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In the construction and cement manufacturing sectors, the development of artificial intelligence models has received remarkable
progress and attention. +is paper investigates the capacity of hybrid models conducted for predicting the compressive strength
(CS) of concrete where the cement was partially replaced with ground granulated blast-furnace slag (FS) and fly ash (FA)
materials. Accurate estimation of CS can reduce the cost and laboratory tests. Since the traditional method of calculation CS is
complicated and requires lots of effort, this article presents new predictive models called SVR − PSO and SVR − GA, that are a
hybridization of support vector regression (SVR) with improved particle swarm algorithm (PSO) and genetic algorithm (GA).
Furthermore, the hybrid models (i.e., SVR − PSO and SVR − GA) were used for the first time to predict CS of concrete where the
cement component is partially replaced.+e improved PSO and GA are given essential roles in tuning the hyperparameters of the
SVR model, which have a significant influence on model accuracy. +e suggested models are evaluated against extreme learning
machine (ELM) via quantitative and visual evaluations. +e models are evaluated using eight statistical parameters, and then the
SVR-PSO has provided the highest accuracy than comparative models. For instance, the SVR − PSO during the testing phase
provided fewer root mean square error (RMSE) with 1.386MPa, a higher Nash–Sutcliffe model efficiency coefficient (NE) of
0.972, and lower uncertainty at 95% (U95) with 28.776%. On the other hand, the SVR − GA and ELM models provide lower
accuracy with RMSE of 2.826MPa and 2.180, NE with 0.883 and 0.930, and U95 with 518.686 183.182, respectively. Sensitivity
analysis is carried out to select the influential parameters that significantly affect CS. Overall, the proposed model showed a good
prediction of CS of concrete where cement is partially replaced and outperformed 14 models developed in the previous studies.

1. Introduction

1.1. Background. As an essential in most civil engineering
projects and activities, concrete is a standard man-made
mixture consisting of specific components such as cement,
water, and some additional materials. Since concrete
manufacturing, many engineering projects have been carried
out successfully using this profitable and imperative material.
Traditional concrete is widely used in several construction

areas, containing four classical materials: Portland cement,
water, coarse aggregate, and fine aggregate. +ere is also a
second type of concrete called high-strength concrete, which
has unique properties due to the usage of additional materials
that may not be used in ordinary concrete mixes. However,
the estimation of hardened concrete properties is a critical
obstacle for concrete technology due to several predicted and
unpredicted parameters that may significantly influence the
concrete properties [1, 2].

Hindawi
Advances in Civil Engineering
Volume 2022, Article ID 5586737, 19 pages
https://doi.org/10.1155/2022/5586737

mailto:mohmmag1@gmail.com
mailto:nadhir.alansari@ltu.se
https://orcid.org/0000-0002-9366-9162
https://orcid.org/0000-0002-6790-2653
https://orcid.org/0000-0001-7008-9416
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5586737


+e compressive strength (CS) is one of the significant
properties of concrete as it has a crucial role in designing
engineering structures. Furthermore, other important
properties of concrete, like water tightness and elastic
modulus, have direct and significant relations with the CS of
concrete. In current practice, to assess the CS of the concrete,
many cylindrical or cubic samples are produced and tested at
various sample ages. However, the conducted tests are time-
consuming and expensive [3, 4]. Besides, the changes in the
concrete mixes may lead to producing concrete with un-
desired characteristics. Hence, the tests should be repeated
until the required properties of concrete are achieved by
changing the magnitudes of the used ingredients [5]. +us,
this problem can be better encountered when pozzolan
powders partially replace the cement content.

1.2. UsingGroundGranulated Blast-Furnace Slag and Fly Ash
Materials in the Concrete Mixture. As a type of pozzolan
powders, ground granulated blast-furnace slag (FS) and fly
ash (FA) are generally used as a partial replacement material
of concrete because they are easy to reach and economic
[6, 7]. In general, FA is a fine powder of spherical particles
(diameter of 1 µm to 150 µm) obtained as a residual from the
burning of pulverized coal in thermal power plant furnaces.
As a result of its good performance and economic benefits,
fly ash is used as a replacement for cement in 98% of
American ready-mix companies [8]. As fly ash is an essential
material in concrete mixture and thus it significantly affects
the CS of concrete, several factors affect the characteristics of
fly ash, such as the source of coal, heating and cooling
mechanism, and combustion temperature [9]. +e com-
bustion process has a significant influence on the mechanical
properties of FA. For instance, wet processing produces a FA
with a high separated aggregate. On the other hand, dry
processing can grow homogenous FA in particle size [10].
+e utilization of FA material as partial replacement of
cement in concrete mixture decreases the values of some
concrete parameters like slump and CS. Still, it enhances the
integrity and workability of the concrete [11]. Some studies
recommend that in standard engineering and construction
projects, the percentage of FA in concrete as a partial
substitute for cement ranges from 20% to 50% of the total
volume of cementitious aggregate [12]. However, concrete
with fly ash increases the setting time; therefore, the CS of
concrete varies by time and temperature of curing. Fur-
thermore, fly ash concrete indicates an early development in
concrete strength, particularly at elevated temperatures,
which increases the CS in later stages compared to ordinary
concrete [13].

Furnace slag (FS) is also considered a popular material
used as partial cement replacement material. FS is a by-
product of the manufacture of iron and steel in blast fur-
naces, the chemical composition of which is based on the
raw materials from which it is produced [14]. Cooling status
has great importance on the characteristics of the FS. For
instance, if the molten slag is quickly cooled, it will be
converted to noncrystalline components with hydraulic
properties [15]. Additionally, concrete with higher CS and

durability results in partial cement replacement with FS.
However, a higher FS dosage can cause cracks and thermos-
hygral (TH) damages, thereby negatively affecting the me-
chanical strength of concrete [16, 17].

+e use of mentioned materials such as FS and fly ash in
concrete as a partial replacement of cement is not only an
effective waste disposal means but can be helpful as an al-
ternative material for cement. Recent studies illustrated that
the production of cement from different industries around
the world case too much pressure on the environment by
increasing the amount of carbon dioxide (CO2) emissions in
the atmosphere and, subsequently, global warming [18–20].
However, in the traditional concrete mixture, the rela-
tionship between the predictors (water, cement, fine and
coarse aggregate) and CS property is nonlinear and chal-
lenging to capture. Furthermore, when the additives and
other materials are used in concrete, such as FS and FA, CS
and its parameters will become more complex. According to
what mentioned before, there are no clear guidelines to
select the optimum amount of FA and FS in concrete to
ensure getting a desirable value of CS; therefore, a better
understanding of that relation between CS and its variables
using advanced approaches can help eliminate the carrying
on the experiments and thus, reducing cost and time. Be-
sides, it provides engineers with a simplified method to
predict experimental outcomes.

Nevertheless, accurately predicting the CS of concrete
where the cement martial is partially replaced has become a
challenging issue in the concrete technology sector due to
the complex and nonlinear relationship between CS prop-
erty and the other materials used in manufacturing the
concrete. Over the last decades, several scholars have de-
veloped models to estimate concrete CS. Moreover, scholars’
attempts can be roughly divided into categories: (1) con-
ventional artificial intelligence approaches such as soft
computing models; (2) hybrid artificial intelligence models.

