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.e vibration control system of a building structure under a strong earthquake can be regarded as a large complex system
composed of a series of overlapping subsystems. In this paper, the overlapping decentralized control of building structure
vibration under seismic excitation is studied. Combining the overlapping decentralized control method, H∞ control algorithm,
and passive fault-tolerant control method, a passive fault-tolerant overlapping decentralized control method based on the H∞
control algorithm is proposed. In this paper, the design of robust H∞ finite frequency passive fault-tolerant static output feedback
controller for each subsystem is studied. .e fault matrix of the subcontroller is expressed by a polyhedron with finite vertices. In
order to reduce the influence of external disturbance on the controlled output, the finite frequency H∞ control is adopted and the
Hamiltonian matrix is avoided. In this paper, the passive fault-tolerant overlapping decentralized control method based on H∞
control algorithm is applied to the vibration control system of the four-story building structure excited by the Hachinohe seismic
wave. One drive is set on each layer of the structure, and a total of four drives are set. Select the driver fault factor of 0.5 or 1 and the
frequency band [0.3, 8] Hz. .e overlapping decentralized control scheme and 16 fault-tolerant fault matrices are designed, and
the numerical comparison results are given. .e results show that both overlapping decentralized control strategy and mul-
tioverlapping decentralized control strategy have achieved good control results. Due to the different number of subsystems and
overlapping information, the overlapping decentralized control scheme increases the flexibility of controller setting and reduces
the computational cost.

1. Introduction

Structure vibration control strategies have been widely used
in the seismic field of civil structures. A large number of
microsmart drivers and sensors in the control process does
not guarantee the eternal function. Each component is
vulnerable to partial or total failure. Because the building
structure is a large-scale multidegree-of-freedom structure,
the research work mainly focuses on the model order re-
duction theory, parameter uncertainty control theory,

decentralized control theory, etc. However, these theories all
need to be considered the robustness of the control system.

In the application of structure vibration control tech-
nology in the building structure control system, the control
device is usually installed on the floor of the structure, and
the corresponding control force is exerted on the structure
through the device so as to realize the vibration control of the
building structure. .e vibration control unit consists of a
controller, sensors, and actuators. .e controller calculates
the corresponding control force according to the structural
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response collected by the sensor, and the actuator is re-
sponsible for exerting the calculated control force to the
structure to reduce the structural response under external
excitation. However, in the actual construction structure
engineering, the control device installed on the structure
floor is vulnerable to the influence of factors such as delayed
maintenance and damage caused by the external load, and
there will be actuator (driver) or sensor failure or even lead
to complete failure. In complex engineering systems, safety
and reliability are very important. Fault-Tolerant Control
(FTC) provides a new way to solve the reliability problem of
large complex control systems.

.erefore, when designing the control system, it should
be considered that the fault of all or part of the components
can be recovered, and the fault-tolerant control method can
effectively solve this problem. Fault-tolerant control has the
function of making the system feedback insensitive to a fault.
Fault-tolerant control can be divided into passive fault-
tolerant control and active fault-tolerant control, each of
which has its own characteristics. Passive fault-tolerant
control can be regarded as traditional robust control without
online identification and treats faults as an uncertainty.
Passive fault-tolerant control has limited fault-tolerant ca-
pacity. However, compared with active fault-tolerant con-
trol, passive fault-tolerant control has the advantage of not
requiring accurate actuator fault information. In addition,
passive fault-tolerant control ensures system stability and
expected control performance in the event of actuator
failure. Active fault-tolerant control can be understood as
generalized robust control, and the control law of the
controller needs to be readjusted after the occurrence of a
fault, and it can overcome the characteristics of passive fault-
tolerant control.

Structural active control had used sensors and actuators
to modify and enhance the resistance of the structure to the
external environment [1]. Due to the increasing awareness of
seismic risk and the challenges to structures in extreme
environments, active control technology has received high
attention in the past decades [2]. In the control strategy, if
the system is far away from the position of the equilibrium
state, it is particularly important to choose higher system
stiffness. If the system returns to equilibrium, the stiffness
value should be set to a lower value. Ramaratnam and Jalili
[3] have studied the conversion stiffness method for
structural vibration control. Jalili and Knowles IV [4] have
controlled structural vibration by using active shock isola-
tion devices. Moon et al. [5] has applied linear magneto-
strictive actuator to structural vibration control. Fallah and
Ebrahimnejad [6] have used piezoelectric actuators in active
vibration control of building structures. Reithmeier and
Leitmann [7] have applied Lyapunov stability theory to a
structural vibration control system subject to control force
constraints and arbitrary control inputs. However, the above
control methods are all based on the infinite frequency
domain control methods, and compared with the finite
frequency domain control theory, they are more conser-
vative. In fact, more and more studies have focused on the
control theory of the finite frequency domain in practical
problems [8]. Chen et al. [9] has studied the H∞ control

