19 45 20 30 40 90 72.14 1.4
20 45 20 40 50 90 62.91 1.35
21 45 20 50 60 95 72.14 1.4
22 45 25 20 30 90 53.64 1.3
23 45 25 20 30 95 62.91 1.35
24 45 25 20 30 110 72.14 1.4
25 45 25 20 30 120 81 1.4
26 45 25 30 40 105 62.91 1.35
27 45 25 30 40 110 72.14 1.45
28 45 25 40 50 100 53.64 1.3
29 45 25 40 50 105 62.91 1.35
30 45 25 40 50 115 72.14 1.4
31 45 25 50 60 110 62.91 1.35
32 45 25 50 60 120 72.14 1.4
33 45 25 50 60 130 81 1.45
34 45 30 20 30 105 53.64 1.3
35 45 30 30 40 110 53.64 1.3
36 45 30 30 40 120 62.91 1.35
37 45 30 30 40 130 72.14 1.4
38 45 30 40 50 115 53.64 1.3
39 45 30 40 50 125 62.91 1.35
40 45 30 40 50 135 72.14 1.45
41 45 30 50 60 125 53.64 1.3
42 45 30 50 60 135 72.14 1.4
43 45 35 20 30 120 53.64 1.3
44 45 35 20 30 130 62.91 1.35
45 45 35 30 40 125 53.64 1.3
46 45 35 30 40 135 62.91 1.35
47 45 35 40 50 130 53.64 1.3
48 45 35 40 50 140 62.91 1.35
49 45 40 20 30 135 53.64 1.3
50 45 40 30 40 195 81 1.51
51 45 40 40 50 170 72.14 1.4
52 45 40 50 60 150 53.64 1.3
53 45 45 20 30 150 53.64 1.3
54 45 45 30 40 155 53.64 1.3
55 45 45 40 50 160 53.64 1.3
56 45 45 40 50 170 62.91 1.35
57 45 45 50 60 165 53.64 1.3
58 45 50 20 30 160 53.64 1.3
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Table 5: Continued.

Symbol ϕ c σh σV σH θB rB/a

59 45 50 30 40 170 53.64 1.3
60 45 50 40 50 175 53.64 1.3
61 45 50 40 50 190 62.91 1.35
62 45 50 50 60 180 53.64 1.3
63 45 50 50 60 200 62.91 1.35
64 45 55 20 30 180 53.64 1.3
65 45 55 30 40 180 53.64 1.3
66 45 55 30 40 200 62.91 1.35
67 45 55 40 50 190 53.64 1.3
68 47.5 30 20 30 120 62.91 1.3
69 47.5 30 40 50 160 72.14 1.4
70 47.5 30 40 50 165 81 1.45
71 47.5 35 30 40 150 62.91 1.35
72 47.5 40 20 30 150 53.64 1.3
73 47.5 40 20 30 170 62.91 1.35
74 47.5 40 50 60 180 62.91 1.3
75 47.5 40 50 60 200 72.14 1.4
76 47.5 45 20 30 170 53.64 1.3
77 47.5 45 20 30 190 62.91 1.35
78 47.5 45 30 40 170 53.64 1.3
79 47.5 45 30 40 190 62.91 1.35
80 47.5 45 40 50 180 53.64 1.25
81 47.5 45 40 50 190 62.91 1.3
82 47.5 50 20 30 180 53.64 1.3
83 47.5 50 20 30 200 62.91 1.35
84 47.5 50 30 40 190 53.64 1.3
85 47.5 50 40 50 190 53.64 1.3
86 47.5 55 20 30 200 53.64 1.3
87 50 30 20 30 140 62.91 1.3
88 50 30 20 30 160 72.14 1.45
89 50 30 30 40 150 62.91 1.3
90 50 30 30 40 170 72.14 1.35
91 50 30 40 50 160 62.91 1.3
92 50 30 40 50 200 81 1.45
93 50 30 50 60 180 62.91 1.3
94 50 30 50 60 200 81 1.45
95 50 35 20 30 170 62.91 1.3
96 50 35 20 30 190 72.14 1.35
97 50 35 30 40 170 62.91 1.3
98 50 35 30 40 200 72.14 1.35
99 50 35 40 50 180 62.91 1.3
100 50 35 40 50 200 72.14 1.4
101 50 35 50 60 180 62.91 1.3
102 50 35 50 60 200 72.14 1.35
103 50 40 20 30 170 53.64 1.3
104 50 40 20 30 180 62.91 1.35
105 50 40 20 30 200 62.91 1.35
106 50 40 30 40 190 62.91 1.3
107 50 40 30 40 200 72.14 1.4
108 50 40 40 50 195 62.91 1.3
109 50 40 50 60 200 62.91 1.25
110 50 45 20 30 185 53.64 1.25
111 50 45 20 30 200 62.91 1.35
112 50 45 30 40 200 62.91 1.3
113 52.5 30 20 30 165 62.91 1.3
114 52.5 30 20 30 180 72.14 1.35
115 52.5 30 30 40 185 72.14 1.35
116 52.5 30 30 40 200 81 1.4
117 52.5 30 40 50 190 62.91 1.3
118 52.5 30 40 50 200 72.14 1.35
119 52.5 30 50 60 200 72.14 1.35
120 52.5 35 20 30 190 62.91 1.3
121 52.5 35 20 30 200 72.14 1.35
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failure. )is is the purpose of this part of the article; in this
section, sensitivity analysis on breakout input parameters
is performed using cosine amplitude method (CAM) [50].
In the CAM method, to determine the effect of input
parameters on output parameters, by removing one of the
parameters, the correlation coefficient changes between
the values obtained from the neural network model with
the results obtained from numerical analysis are inves-
tigated; if there is a significant difference between the