1.3. Soft Computing Models. Soft Computing (SC), as an
efficient approach, can estimate the magnitude of the CS of
concrete. One of the significant SC advantages is providing
solutions for linear and nonlinear problems where the
mathematical models cannot easily derive the under relation
among the involved parameters in a particular situation [21].
Furthermore, SC methods utilize human-based knowledge,
understanding, recognition, and learning in computing.
Recently, many researchers have used artificial intelligence
(AI) approaches and machine learning (ML) techniques as a
sub-branch of SC methods to predict different concrete
properties. Keshavarz and Torkian [22] developed two SC
systems called artificial neural networks (ANN) Adaptive
Neuro-Fuzzy Inference (ANFIS) to estimate the CS of
concrete based on several concrete mixed parameters. +e
study showed that both systems were predicting CS very
well. However, the ANFIS model provides slightly better
estimates than the ANN model. Another study by [23]
presents the ability of both data-driven models, ANN and
multiple linear regression (MLR) approaches to predict
concrete CS. +e study shows that the MLR model has less
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prediction accuracy than the ANN model. Moreover, a
comparison study has been published between ANN and
ANFIS systems to estimate the CS of cement-based mortal
materials [24]. +e study concluded that the ANFIS faced an
overfitting problem and produced undesirable predictions
compared to the ANN model. Additionally, Ni and Wang
[25] investigate the ability of artificial neural networks
(ANN) to predict the CS of concrete. +e study revealed that
the proposed model provided higher prediction accuracy
and could capture the complex relationships between CS and
concrete variables.

Another study was conducted by Lee et al. [26] to in-
vestigate the potential of using different AI models such as
support vector regression (SVR) and ANNmodels to predict
CS of concrete at the age of 28 days. +e results showed that
SVR predicted CS more accurately than the ANN technique
and was less time-consuming. Akande et al.[27] developed
two predictive models called ANN and SVR to predict the
CS of concrete and concluded that the SVR model was more
stable and gave slightly higher prediction accuracy than
ANN. Additionally, Ling et al. [28] presented a study to
estimate the CS of concrete using a combined model called
SVR-CV(SVR is coupled with a cross-validation approach).
+e proposed model provided a higher accuracy level than
other AI models such as ANN and decision tree (DT).
Furthermore, satisfactory performance of the ANN model
has been noticed throughout the prediction of the CS of
high-performance concrete (HPC) and self-compacting
concrete (SCC) [29]. Moreover, the feasibility of using the
SVR technique and multivariable nonlinear regression
(MNR) has been investigated by [30] in terms of the pre-
diction of CS of concrete of lightweight foamed concrete at
an earlier age (7-day). +e study concluded that the SVR
model gives higher estimation accuracy and efficiently
captures the non-linear relation between the input variables.

1.4. Hybrid Models. To overcome the issues related to
standard models, several scholars have used hybrid AI-based
metaheuristic algorithms to enhance the performances of
these systems [31, 32]. In literature, several metaheuristic
algorithms are employed to optimize AI models such as
ANN, SVR, and ANFIS to enhance their performances and
obtain much better predictions [10, 33–36]. +ere is an
investigation for accurately predicting the CS of concrete
was carried out by Madandoust et al. [37] using adaptive
neuro-fuzzy inference systems (ANFIS) and Group method
of data handling (GMDH) as a sort of ANN. +e GMDH
model is enhanced using a genetic algorithm (GA) and
singular value decomposition method. +e study also
conducted sensitivity analyses to illustrate which variables
have more effect on CS. +e results showed that both
adopted approaches could accurately estimate CS at different
ages. Besides, another study also conducted a hybrid model
carried out by the hybridization ANNwith GA to predict CS
of concrete in the presence of FA and FS materials [38]. +e
outcome of the proposed model is validated against the
traditional ANN, which is trained by a backpropagation
algorithm, and the assessment criteria showed that the

hybrid model (ANN-GA) yielded a minor error forecasted
than the traditional ANN model. Han et al. [39] presented a
hybrid model by combining ANN with particle swarm al-
gorithm (PSO) to constitute the ANN-PSO model to esti-
mate the CS of ground granulated blast furnace slag
(GGBFS) concrete. For validation assessment, the perfor-
mance of the hybrid model (ANN-PSO) is compared with
the standard ANN model. +e study showed a noticeable
improvement in the estimations due to the presence of the
PSO algorithm.

1.5. Research Motivation. +ere is evidence that energy
savings, high cement costs, and pressure from environ-
mental organizations and researchers have all led to an
increase in the use of industrial waste materials such as fly
ash and ground granulated blast-furnace slag in concrete
mixing [40]. +e use of such materials in concrete makes it
more economical and enhances the strength, abrasion, heat
evolution, workability, and shrinkage properties of concrete
in both fresh and hardened states [41]. Partially replacing
cement in concrete mixes is essential because it reduces
carbon dioxide emissions into the atmosphere while at the
same time lowering the overall cost of producing concrete
mixes.

Many researchers proved that it is difficult to provide a
consistent method for additive materials (such as fly ash and
other cement replacement materials) in the design of con-
crete mixtures because of the complexity and uncertainty of
the design parameters, which significantly influence the
compressive strength of concrete. Due to these limitations,
engineers in practical use a traditional method called the
trial-and-error process to find the right concrete design.
However, this approach requires time to accomplish the tests
of compressive strength. +us, applying a fast and efficient
method that can predict the compressive strength of con-
crete immediately or provide the optimal mix design would
be very useful. +is paper uses artificial intelligence (AI)
models to provide an efficient mix-design tool that over-
comes these difficulties.

1.6. Research Significance. To the best of the authors’
knowledge, no published work in the literature has
employed hybrid SVR with GA or improved PSO algorithms
to optimize the hyperparameters of SVR for the prediction of
CS of concrete with partial cement replacement. +e pri-
mary advantage of this research is to predict the compressive
strength of concrete where the cement was partially replaced
with furnace slag and fly ash. Furthermore, the presence of
these materials in the concrete mixture makes the rela-
tionship between the compressive strength of concrete and
other concrete components very complex. +erefore, the
traditional modes in such cases could not provide accurate
solutions; therefore, thinking of alternative methods having
a satisfactory level of flexibility and predictability is vital.
Furthermore, in construction and martial fields, accurate
prediction of the CS can effectively minimize the costs by
reducing the laboratory work and saving time and effort.
Accordingly, this study provides an alternative approach to
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efficiently estimate one of the most significant features of
concrete (CS) in the presence of industrial waste materials.
Establishing a systematic approach that can accurately
predict the CS of concrete in earlier stages is significant in
concrete development and manufacturing because this ap-
proach can generate the needed design data faster[42]. +us,
in this study, support vector regression (SVR) combined
with two metaheuristic algorithms known as genetic opti-
mizer (GA) and improved particle swarm optimization
(PSO) to constitute SVR-PSO and SVR − GA predictive
models. +e mentioned algorithms optimize the hyper-
parameters of SVR and kernel parameters and significantly
improve the prediction accuracy. Next, the capacities of
these models are examined in the case of compressive
strength prediction. Accordingly, a powerful AImodel called
extreme learning machine (ELM) is also prepared and de-
veloped for verification purposes. Besides, the performance
of the best model is also validated against 14 models de-
veloped in previous studies as a crucial step to examine the
validity and reliability of the proposed model. Finally,
sensitivity analyses are used to identify the most significant
parameters that influence concrete CS.