problem of structural vibration under seismic excitation in
the finite frequency domain, designed the state feedback
controller to reduce the structural response, and proved the
asymptotic stability of the closed-loop system. According to
relevant literature, although the seismic wave is in the
infinite frequency domain, only the frequency spectrum
whose amplitude exceeds 0.4 can cause greater damage to
the building structure is limited [10]. In recent years,
according to the system with overlapping decomposition
structure, the overlapping controller is designed by the
inclusion principle, and the positive nature of the distributed
controller is maintained in the design process. .e over-
lapping decomposition method based on the inclusion
principle has been applied in many fields and has effectively
solved the control problems of various complex, large-scale
systems, such as mechanical structure [11], applied math-
ematics [12], power system [13], automatic highway system
[14], and aerospace engineering [15]. At the same time, an
overlapping decentralized control strategy has been applied
in the civil engineering field [16–21]. In other words, re-
markable control effects can be achieved by suppressing
seismic waves in a certain frequency domain. .erefore, the
finite frequency domain controller can improve the seismic
performance of the building structure.

However, in many practical engineering applications, not
all states are used for controller design due to the cost of the
sensor. In this case, only the measured output can be used to
build a closed-loop system..at is, the output feedback control
will save cost. At present, there are little researches on fault-
tolerant overlaps and decentralized control methods to solve
the vibration problem of multidegree-of-freedom structure
building structures. .e overlapping decentralized control
strategy is to divide the whole structure vibration control
system into several overlapping subsystems according to cer-
tain rules, and each subsystem uses local information of
subsystem to control independently.

To study the control effect of overlapping decentralized
control strategy to solve the vibration problem of building
structure under earthquake excitation. Firstly, this paper
introduces the control problem of a linear building structure
system with n degrees of freedom. Secondly, this paper
proposes a passive fault-tolerant overlapping decentralized
control method based on the H∞ control algorithm by
combining the overlapping decentralized control method,
H∞ control algorithm, and passive fault-tolerant control
method. Finally, the failure factor of the driver is selected as
0.5 or 1, and the frequency band [0.3, 8] Hz. .e passive
fault-tolerant overlaps and decentralized control method
based on the H∞ control algorithm is applied to the vi-
bration control system of a four-story building under the
excitation of Hachinohe seismic wave. Four overlaps and
decentralized control schemes and 16 fault-tolerant fault
matrices were designed, and the numerical comparison
results were given. Overlapping decentralized control
strategy provides a new way to solve the vibration control
problem of building structures. Since the number of sub-
systems and overlapping information is different, the
overlapping decentralized control scheme increases the
flexibility of the controller setting.
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2. Description of Structural Control
System Problems

For the linear building structural system with n degrees-of-
freedom shown in Figure 1, under the action of earthquake
ground motion, the motion equation can be formulated as
follows:

M€q (t) + C _q(t) + Kq(t) � Tuu(t) + Ew(t), (1)

where M, C and K ∈ Rn×n are the mass matrix, damping
matrix, and stiffness matrix of the building structural system,
respectively; Tu is the position matrix of control force; E is
the position vector of seismic excitation; q(t), _q(t), and €q(t)

are the displacement, velocity, and acceleration vectors of
each floor of the structure relative to the ground,
respectively.

.e second-order ordinary differential equation in
formula (1) can be converted to the first-order ordinary
differential equation as follows [22]:

_xI(t) � AIxI(t) + BIu(t) + EIw(t), (2)

where xI � [q(t); _q(t)] ∈ R2n×1 is the state vector;
AI ∈ R2n×2n, BI ∈ R2n×m2 and EI ∈ R2n×m1 are system, con-
trol, and excitation matrices, respectively:

AI �
[0]n×n In×n

−M
− 1

K −M
− 1

C

⎡⎢⎣ ⎤⎥⎦

BI �
[0]n×m2

M
− 1

Tu

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

EI �
0{ }n×1

− 1{ }n×1

⎡⎢⎣ ⎤⎥⎦.