values predicted by the neural network model and the
values obtained from the numerical method, it means that
the removed parameter has a great effect on the output of
the model. For this purpose, an m-dimensional space is
considered first, in which m represents the number of
input parameters.

X � x1, x2, x3, . . . , xm , (19)

where each element is a vector of length m as follows:

xi � xi1, xi2, xi3, . . . , xim , (20)

in other words, each member of each input parameter is
connected to the target function by a vector of length m.
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Figure 12: (a) TANSIG function, (b) purelin function [49].

Table 6: Comparison between RMSE and R obtained from dif-
ferent neural network architectures.

Architecture
RMSE R

(rB/a) θB (rB/a) θB

5-2-2 0.11771 0.13872 0.69798 0.89536
5-3-2 0.086608 0.10506 0.84531 0.94131
5-5-2 0.087791 0.094385 0.83963 0.9544
5-6-2 0.059679 0.091854 0.9236 0.9498
5-10-2 0.076079 0.091491 0.88226 0.95692
5-4-3-2 0.091225 0.10959 0.83232 0.93614
5-5-4-2 0.093843 0.098936 0.81667 0.94964

Input Layer Hidden Layer Output Layer

θB

rB/a

σh

σv

σH

ϕ

c

Figure 13: Optimal neural network architecture to determine the
depth and width of breakout failure.

Table 7: Weights and biases related to the connection between the
input layer and the hidden layer, for 5-6-2 architecture.

wij

i
j 1 2 3 4 5 6

1 −4.0061 2.4049 1.3461 4.8673 −2.1810 0.1021
2 −1.5970 2.7419 1.4950 2.9435 7.9180 2.2108
3 1.3440 1.1358 −0.8853 −0.2714 −0.1950 0.8250
4 0.3180 −1.0259 0.9462 0.8536 −0.5407 −1.2808
5 5.1337 −1.2068 −0.0966 −3.1786 −7.7592 −4.4736
bj 4.2658 2.1825 2.2797 −0.7690 4.4742 −1.6581

i �number of inputs. j � number of hidden neurons.

Table 8: Weights and biases related to the connection between the
hidden layer and the output layer, for 5-6-2 architecture.

wjk

j
k 1 2

1 −2.389 −0.8149
2 −4.4669 −1.3538
3 7.2113 −0.4255
4 −0.3647 −0.8440
5 0.0188 −0.2605
6 −0.3372 −1.5543
bk −3.3973 0.8897
j �number of hidden neurons. k �number of outputs.
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)en, the effect of each of the input parameters on the target
function can be calculated from the following equation:

Rij �


m
k�1 xikxjk

��������������


m
k�1 x

2
ik 

m
k�1 x

2
jk

 , (21)

where Rij is the relative influence of the input parameter xi

on the output parameter xj. )e greater the effect of the
input parameter on the output parameter, the greater the
value of Rij.

Figures 17 and 18 show the relative influence of the input
parameters of the breakout phenomenon on the output
parameters, which are the depth and width of the breakout
failure, respectively. As can be seen in these figures, among
the input parameters, the internal friction angle of the rock
has the greatest impact on the depth and width of the

breakout failure area, and three in situ stresses have the same
impact on the output parameters of the model, also the
cohesion of rock materials among the input parameters has
the least effect on the width and depth of the breakout failure
area.

8. Discussion

In the numerical model presented in this paper, it is assumed
that the materials have a linear elastic behavior before
failure; this model is suitable for brittle rocks that have a
linear elastic behavior and is often observed in deep oil wells.
In Section 6, it was observed that the depth of failure ob-
tained from the numerical model was in good agreement
with the results obtained from laboratory studies on
Westerly granite; however, the failure width obtained from
the numerical model is greater than the failure width ob-
tained from the laboratory model. As described in Section 6,
the proposed numerical model has two limitations. )e first
weakness of the numerical model is due to the assumption of
linear elastic behavior for materials; this assumption makes
it impossible to study the effect of borehole radius on the
results. Also, finite element numerical method is based on
the assumption of continuum mechanics, so another
weakness of the proposed numerical model is that the effect
of rock microstructure on the failure mechanism cannot be
studied using it, as mentioned in the introduction. )e
failure mechanism of rock material in the breakout phe-
nomenon, depending on its microstructure can be tensile or
shear. In the numerical model presented in this paper, only
the shear mechanism is considered; of course, the shear
failure mechanism is often used for brittle materials.