2. Materials and Methods

2.1. Data Collection and Statistical Description. +e experi-
mental data used in this current study include seven vari-
ables called (Portland cement “ASTM type I”), furnace slag,
fly ash (which is produced from the power plant), water,
superplasticizer (C49429 typeG), coarse aggregate (maxi-
mum size of 1 cm), fine aggregate (fineness modulus size of
3), and one response variable represent the compressive
strength at 28-day age. It is necessary to identify the primary
ingredients to understand concrete behavior better. Several
considerations should be taken into account through de-
signing the concrete mixes. For instance, More cement
content increases the cohesiveness of the mixture, resulting
in stickier concrete, and thus cracks may occur. Neverthe-
less, reducing the cement content considering constant
water content results in a mixture with poor cohesion.
+erefore, cement content should be optimally assigned to
ensure a more reliable concrete mix. On the other hand, the
other contents, such as water-cement ratio and fine and
coarse aggregate, significantly impact the concrete strength.
A very fine aggregate requires more water content to pro-
duce a mixture with reasonable consistency. +e conse-
quences of increasing the water-cement ratio are significant
in reducing the compressive strength of concrete. +erefore,
increasing water content usually provides concrete with
poor properties. +us, several researchers have addressed
this issue by using chemical additives such as super-
plasticizers. +e primary purpose of conducting these ex-
perimental samples is to seek the capability of partially
replacing the cement with furnace slag and fly ash. Table 1
presents the statistical description of all data used in this
current study. Where Min, Max, Std, and CC symbols in
Table 1 refer to the minimum, maximum standardization,
and correlation coefficient with the Compressive strength,
respectively. +e statistical parameters are listed in the table

showing a nonlinear relationship between the target and
input variables. Moreover, there is a positive relation be-
tween cement and fly ash and compressive strength. +e
cement has the highest correlation with compressive
strength with a correlation coefficient (CC) of 0.446, fol-
lowed by fly ash with a CC of 0.444. +e other variables have
a negative relationship with CS, and the range of CC is
between -0.038 and -0.254.

For better assessing the quality of input parameters
mentioned before, their variabilities are statistically com-
pared. As the obtained data have different ranges, the
normalization approach is beneficial for enhancing a better
perspective. Consequently, all the input parameters and their
target are separately normalized between one and zero as
follow:

xi
′ �

xi − xmin

xmin − xmax
, (1)

where xi
′ is the ith normalized value of a variable x.

Figure 1 compares the input variables’ variability;
therefore, the interquartile ranges (IQR) are calculated using
respected quintiles (Q75% − Q25%). +e IQR values of each
normalized input variable are given in Figure 1 in the range
of 0.274 to 0.650. Superplasticizer with IQR of 0.274) and
cement with IQR of 0.641 have the lowest and highest
variability compared to other input variables. Lastly, it is
essential to mention that the data used in this study is
collected from two different sources in the literature and
includes 103 data samples [43, 44].

2.2. Genetic Algorithm. Genetic algorithm (GA) is one of
the most popular algorithms introduced by John [45] for
solving engineering and science optimization problems.
+is algorithm is inspired by the natural selection theory
and then expanded by Goldenberg [46]. GA can find so-
lutions for complex and nonlinear issues, and this aspect is
considered one of the main advantages of this algorithm.
Different optimization purposes can be addressed by GA,
such as continuous or discontinuous or containing a
random noise, linear or nonlinear, and static and dynamic.
+us, GA has succeeded in solving optimization problems
in various areas. However, it is also characterized as a
complicated algorithm because of its limitations, like
determining several algorithm parameters (size of pop-
ulation and genetic operator rate) and creating the proper
function. Better assigning these parameters is critical for
getting highly accurate solutions and having a noticeable
influence on the algorithm’s convergence; consequently,
the designer should be careful [47, 48]. Chromosomes in
GA have a fixed length that encodes linear binary strings
between 0 and 1. +ese Chromosomes are significant
factors because it is responsible for producing the gen-
erations. +e chromosome is selected as a random char-
acteristic [49], and the Chromosomes are evaluated
according to these characteristics. +ey are then selected
via genetic operators of the remaining Chromosomes and
begin producing new generations. Besides, in a range of 0
to 1, crossover selects between parents and mutation work.
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+is process is repeated several times until creating the best
generations assessed according to their performance
[50, 51].

2.3. Particle Swarm Optimization (PSO). +e second opti-
mization algorithm used in this study is the PSO algorithm,
an approach employed in optimization issues for solution
purposes. +e PSO algorithm was introduced to the sci-
entific sectors for the first time by Kennedy and Eberhart in
1995 [52], inspired by the accumulative behavior of particles.
Less memory required and high learning speed is considered
the most compelling characteristic of the PSO compared to
GA.+e solution of optimization problems in a model based
on the PSO algorithm appears like a particle that flies like a
bird in the solution space. +e framework algorithm of
(PSO) is described as follows [53].

Given x
(i)
j present the location and v

(i)
j is the particle j

speed at iteration i, so the following formulas have been
utilized to determine the solution for j position and velocity
at the following iteration:

v
(i+1)
j � wv

(i)
j + c1 ∗ r1 ∗ pbestj − x

(i)
j􏼐 􏼑􏼐 􏼑

+ c2 ∗ r2 ∗ gbestj − x
(i)
j􏼐 􏼑􏼐 􏼑, vmin ≤ v

(i)
j ≤ vmax . . . ,

(2)

x
(i+1)
j � x

(i)
j + v

(i+1)
j � 1, 2, . . . , n. (3)

In the above formula, i represents the number of iter-
ations while w is the coefficient of inertial weight. +e rest of
the variables are explained as follows:

pbestj: the ideal position for the particles throughout
the PSO performance approach.
gbestj: the perfect condition for the particle throughout
the PSO performance approach.
r1, r2: the arbitrary value in the interval [0,1]. +e
algorithm of PSO is described as follows:

(i) Set the magnitude of iteration i� 0, and for
starters, consider an arbitrary location and speed
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Figure 1: (a) Boxplot of normalized input and target variables and (b) Quantile percent of the concrete components.

Table 1: +e statistical description of the used variables in this study.

Variable Unite Min Max Average Std CC
Cement kg/m3 137.000 374.000 229.894 78.877 0.446
Slag kg/m3 0.000 193.000 77.974 60.461 −0.332
Fly ash kg/m3 0.000 260.000 149.015 85.418 0.444
Water kg/m3 160.000 240.000 197.168 20.208 −0.254
Superplasticizer kg/m3 4.400 19.000 8.540 2.808 −0.038
Coarse aggregate kg/m3 708.000 1049.900 883.979 88.391 −0.161
Fine aggregate kg/m3 640.600 902.000 739.605 63.342 −0.154
Compressive strength MPa 17.190 58.530 36.039 7.838 1.000
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for the generated particles. Secondly, the structure
for every particle has to calculate the value of
fitness adjustment.

(ii) +en checking process takes place to compare
fitness magnitude with pbest. If the result is im-
proved, the system changes the value of pbest with
the new one, leading to an updated magnitude of
gbest.

(iii) +e PSO approach will calculate the speed value
for every particle using equation (2), so the po-
sition of every particle will be updated as well using
equation (3). Finally, iteration continues by in-
creasing the value of i with i + 1 and repeating the
process till verification of terminated criteria.