(3)

At this point, we can define a new state vector:

x(t) � φxI(t), (4a)

where

φ �

φ1,1 � 1, φ2,n+1 � 1,

φ2i−1,i−1 � −1, φ2i−1,i � 1, 1< i≤ n,

φ2i,n+i−1 � −1, φ2i,n+i � 1, 1< i≤ n,

φi,j � 0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4b)

By defining state vector x � φxI, substitute xI � φ− 1x

into equation (2) and φ multiply the equation left, the first-
order motion equation of the following form can be written
as follows:

_x(t) � Ax(t) + Bu(t) + Ew(t), (5)

where, A � φAIφ− 1, B � φBI, E � φEI and

x(t) �
q1(t), _q1(t), q2(t) − q1(t)( 􏼁, _q2(t) − _q1(t)( 􏼁

, . . . , qn(t) − qn-1(t)( 􏼁, _qn(t) − _qn-1(t)( 􏼁
􏼢 􏼣

T

.

(6)

z(t) is now defined as the control output. y(t) is defined
as the measurement output. .e vibration control system of
the building structure can be formulated as follows:

_x(t) � Ax(t) + Bu(t) + Ew(t),

y(t) � Cyx(t),

z(t) � Czx(t) + Dzu(t),

⎧⎪⎪⎨

⎪⎪⎩
(7)

where x(t) is the state vector of the system; u(t) is the
control input; w(t) is interference input; z(t) is the control
output. .e matrices A, B, E, Cy, Cz and Dz are constant
matrices of appropriate dimensions.

3. Passive Fault-Tolerant Control

3.1. Passive Fault-Tolerant H∞ Control Problem.
Considering the equation (7) of the continuous time linear
system of the building structure, this section introduces the
passive fault-tolerant control technique of the driver, and the
possibility of failure of the driver is taken into account..us,
the state feedback control law can be expressed as follows:

u(t) � MfGy(t), (8)

where Mf is the fault matrix used to describe a drive fault.
.erefore, the assumed fault matrix Mf can be written as
follows:

Mf � diag Mf1, . . . , Mfn􏽮 􏽯, (9)

where Mfi, (i � 1, . . . , n) is a driver failure in the i-th layer
and Mfi ∈ [0, 1]; when Mfi � 0, the corresponding drive
fails completely; Mfi � 1 indicates that the corresponding

un (t)

un–1 (t)

u2 (t)

u1 (t)

w (t)

mn

mn–1

m2

m1

–un (t)

–u3 (t)

–u2 (t)

an

a2

a1

Figure 1: n-story building structural vibration control system
under seismic excitation.
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drive is free of any failure. If Mfi is between 0 and 1, the
corresponding drive is partially failing. A complete failure of
the drive indicates that the controller does not have any
control. In this case, the system is opened loop. For the
convenience of controller design, it can be assumed
according to the actual situation,

0≤Mfi ≤Mfi ≤Mfi ≤ 1, (i � 1, . . . , n). (10)

Since Mfi is a function of time between [Mfi, Mfi], the
fault matrix Mf can be described as follows:

Mf(α) � 􏽘

2n

j�1
αjM

j

f; 􏽘

2n

j�1
αj � 1, αj ≥ 0, (11)

where
M1

f � diag Mfi, . . . , Mfn􏽮 􏽯, . . . , M2n

f � diag Mfi, . . . , Mfn􏽮 􏽯

are constant matrices.
By substituting the fault-tolerant control law shown in

equation (8) into system equation (7), a closed-loop system
can be obtained:

_x(t) � A(α)x(t) + Ew(t),

z(t) � Czx(t) + Dzw(t),

⎧⎨

⎩ (12)

where B(α) � BMf(α); A(α) � A + B(α)GCy. For a de-
terministic α, the transfer function from the disturbance
w(t) to the control output z(t) can be expressed as follows
[23]:

Tzw(s) � Cz(sI − A)
− 1

E + Dz. (13)

Finite frequency static output feedback H∞ control can
determine the gain matrix G such that the closed-loop
system equation (12) is asymptotically stable and satisfies the
following inequality:

supω1 ≤ω≤ω2
Tzw(jω)

����
����∞< c. (14)

.erefore, the aim is to design a feedback controller
equation (8) with the possibility of driver failure and make
the closed-loop system equation (12) asymptotically stable
and satisfy the H∞ control condition equation (14) in the
finite frequency domain. If the designed controller satisfies
the above conditions, it is called a fault-tolerant feedback
controller.