)e only limitation that can be mentioned for the neural
network model is that the data of this model are the results of
numerical analysis. However, if the network is calibrated and
validated with laboratory results, it can be very useful in
estimating breakout dimensions for various in situ stresses;
however, laboratory studies are often performed in limited
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Figure 15: Correlation between the depth of failure predicted by
the neural network and the depth of failure obtained from nu-
merical analysis.
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the neural network and the width of failure obtained from nu-
merical analysis.
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numbers and it is not possible to find a trained neural
network based on laboratory results. )e neural network
model presented in this paper is based on the results of
breakout numerical analysis and in accordance with Table 4,
for different values of in situ stresses and mechanical
properties of the rock. Basically, finding such a model is an
important achievement. First, by using such a network, the
effect of each of the input parameters of the problem on the
failure area is obtained, and secondly, with the help of neural

networks, the relationship between the depth and width of
the failure with in situ stresses can be found, which is very
important in estimating in situ stresses using breakout
dimensions.

9. Conclusion

In this paper, using a numerical model based on the finite
element method, a comprehensive analysis of the borehole
episodic breakout phenomenon was presented. Validated
numerical analyses were performed for two purposes; first,
to understand how failure progresses step by step by ex-
amining changes in the failure function in breakout tip, and
the second goal is to identify the parameters affecting the
breakout phenomenon and the impact of each of them on
the breakout dimensions.

Finite element numerical analysis provides a clear un-
derstanding of how breakout is progressing. By plotting the
failure function according to Mogi-Coulomb failure crite-
rion, for the various elements located along the minor in situ
stress around the borehole, it was observed that the con-
tinuous change of the failure function at the breakout tip
causes the expansion of this area. )e breakout failure is
V-shaped because along the minor principal stress, there is
the greatest concentration of stress and more elements fail
and collapse. When the failure function for all elements is
less than one, breakout development stops and becomes
stable. )e validated numerical model is in good agreement
with the laboratory model in predicting the depth of
breakout failure area, in which case the maximum absolute
error is 0.06. But, the breakout width (span) obtained from
the numerical model is more than the failure span obtained
from the laboratory model, the maximum absolute error in
this case is 16.8 and the average error for different in situ
stresses is 7.23; in other words, it follows that the failure area
obtained from the laboratory model is slightly narrower than
the numerical model. )e depth and width of the breakout
are important because they are indicators for estimating in
situ stresses; in the other part of the article, by performing
various numerical analyses for given ranges of in situ stresses
and mechanical properties of rock materials and preparing
121 datasets, a model of neural network was presented; this
model is able to predict the depth and width of breakout with
high correlation coefficient, and the correlation coefficient

Table 9: Comparison of the results predicted by the neural network with the results obtained from the laboratorymodel onWesterly granite.

Test no. σh σV σH

(rB/a) θB (°)
Laboratory ANN Absolute error Laboratory ANN Absolute error

1 20 40 160 1.260 1.321 0.06 42.44 53.03 10.6
2 20 40 180 1.268 1.34 0.07 42.62 55.84 13.2
3 20 40 200 1.283 1.335 0.05 46.11 60.02 13.9
4 20 60 160 1.168 1.205 0.04 32.12 41.49 9.4
5 20 60 180 1.242 1.302 0.06 40.92 52.02 11.1
6 20 60 200 1.287 1.325 0.04 44.82 59.10 14.3
7 40 60 180 1.139 1.335 0.20 30.88 55.21 24.3
8 40 60 200 1.280 1.334 0.05 39.68 58.64 19
9 50 60 180 1.209 1.341 0.13 32.82 55.59 22.8
10 50 60 200 1.271 1.338 0.07 42.24 58.40 16.2
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Figure 18: Sensitivity analysis, the impact of input parameters on
the width of failure.
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between the de-normalized predicted failure depth and the
real failure depth obtained from the numerical analysis is
0.924 and the correlation coefficient between the de-nor-
malized predicted failure width and the failure width ob-
tained from the numerical model is 0.95. In the neural
network and using CAM sensitivity analysis, it was found
that among the input parameters of the neural network, the
internal friction angle of the rock with an impact factor of
0.74 has the greatest impact on the breakout dimensions;
also, three in situ stresses have the same impact on the
output parameters of the model, and the cohesion of rock
materials among the input parameters has the least effect on
the width and depth of the breakout failure area.
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