2.4. Support Vector Regression (SVR). In 1995 Cortes and
Vapnik [54] developed a technique called Support Vector
Machine (SVM) as a form of Artificial intelligence (AI) to
deal with classification problems by combining SRM
(Structural RiskMinimization) and SLT (Statistical Learning
+eory). Consequently, various sectors have commonly
employed this technique for regression and prediction
problem-solving. +e concept of support regression ma-
chine (SRM) is the framework of SVM depiction. It presents
an effective implementation with high accuracy compared to
classical Empirical Risk minimization (ERM), which de-
pends on a conventional learning algorithm, such as neural
network techniques. +e objective of the SRM is to increase
the precision of predicting by minimizing upper and lower
limits while reducing training dataset total error is ERM
responsibility. +erefore, SVM is considered a practical
approach to solving several issues and producing more
accurate and reliable predictions [55]. Lately, due to being a
more efficient and reliable tool, researchers have been ap-
plying SVM in a tremendous section of the prognostication
fields conducting various functions related to machine
learning [56–60]. Let D denote dataset points
D � (xi, yi)􏼈 􏼉 ∈ Rd ∗R, i � 1: n. +e primary concept here is
to obtain a function f that contains a connection between x
variable and grandeur for determiningmodel ywhere y is the
function of x which is acquired from data D.

f(x) � (wx) + b, b ∈ R, (4)

f(x) � (w∅(x)) + b. (5)

+ese equations represent linear (4) and nonlinear (5)
functions related to regression problems. +is approach has
involved two stages in obtaining the optimum value for the
weight (w) and bias (b). +ese stages showed applying the
Euclidean norm method in the first stage while the second
stage presented decreasing produced error magnitude by
utilizing empirical risk function. To sum up, minimizing risk
function Rreg(f) by

Rreg(f) � Remp(f) +
1
2

w
2����
����. (6)

And exhibiting theoretical value empirical error by

Remp(f) � C
1
N

􏽘

N

1
L xi, yi, f xi, W( 􏼁( 􏼁, (7)

where L(xi, yi, f(xi, W) is the cost function and is derived
as one of the two main cost functions used. ε–insensitive loss
is the first function, while the second function has been
connected with the least square support vector machine (LS-
SVM) known as the quadratic loss [61].

Moreover, the equilibrium between empirical risk and
the denominated regularization is implied by a regulariza-
tion constant “C”. +e following equations present a primer
formula for issues of optimization:

min
1
2

w
2����
���� + C 􏽘

n

i�1
ξi + ξ∗i( 􏼁, (8)

under the constraints
yi − w∅(x) − b≤ ε + ξi,

yi − w∅(x) − b≥ − ε − ξ∗i ∀i ∈ 1, . . . n{ },

ξi, ξ
∗
i ≥ 0.

⎧⎪⎪⎨

⎪⎪⎩

(9)

So, it is more reasonable to consider certain error limits
to increase problem solution competence. +erefore, the
function accuracy will be approximated where ε indicated a
tube size and the slack parameters characterized by ξi and ξ

∗
i .

+e quadratic initiative has been utilized to obtain su-
perior minimized value for regularized risk related to esti-
mating best weight magnitude according to the principle of
Lagrange multipliers by implementing optimality con-
straints [62]. Calculating these multipliers, by using the
formula below to the minimum value:

min L αi, α
∗
i( 􏼁 � − 􏽘

n

i�1
yi αi − α∗i( 􏼁 + ε􏽘

n

i�1
yi αi + α∗i( 􏼁

+
1
2

􏽘

n

i�1
􏽘

n

j�1
αi − α∗i( 􏼁 αj − α∗j􏼐 􏼑K Xi, Xj􏼐 􏼑,

(10)

as αi and α∗i indicate the Lagrange multipliers where i� 1 to
n at certain limits

0≤ αi, α
∗
i ≤C, i � 1, . . . n,

􏽘

n

i�1
αi − α∗i( 􏼁 � 0.

(11)

Finally, a numerical expression for the regression
function is described by:

f x, 􏽢αi,
􏽢α∗j􏼒 􏼓 � 􏽘

n

i�1
􏽢αi − 􏽢α∗j􏼒 􏼓K X, Xi( 􏼁 + b

∗
. (12)

+e kernel function can be characterized by K(xi, xj) �

∅(xi)∗∅(xi) which would have a value depicted by the
result of scalar for xi and xj vectors in ∅(xi) and ∅(xj)

feature space.
One of the main steps to enhance the performance

accuracy of the SVR approach is to select the kernel function
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properly. +e selection process depends mainly on the
Mercer conditions [63]. Accordingly, the kernel function
type that meets this criterion can be implemented. In this
study, the Radial Basis Kernel function (RBF), as expressed
below, is used to map the nonlinear relationship between CS
of concrete and its dependent variables.

K xi, xj􏼐 􏼑 � exp −
xi, xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠, (13)

where σ is the bandwidth of the RBF kernel.

2.5. Extreme Learning Machine. Extreme learning machine
(ELM) is an efficient and relatively modern-learning algo-
rithm introduced in 2006 for training feedforward neural
network (FFNN) instead of the conventional algorithm (i.e.,
backpropagation algorithm). +e ELM model is the same as
the structure of a single layer of FFNN, including three
critical layers (input, hidden, and output). ELM has many
advantages that surpass its counterpart FFNN, including
speed and well generalization abilities [63, 64]. Moreover,
the traditional FFNN has many defects and shortcomings,
including low convergence, local minima problems, over-
fitting, and poorer generalization. Furthermore, classical
FFNN is usually trained using a backpropagation algorithm,
and hence, it becomes more likely to be stuck into local
minima.

+e structure of the ELM model consists of three suc-
cessive layers called input, hidden, and output layers, re-
spectively. +e input layer receives the predictor vectors,
while the hidden layer contains several hidden nodes to
process the data to the output layer. It is important to say
that data transmission from layer to next layer through
neurons. Lastly, the output layer is responsible for producing
the calculated outcomes of the model. +e hidden layer is
essential because it contains the majority of the information
of the data.

+e core concept of ELM is the weights and bias values
used to link the transmission data from the input layer to the
hidden layer.+ese values are assigned randomly and do not
need to be corrected. +erefore, this algorithm is very fast.
+en, the activation function is usually nonlinear applied to
extract the most significant features from data which will be
passed to the next layer. It is essential to mention that the
output layer weights are calculated based onMoore–Penrose
approach [65].

+e steps below show the process of establishing the
ELM model.

(i) Inputting the predictors and their corresponding
targets (output values).

(ii) Defining the number of hidden nodes in the
hidden layer using the trial-and-error procedure.

(iii) Assigning the weight and bias values of the hidden
layer randomly.

(iv) Data normalization.
(v) Selecting transfer function.

(vi) Processing the data in hidden nodes using equa-
tion (14) to prepare it for the next layer (calculating
the output of hidden layer H).

(vii) Determining the output layer weights using the
Singular Value Decomposition (SVD) approach as
shown in equations (15) and (16).

(viii) Computing the predicted targets (CS).
(ix) Denormalizing predicted targets (CS).

H(x, α, β) �

g x1( 􏼁

.

.

.

g xN( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

g a1.x1 + β1( 􏼁 . . . g aL.x1 + βL( 􏼁

.

.

.

g a1.xN + β1( 􏼁 . . . g aL.xN + βL( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(14)

where g is the activation function, x, β, a respectively are the
input vectors, bias, and weight values.

HB � Y. (15)

+en, calculate the output weights from equation (16)

􏽢B � H
†
Y, (16)

where H† denotes the Moore-Penrose generalized inverse of
Hussain matrix, Y is the actual targets, and B is the vector
that contains output weights calculated by the SVD method.
It is essential to mention that the sigmoid transfer function is
used as an activation function in the hidden layer.