3.2. H∞ Control 8eory in Passive Fault-Tolerant Finite
FrequencyDomain. Because H∞ control in finite frequency
domain involves complex Hamilton matrix [24]. In this
section, a passive fault-tolerant H∞ control method based
on linear matrix inequality (LMI) is deduced according to
the relevant lemma.

Lemma 1. Assuming A and E are both real matrices and Θ
are symmetric matrices,Φ ∈ S2 and ψ ∈ H2 can define curves
in a complex plane. And, the following two statements are
equivalent [25]:

(1) If Λ ∈ Λ(Φ, Ψ), then the following inequality is
satisfied for all nonzero (u, v) ∈ NA(A(α), E):

u

v
􏼢 􏼣

H

Θ
u

v
􏼢 􏼣< 0. (15)

(2) For all nonzero (u, v) ∈ NA(A(α), E), there are
symmetric matrices P and Q that satisfy

Q> 0

A(α) E

I 0
⎡⎣ ⎤⎦

T

(Φ⊗P + Ψ⊗Q)
A(α) E

I 0
⎡⎣ ⎤⎦ + Θ> 0,

(16)

where a complex plane can be defined as follows:

Λ ∈ Λ(Φ, Ψ) � Λ ∈ R|
Λ

1
􏼢 􏼣

H

Φ
Λ

1
􏼢 􏼣 � 0,

Λ

1
􏼢 􏼣

H

Ψ
Λ

1
􏼢 􏼣≥ 0

⎧⎨

⎩

⎫⎬

⎭.

(17)

If Λ≠∞, then,

NA(A(α), E) � (u, v) ∈ Rn
× Rq2 |(ΛI − A)u � Ev􏼈 􏼉.

(18)

If Λ≠∞, then, NA(A(α), E) � 0{ } × Rq2 .

From Lemma 1 and the transfer function considering the
relevant parameters of the system, the following lemma can
be established.

Lemma 2. With respect to the transfer function Tzw(s), given
a symmetric matrix Ω, the following two statements are
equivalent:

(1) When ω1 ≤ω≤ω2, the inequality holds in the finite
frequency domain:

Tzw(jω)

I
􏼢 􏼣

H

Ω
Tzw(jω)

I
􏼢 􏼣< 0. (19)

(2) 8e existence of symmetric matrices P and Qp makes
the following inequality true:

Qp > 0,
Γ P, Qp􏽨 􏽩􏽨 􏽩 Cz, Dz􏼂 􏼃

T

∗ −I

⎡⎣ ⎤⎦< 0, (20)

where

Γ P, Qp􏽨 􏽩 �
A(α) E

I 0
⎡⎣ ⎤⎦

T
−Qp P + jωcQp

P − jωcQp −ω1ω2Qp

⎡⎣ ⎤⎦
A(α) E

I 0
⎡⎣ ⎤⎦ +

0 C
T
zΠ12

∗ sym D
T
zΠ12􏼐 􏼑 +Π22

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (21)
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where ωc � (ω1 + ω2)/2; Ω12 and Ω22 are the upper
right and lower left positions of block matrix Ω,
respectively.

Considering the finite frequency domain condition
equation (14), the following lemma can be established.

Lemma 3. For the transfer function of the actual data system
matrix, if there are symmetric matrices P and Qp that make

the inequality equation (22) valid, then the condition
equation (14) in the finite frequency domain can be proved.

Γ1 P, Qp􏽨 􏽩 Cz, Dz􏼂 􏼃
T

∗ −I

⎡⎣ ⎤⎦< 0, (22)

where

Γ1 P, Qp􏽨 􏽩 �
A(α) E

I 0
⎡⎣ ⎤⎦

T
−Qp P + jωcQp

P − jωcQp −ω1ω2Qp

⎡⎣ ⎤⎦
A(α) E

I 0
⎡⎣ ⎤⎦ +

0 0

∗ −c
2
I

􏼢 􏼣. (23)

As the system matrix A(α) and positive definite matrix
Qp are coupled together in Lemma 3, projection lemma is
introduced to understand the coupling.