2.6. HybridModels:Model Development. +e SVR algorithm
usually uses a specific kernel function to calculate the hy-
perplane to fit the data well. +e majority of engineering
issues are very complex. +erefore, it is beneficial to use the
nonlinear kernel function, and hence there will be three
most efficient hyperparameters (C, ε, and ɣ) of the SVR
approach that greatly influence the SVR performance. +e
gamma parameter (ɣ) increases the algorithm’s capability to
match the training data ideally with their corresponding
target(s), while the cost parameter (C) is a penalty metric for
promoting the process of predicting the data instances more
correctly. Decreasing the value of ɣ (1/2σ2) would negatively
affect SVR performance and thus, underfitting the data;
however, increasing too much gamma results in overfitting
the dataset. Consequently, the optimal values of these
hyperparameters (C, ε, and ɣ) significantly impact the SVR
performance, thereby getting more accurate predictions.

In the literature, there are several attempts to select these
hyperparameters of SVR. One of these strategies, using trial
and error methods. However, this approach may not provide
the optimal solutions as it is also limited in a specific range of
assumptions. Moreover, this approach is time-consuming
and requires a higher computational cost. +e other pro-
cedure to compute the hyperparameters of SVR is called grid
-search approach. +is strategy also has several disadvan-
tages, such as required computational efforts and time. In
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addition, this strategy requires a limited range of assump-
tions of each parameter; it sometimes gives some of the
hyperparameters less attention than others. +us, in this
study, these hyperparameters are efficiently optimized using
two different optimizations, namely, genetic and particle
swarm algorithms. Figure 2 and Figure 3 show the incor-
poration of SVR with these algorithms [66, 67]. +e root
mean square error formula is used as a fitness function of
both algorithms.

+e main steps regarding the hybridization of SVR
(calibration processes) are stated below:

(i) Dividing data into sets, training (75%; 77 samples),
and testing set (25%; 26-sample).

(ii) +e training set data is used to develop SVR-GA
and SVR-PSO models.

(iii) Selecting the root mean square error as an ob-
jective function.

(iv) Initializing the parameters for each algorithm (GA
and PSO).

(v) Defining the range of each hyperparameter. In this
study, the algorithms first search these parameters
from 0 to 1.

(vi) As some hyperparameters such as C have a wide
range of data (from 0 to infinity), we reconstruct
this obtained value from the previous step as C� 1/
c, where C is obtained from the previous step.

(vii) +e algorithm starts finding the optimal parame-
ters that reduce the objective function (in this
study, RMSE is used as an objective function).

(viii) +e applied algorithm has been given a significant
task to increase the accuracy during the calibration
process by minimizing the cost function.

(ix) In this study, the cost function is described as root
mean square error (RMSE �������������������������

(1/N) 􏽐
N
i�1 (CSobsi

− CSpredi
)2

􏽱
).

(x) +e algorithm then starts using random numbers
to assign the hyperparameters and updates these
values until optimal accuracy or maximum itera-
tion is achieved.

(xi) Inserting the reconstructed hyperparameters to the
SVR algorithm.

(xii) Calculating the other SVR parameters like beta and
alpha using minimal sequential optimization
(SMO) is considered a more efficient algorithm
[68].

(xiii) Calculate the cost function (RMSE).
(xiv) If the RMSE is very small or the algorithm reaches

the maximum iterations, the algorithm stops the
calibration process. Otherwise, the applied algo-
rithm continues the updating of hyperparameters.

It is essential to mention that all predictive models used
in this study are developed using MATLAB 2018b.

Concerning PSO, it is used based on the algorithm described
in Kennedy and Eberhart [52], with some modifications and
improvements suggested by Pedersen [69] and Mezura-
Montes and Coello Coello [70].

Data
collecting

Data division 

Training
set

Initialize the hyperparameters
(C, σ, ε)

Train SVR model

Calculate the
fitness value

Update personal
best and global best

Update velocity and
position of each particle

Satisfy stopping
criteria

Optimal SVR parameters
(C, σ, ε)

Train optimal SVR model

Test SVR model

Final optimized model Yes

No

Testing
set

Figure 3: Incorporation of SVR with the genetic particle swarm
algorithm.

Generating offspring population

Coding C, ε, ɣ as population parameters

Generating initial parameters
population of chromosome randomly

Start training and updating SVR model using
given data set

Evaluate the fitness of
the population

Data
Division

Is stopping
condition met?

Yes

No

Training
data set

Testing
data set

Optimized values of SVR
hyperparameters (C, ε, ɣ)

Predicting CS of concrete

End of program

Selection crossover

mutation

Setting values for
C, ε, ɣ

SVR -GA model

Figure 2: Incorporation of SVR with genetic algorithm.
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2.7. Statistical Matrices. In this paper, nine parameters ac-
counting for the error between measured and predicted CS
of concrete is used, namely; mean absolute relative error
(MARE), root mean square error (RMSE), mean absolute
error (MAE), maximum absolute percentage relative error
(erMax), uncertainty at 95% (U95), correlation of coefficient
(CC), correlation of determination (R2), Nash–Sutcliffe
model efficiency coefficient (NE), Index of Agreement or
Willmott (WI), and relative error (RE). Some of the stated
parameters like R2, CC, NE, and WI measure the strength of
the relation between predicted and actual vectors, usually
having values in the range of 0 to 1. On the other hand, the
error metrics like RMSE, MARE, MAE, erMax, U95 mea-
sures are used to compute the forecaster error. +e best
model should provide fewer values of error measures (as
lower as possible) and the highest value of correlation
measures (near to one). In this study, the U95 parameter is
used to efficiently select the best model accuracy when some
of the proposed models would give close estimates of CS of
concreter, and hence it would be challenging to choose the
best predictive model. Some earlier studies showed that the
U95 could help in the detection of the statistical differences
between outcomes of comparable models and the actual
values much better than other statistical parameters such as
RMSE, MAE, R2, and so on [63]. Furthermore, the a-20
index as a new engineering metric is used to further assess
the applied models’ performances. It is essential to mention
that the perfect and ideal model has a-20 index of 1.+e a-20
index has an essential advantage in the engineering field
because this factor quantifies the number of experimental
samples that satisfy the predicted magnitudes with a devi-
ation of ±20%, compared to the corresponding (experi-
mental) values [71].

+e mathematical expressions of these statistical pa-
rameters are derived from equations (17) to (26) [72, 73].

MARE �
1
N

􏽘

N

i�1
CSobsi

− CSpredi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (17)

RMSE �

��������������������

1
N

􏽘

N

i�1
CSobsi

− CSpredi
􏼐 􏼑

2

􏽶
􏽴

, (18)

MAE �
1
n

􏽘

n

t�1
CSobsi

− CSpredi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (19)

CC �
􏽐

n
t�1 CSobsi

− CSobsi
􏼐 􏼑 CSpredi

− CSpredi
􏼐 􏼑􏽨 􏽩

��������������������������������������

􏽐
n
t�1 CSobsi

− CSobsi
􏼐 􏼑

2
􏽐

n
i�1 CSpredi

− CSpredi
􏼐 􏼑

2
􏽱 ,

(20)

erMAX � max
CSobsi

− CSpredi

CSobsi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡, (21)

U95 � 1.96 SD2
+ RMSE2

􏼐 􏼑
1/2

, (22)

R
2

� 1 −
􏽐

n
i�1 CSobsi

− CSpredi
􏼐 􏼑

2

􏽐
n
i�1 CSpredi

− CSpre d􏼐 􏼑
2, (23)

WI � 1 −
􏽐

n
i�1 CSobsi

− CSpredi
􏼐 􏼑

2

􏽐
n
i�1 CSpredi

− CSobs

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + CSobsi
− CSobs

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2,

(24)

NS � 1 −
􏽐

n
i�1 CSobsi

− CSpredi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽐
n
i�1 CSobs − CSobs

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, (25)

RE% �
CSobsi

− CSpredi

CSobsi

∗ 100, (26)

a20 index �
m20

n
, (27)

where CSobsi
andCSpredi

are respectively observed and pre-
dicted value of i-th sample; CSobs, and CSpredi

are the average
of observed and predicted values separately. While n refers
to the total number of samples, and m20 refers to the
number of samples with an experimental rate value/pre-
dicted value between 0.80 and 1.20. Lastly, SD is the standard
deviation of the forecasted errors.

3. Results and Discussion

Compressive strength (CS) of ordinary and high-strength
concrete is a significant property during manufacturing the
cement. Many factors affect CS, and the relationship be-
tween them and CS of concrete is highly nonlinear for
classical and high strength concrete. +is part of the study
discusses the calculated results obtained by three different
models, ELM, SVR-GA, and SVR-PSO.

Table 2 provides more information regarding the per-
formance of each predictive model during the training
phase. At first glance, the hybrid model (SVR-GA and SVR-
PSO) provided much more accurate predictions than the
ELM model. Moreover, the ELM could not recognize very
well the complex relation between CS and its’ factors thereby
decreasing the accuracy and increasing the forecasting errors
(MAE� 1.890, RMSE� 2.614, MAPE� 0.054, CC� 0.939,
U95 � 370.638, NE� 0.883, WI� 0.968, a20-index� 0.974
and erMax� 0.212). However, the other both models (SVR-
GA and SVR-PSO) gave high accurate forecasting in ad-
dition to a slight preference in favor of SVR-GA model
(MAE� 0.673, RMSE� 1.011, MAPE� 0.021, CC� 0.993,
U95 � 6.882, NE� 0.982, WI� 0.995, and erMax� 0.102).

+e quantitative assessment is in Table 2 illustrates that
the SVR-PSO model can predict CS of concrete at a good
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level of accuracy with MAE of 0.978, RMSE of 1.163, MAPE
of 0.028, CC of 0.997, U95 of 6.107, NE of 0.977, WI of 0.994,
and erMax of 0.065. Finally, the most important note that can
be drawn based on the given outcomes is that the differences
between the performances of the applied three modes under
statistical measures, in general, are minimal except the given
assessments obtained from the U95 parameter.

As shown in Figure 4, scatter plots prove helpful in-
formation on the performance of each adopted model by
explaining the diversion of every predicted point to the
actual value. According to the figure, it can be shown that the
SVR-PSO model is considered the best model in the pre-
diction of CS of concrete and provides the highestR2 (0.993),
followed respectively by the SVR-GA with R2 of 0.986 and

ELM with R2 of 0.883. Moreover, the predicted values ob-
tained by the SVR-PSO model are found to have less dis-
persion and sticker to the fitted line than other comparable
models (i.e., ELM and SVR-PSO).

Although the SVR-GA and SVR-PSO provided the
highest prediction accuracies compared to the ELM model,
very few statistical differences were found between their
performances, and the training set could not give a robust
assessment as the models were trained based on known
targets.+erefore, the testing phase is crucial in assigning the
best predictive models for CS of standard and high strength
of concrete. At the testing phase, the model would assess
under unknown targets. +us, the generalization capabilities
of each adopted model can be revealed [74]. Several
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Figure 4: Comparing between actual and predictive values: correlation of determination, a, b, and c are respectively referring to SVR-PSO,
SVR-GA, and ELM.

Table 2: Assessing the performance of each suggested model: training set.

Model/statistical measures SVR-PSO SVR-GA ELM
MAE (MPa) 0.978 0.673 1.890
RMSE (MPa) 1.163 1.011 2.614
MAPE (MPa) 0.028 0.021 0.054
CC 0.997 0.993 0.939
U95% 6.107 6.882 370.638
NE 0.977 0.982 0.883
WI 0.994 0.995 0.968
erMax 0.065 0.102 0.212
a20-index 1 1 0.974
Bold values represent the higher accuracy value.
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statistical metrics are tabulated in Table 3 to evaluate the
proficiency of the proposed models. Following statistical
metrics, the SVR-PSO is found to have the highest accuracy
of prediction with the fewest metrics errors (MAE� 1.101,
RMSE� 1.386, MAPE� 0.034, CC� 0.989, U95 � 28.776,
NE� 0.972, WI� 0.992, and erMax� 0.151). Based on the
same table, the forecasted error increased in related to ap-
plying SVR − GA of estimation CS during tidying set
(MAE� 2.008, RMSE� 2.826, MAPE� 0.067, CC� 0.956,
U95 � 518.686, NE� 0.883, WI� 0.962, and erMax� 0.417).
+e presented results explain the ELM model’s performance
gives much better predictions than the SVR-GA model with
MAE of 1.657, RMSE of 2.614, MAPE of 0.047, CC of 0.956,
U95 of 183.182, NE� 0.930, WI of 0.981, and erMax of 0.175.

+e presented statistical parameters indicate that all used
models except SVR-PSO gave relatively higher errors in the
testing phase than their training performance. As a result,
the SVR-GA and ELM models have faced overfitting issues.
+e other most significant observation extracted from the
statistical description shown in Table 3 is that the statistical
metric (U95%) is the most efficient parameter in deter-
mining the best accuracy model. +e importance of that
parameter appears in selecting the highest quality model
among several modeling techniques when the values of other
statistical indicators are much closer to each other and no
significant differences are noticed. +us, the SVR-PSO
model performs superior to all comparable models.

As the testing part is very significant, visualization as-
sessments are excessively used to identify the best model’s
capacity and verify whether the SVR − PSO still outperforms
other used techniques according to visual assessments. As
illustrated in Figure 5, the scatter plots clearly showed that
the SVR − PSO model is closer to the actual CS of concrete
than other used models. +e given results indicated a higher
accuracy prediction of CS than other models. Moreover, the
SVR-PSO model recorded the highest value of R2 of 0.978
followed by SVR − GA (R2 � 0.931), and ELM (R2 � 0.914).
Despite the SVR-GA provider higher value of R2 than the
ELM model, it produces very high uncertainty compared to
the ELM technique. In order to obtain adequate and in-
formative graphical evaluation error forecasting, relative
error, as shown in Figures 6(a)–6(c), is established for
exhibiting the relative error (RE %) for every sample over the
testing set. +e figure can also give a better understanding of

the model’s efficiency in predicting CS for every single
sample. It can be observed that the proposed SVR − PSO
generates the fewest RE% values compared to the other
modeling approaches.+e average absolute relative error for
the SVR − PSO model was recorded significantly fewer
(3.40%) compared to other models ELM (4.74%) and SVR-
GA (6.71%), respectively.

Moreover, the distribution of RE% for each suggested
model is plotted in Figure 6(d). +e boxplot presentations
are created to evaluate the suggested models’ performances
and illustrate the visualized information regarding the ef-
ficiency of the models in predicting the CS of standard and
high strength concrete. +e comparable models (SVR-GA
and ELM) generated undesirable outlier values with a rel-
atively higher interquartile range (IQR). However, the SVR-
PSO model performance is excellent. +e estimates were
noticed to have the fewest extreme values compared to
adopted models. Moreover, the predicted median of RE%
obtained by the SVR-PSO model was nearest to zero.
Concerning interquartile range (IRQ), the proposed model
(SVR-PSO) predicts a more desirable value of IRQ (5.235)
compared to SVR-GA (6.662) and SVR-PSO (7.439).

Furthermore, Table 4 is created based on the predicted
compressive strength of concrete values using the applied
models during the testing phase. It shows that the SVR − GA
model sometimes provides estimates with higher errors than
the other models. For instance, the difference between the
experimental value and predicted value in sample 19 was
noticed to be very high (8.08MPa). Furthermore, the other
vital observation that can be concluded from that table is that
the applied model (PSO − SVR) generates very accurate
predictions for CS of high and normal strength of concrete.
It can be said that (PSO − SVR) models are more efficient
for predicting the cs in the presence of waste industrial
material in the concrete than the SVR − GA and ELM.
Moreover, Figure 7 provides more information about the
efficiency of the predicted models during the testing phase.
Based on that figure, the estimated values by the SVR-PSO
model are very accurate and closer to their corresponding
observations.

In order to evaluate the performances of all suggested
models more efficiently, the Taylor diagram, as shown in
Figure 8, is created based on the outcomes of each predictive
model developed in this study during the testing phase. In
this figure, both axes (vertical and horizontal) are connected
via a circular line, representing the standard deviation. +e
value of the coefficient of correlation as a performance in-
dicator is indicated by the black radial lines drawn from the
center of the coordinates, and the circular walnut lines
indicate the value of root mean square error (RMSE) and
another significant performance indicator. In this figure, the
actual dataset is placed in the base of the Taylor diagram and
assumes that the data have the highest correlation of co-
efficient (i.e., CC� 1), RMSE of zero, and a calculated
standard deviation (SD) value. +en, the performances of
each model in terms of the three statistical parameters
(RMSE, CC, and SD) are compared with those evaluated
from the actual dataset. +us, the efficiency of the predictive
modeling approach can be easily identified via assessing its

Table 3: Assessing the performance of each suggested model:
testing set.

Model/statistical measures SVR-PSO SVR-GA ELM
MAE (MPa) 1.101 2.008 1.657
RMSE (MPa) 1.386 2.826 2.180
MAPE (MPa) 0.034 0.067 0.047
CC 0.989 0.956 0.965
U95% 28.776 518.686 183.182
NE 0.972 0.883 0.930
WI 0.992 0.962 0.981
erMax 0.151 0.417 0.175
a20-index 1 0.923 1
Bold values represent the higher accuracy values.
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Figure 6: Comparison of the performances of three adopted models: (a, b, and c respectively belong to SVR-PSO, SVR-GA, and ELM, while
d shows the boxplot presentation for illustrating the distribution of relative error for all adopted models in a single plot.

R2 = 0.978
y = 0.908x + 3.059
U95 = 28.776

40 6020
Actual

10

15

20

25

30

35

40

45

50

55

60

65

Pr
ed

ic
te

d

(a)

R2 = 0.914
y = 0.746x + 9.146
U95 = 518.686

40 6020
Actual

10

15

20

25

30

35

40

45

50

55

60

65

Pr
ed

ic
te

d

(b)

R2 = 0.931
y = 0.915x + 2.952
U95 = 183.182

40 6020
Actual

10

15

20

25

30

35

40

45

50

55

60

65

Pr
ed

ic
te

d

(c)

Figure 5: Comparing between actual and predictive values: correlation of determination, (a, b, and c) respectively belong to SVR-PSO, ELM,
and SVR-GA.
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Table 4: +e predicted compressive strength values using applied models versus the experimental values during the testing phase.

No. Sample SVR-PSO (MPa) SVR-GA (MPa) ELM (MPa) Experimental (MPa)
1 28.73 29.93 28.85 28.70
2 36.07 35.85 39.02 35.52
3 46.56 46.62 46.12 45.69
4 41.26 40.84 41.91 41.81
5 37.85 37.87 36.34 37.39
6 34.00 33.23 38.27 36.46
7 39.03 38.07 38.17 41.14
8 21.02 24.74 18.54 18.26
9 40.16 39.03 42.69 41.01
10 36.03 35.53 37.00 35.39
11 31.11 31.25 31.83 30.97
12 43.68 40.87 46.82 46.36
13 33.94 34.27 33.97 33.78
14 40.53 38.98 42.30 42.08
15 31.70 32.28 33.11 30.97
16 46.51 46.64 45.61 45.82
17 51.92 51.76 48.07 52.65
18 41.33 39.46 42.66 43.54
19 21.46 27.20 20.15 19.19
20 37.49 37.47 37.62 38.19
21 45.36 44.29 43.90 45.42
22 29.34 30.95 25.94 29.23
23 31.67 31.96 30.18 33.51
24 41.88 41.33 39.55 43.01
25 26.65 27.97 25.97 27.89
26 29.14 30.04 32.92 28.03
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Figure 7: Comparison between the measured compressive strength of concrete and the predicted values.
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similarity with the based model of the actual dataset. It can be
seen from this figure that the SVR-PSOmodel takes the closest
position to the actual data, which indicates the excellent
performance of this model. However, the other models (SVR-
GA and ELM) show a lower similarity with the actual data than
the SVR-PSO model during the testing phase.

Finally, both quantitative and visualized assessments re-
ferred to the adopted predictive model (SVR-PSO) have
performed very well in training and testing phases to predict
the compressive strength of standard and high-performance
concrete. Although the CS has had a complex relationship with
the existing parameters, the proposed modeling approach was
very stable and gave the highest accuracy results compared to
other comparable models. For ensuring the reliability of the
proposedmodel (SVR-PSO), the outcome of this model during
the testing set will be compared with other predictive models
conducted in previous studies in terms of coefficient of de-
termination (R2). +is indicator is very efficient when com-
paring a specificmodel’s outcomes to others developed in other
studies with a different dataset. +e most important thing is
that this parameter is not affected by normalization and the
scale of the dataset.+emodels are developed based on a given
dataset from different ranges and distributions. However, most
other statistical criteria such as RMSE, NSE, and other criteria
are mainly influenced by the scale of the used data set. When
comparing different predictive models established from several
datasets, these parameters may be misleading. Finally, the
hyperparameters of SVR, which PSO and GA have optimized,
are presented in Table 5.

3.1. Comparing the Proposed Model with Others Developed in
Previous Studies. Shariati et al. [10] presented a novel
model by incorporating the extreme learning machine and
grey wolf optimizer to predict the concrete CS. For

compression purposes, the authors used standard extreme
learning machine (ELM), support vector regression (SVR)
with different kernel functions, artificial neural network,
and adaptive neuro-fuzzy inference system (ANFIS). +e
assessment results revealed that the proposed modeling
approach outperformed other modeling approaches with
desirable accuracy (R2 � 0.9381). Another study [75] in-
vestigated using the data mining approach as a computer
aid to predict CS of high-strength concrete. +e authors
used a cross-validation (CV) approach with a multiple
additive regression tree (Mars). +e proposed model is
evaluated with other approaches like ANN and SVR, sta-
tistical model, and bagging regression trees. +e results
discovered that the comparable models gave undesirable
performances while the proposed model achieved the
highest accuracy with R2 of 0.943.+e study conducted that
the other modeling approaches gave lower accuracy and
suffered overfitting problems. Chou et al. [27] applied two
approaches to estimate concrete CS, called ANN and SVR.
In order to achieve better performances, the authors de-
veloped both models using the same dataset. However, the
performance of the ANNmodel was slightly lower than the
SVR model. +e study concluded that the SVR is more
stable and hence gives the higher prediction accuracy with
R2 of 0.9551. Moreover, Pham et al. [76] investigated the
hybridization of least square support vector regression with
a firefly algorithm to establish a hybrid model called (LS-
SVR-FFA) for predicting CS of high-performance concrete.
For verification of the performance of the hybrid model,
authors used other benchmark models called SVR and
ANN. the results found that the LS-SVR-FFA model was
very accurate compared to SVR and ANN models in the
prediction of CS of concrete with R2 of 0.89. Bui et al. [77]
hybridized the novel whale optimization algorithmwith the
ANN approach to enhance the model’s performance in
predicting concrete CS. +e authors also incorporated the
neural network with several algorithms (ant colony opti-
mization and dragonfly algorithm). +e outcomes of the
study showed that the proposed model (WOA-NN) gains
the fewest error forecasting and best performance
(R2 � 0.898). Another study was conducted by Hameed and
AlOmar [4] to predict CS of concrete using the ANN-CV
model.+e study used the multiple linear regression (MLR)
model for comparison and validation of the performance of
the proposed model. +e study concluded that the MLR
approach could not provide desirable results as ANN
models though using CV techniques with both models.
However, the superiority of the ANN model is obvious in
terms of accuracy performance (R2 � 0.931). Table 6
provides more reverent studies which developed differ-
ent prediction models for the prediction of CS of concrete.
Based on the outcome of the reviewed models collected
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Figure 8: Taylor diagram for comparing the performances of the
proposed models: testing set.

Table 5: +e optimized hyper-parameters of SVR by PSO and GA.

Parameter GA PSO
C 1.160329 8.511694
ɣ 8.007E− 03 0.015044
ε 0.990097 0.048581
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from the literature, the suggested model (SVR-PSO) out-
performed all comparable models developed and used in
previous studies.

3.2. Sensitivity Analysis. After assessing the reliability of the
proposed model (SVR-PSO) and validating its performance
against different models developed in previous studies to
predict CS of concrete, it is vital to conduct sensitivity
analyses to identify the most significant parameters that have
an important influence on CS of concrete. Moreover, the
selection of the most influential parameters has great im-
portance in minimizing time and cost as well as this step is
vital in structural and material engineering [86]. +e cosine
amplitude method is applied in this current paper [47, 87].
+e mathematical expression of the amplitude method can
be seen according to the following equation:

Rij �
􏽐

n
k�1 Xik ∗Xjk􏼐 􏼑

���������������
􏽐

n
k�1 X

2
ik 􏽐

n
k�1 X

2
jk

􏽱 , (28)

where Rij is the correlation degree between each input var-
iable and target (CS of concrete). +is factor ranges between 0
and 1. If there is a high correlation between a parameter with
CS of concrete, the value of Rij is becoming close to one. On
the other hand, if there is no relation between a variable and
CS of concrete, the value Rij equals zero. Moreover, in the
stated equation, n is the number of samples during the crucial
step of this study (i.e., testing set), and the parameters Xi and
Xj, respectively are the input and output values (CS of
concrete). Figure 9 shows the influence of each used pa-
rameter on the CS of concrete. It found that the fine aggregate,
coarse aggregate, water, and cement variables have the highest
impact on CS. However, the other input parameters (i.e., SP,
fly ash, and slag) have a lower impact on the CS of concrete.

3.3. Limitation of the Proposed Method and Possible Future
Research. +e obtained results have proved the capability of
SVR-PSO in the prediction of CS of concrete where the
cement was partially replaced with other materials. +e

proposed model showed an important improvement in
prediction capacity compared to other comparable models
such as ELM and SVR-GA. Besides, the input predictors of
this study, including seven different materials, are intro-
duced to the models to predict the CS property. However,
the prediction accuracy of the proposed model may improve
if the advanced data preprocessing technique is applied.
Moreover, the input vectors may have uncertainties and are
correlated, which eventually hider the model’s performance.
+erefore, this study recommends applying the principal
component analyses (PCA) approach before training the
model. Applying the PCA approach has a significant ad-
vantage in eliminating the redundant information and
correlation between input data, thereby enhancing the
predicting accuracy of the applied model.

4. Conclusions

+e significant contribution of this research was to develop a
hybrid AI model for the prediction of compressive strength
of concrete with 28-day age where the cement was partially
replaced with the pozzolan powders such as furnace slag and
fly ash. +e traditional approaches such as the trial-and-
error method applied to find the optimal concrete design
have some limitations since the process is time-consuming
and needs several experimentals. Furthermore, the process
of partially replacing cement in concrete manufacturing
makes the relationships between CS and concrete compo-
nents very complex. Accordingly, the classical method does
not provide the most optimal solutions. +us, this research
has introduced a novel approach as an efficient and cost-
effective method to early estimate the CS. For this regard,
SVR is hybridized with two different nature-inspired opti-
mizations like modified PSO and GA, constituting SVR-PSO
and SVR-GA models, respectively. +ese algorithms are
given a significant task in optimizing the hyperparameters of
SVR. Furthermore, the ELM model is also developed for
validating the performances of both SVR-PSO and SMR-
GA. +ere were eight statistical matrices used for assessing
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Figure 9: Sensitivity analysis results.

Table 6: Validating the SVR − PSO against predictive models
collected from the literature.

Reference Model R2

[10] ELM-GWO 0.9381
[75] MART-CV 0.943
[27] SVR 0.9551
[76] LS-SVR-FA 0.89
[77] WOA-ANN 0.898
[4] ANN-CV 0.931
[78] MARS-GBM 0.956
[79] ANN 0.922
[80] Neural-expert system(NEX) 0.76
[81] Fuzzy polynomial neural networks (FPNN) 0.821
[82] ANN 0.934
[83] EFSIM 0.927
[84] RELM- CV 0.884
[85] XGBoost with feature selection 0.9339
Proposed model (SVR-PSO) 0.978
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the performance of each model separately. +e results
showed that all proposed models (ELM, SVR-GA, and SVR-
PSO) provided good estimates. However, there were sig-
nificant differences reported throughout the testing set.
Additionally, the reported results uncovered that the SVR-
GA suffered overfitting problems. Although the ELM model
has been found to provide highly accurate estimates com-
pared to the SVR-GA model, the SVR-PSO model was
superior in predicting the compressive strength of concrete.
Among all eight statistical parameters that are used in this
study, the uncertainty at 95% (U95) is noticed as a more
efficient parameter in evaluating the prediction capacity of
used models.+e proficiency of U95 is remarkably noticed to
efficiently identify the most efficient predictive modeling
approach when other statistical parameters such as coeffi-
cient of determination (R2), mean absolute error (MAE),
and Index of Agreement or Willmott (WI) gave almost very
close assessments for all comparable models. Furthermore,
visualization assessments such as boxplots, scatter plots, and
Taylor diagrams have been carried out and pointed out that
the SVR-PSO models were the best predictive models in the
prediction of CS. Besides, further assessment has been
carried out by comparing the performance of the proposed
model (SVR-PSO) with 14 models that had been developed
in the literature. It is found that the proposed model of this
study gave more excellent estimates than the comparable
models. Sensitivity analysis using the cosine amplitude
method also has been done in this study to select the most
influential input parameters on the outputs. It was found
that the fine aggregate, coarse aggregate, water, and cement
variables have the highest impact on CS, respectively. Fi-
nally, the hybridization of SVR with modified PSO provided
more accurate CS predictions and thus can help to enhance
the understanding of the underlying relations between
concrete mix components and CS property.

Using Seven input variables may hinder the performance
of the applied models because these variables may have
redundant information. Besides, these parameters may be
correlated to each other or have uncertainties that reduce the
efficiency of the predicted model. For future studies, this
study recommends using the PCA approach before training
the models to remove the redundant information from input
vectors and eliminate the correlation between inputs data.
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