Lemma 4. (projection lemma [26]): For a given real sym-
metric matrix Π and two real matrices Λ1 and Λ2, and
considering a matrix Ξ of appropriate dimensions, the fol-
lowing inequality holds:

Π + Λ1ΞΛ2 + Λ1ΞΛ2( 􏼁
T < 0. (24)

8e above equation can solve the matrix Ξ if and only if
the correlation matrix satisfies the following:

N
T
Λ1ΠNΛ1 < 0,

N
T
ΛT
2
ΠNΛT

2
< 0.

⎧⎪⎨

⎪⎩
(25)

Theorem 1. For a given positive real number c and a known
matrix G, the closed-loop system equation (12) is asymptot-
ically stable and the H∞ control performance in the finite
frequency domain can be satisfied if there are matrices
P � PT, Qp � QT

p > 0, and K � KT > 0:

KA(α) + A
T
(α)K< 0, (26)

−Qp Λ5 0 0

∗ Λ6 KE C
T
z

∗ ∗ −c
2
I D

T
z

∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (27)

where Λ5 � P + jωcQp − KT; Λ6 � −ω1ω2Qp+

KA(α) + A
T
(α)K.

Proof 1: . By using Schur’s complement lemma, equation
(27) can be rewritten as follows:

Π1 + sym Λ11Ξ1Λ21( 􏼁< 0, (28)

where

Π1 �

−Qp P + jωcQp 0

∗ −ω1ω2Qp + C
T
z Cz C

T
z Dz

∗ ∗ −c
2
I + D

T
z Fw

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Λ11 � −I A(α) E􏽨 􏽩
T

Λ21 � 0 I 0􏼂 􏼃.

(29)

.e null Spaces of the matrices Λ11 and ΛT
21 are,

respectively,

NΛ11 �
A(α) I 0

E 0 I
⎡⎣ ⎤⎦

NΛT
21

�
I 0 0

0 0 I
􏼢 􏼣.

(30)

According to the projection theorem, the inequality
equation (28) holds if the following inequality can be satisfied:

N
T
Λ11Π1NΛ11 < 0

N
T
Λ21Π1NΛ21 < 0.

(31)

To prove that the closed-loop system equation (12) is
asymptotically stable, the following Lyapunov function can
be chosen:

V(x(t)) � x
T
(t)Kx(t). (32)

According to literature [27], inequality equation (26) can
be held. In the two-step controller design approach, a fault-
tolerant state feedback controller equation (33) can first be
designed so that the system equation (7) is stable.

u(t) � MfGsfx(t). (33)

By substituting the state control law equation (33) into
system equation (7), a closed-loop system can be obtained,

_x(t) � Asf(α)x(t) + Ew(t), (34)

where Asf � A + B(α)Gsf.
For the closed-loop system equation (34), the state

feedback gain can be calculated according to the following
theorem. □
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Theorem 2. 8e closed-loop system equation (34) is as-
ymptotically stable if Q2 � QT

2 > 0 and Msf exist, so that
equation (35) holds.

AQ2 + Q2A
T

+ B
j
Msf + B

j
Msf􏼐 􏼑

T
< 0, (35)

where Bj � BM
j

f, j � 1, . . . , 2n. If equation (35) is solvable,
then the state feedback gain Gsf can be as follows:

Gsf � MsfQ
−1
2 . (36)

Proof 2: Equation (35) can be simplified as follows:

AQ2 + Q2A
T

+ B(α)Msf + B(α)Msf􏼐 􏼑
T
< 0. (37)

For the unforced closed-loop system equation (34),
consider the following Lyapunov function:

V(x(t)) � x
T
(t)Q

−1
2 x(t), (38)

where Q2 is a symmetric positive definite Lyapunov weight
matrix.

.e unforced closed-loop system equation (34) is as-
ymptotically stable if the following inequality holds:

Q
−1
2 A + B(α)Gsf􏼐 􏼑 + A + B(α)Gsf􏼐 􏼑

T
Q

−1
2 < 0. (39)

Once the state feedback gain Gsf can be obtained, the
second step in the controller design is to determine the static
output feedback gain G. □

Theorem 3. For a given positive real number c, the closed-
loop system equation (12) is asymptotically stable and the H∞
control performance equation (14) in the finite frequency
domain can be satisfied if there are matrices P � PT,
Qp � QT

p > 0, K � KT > 0, Kof and N,

Λ7 Λ8
∗ −N − N

T
􏼢 􏼣< 0, (40)

−Qp Λ5 0 0 0

∗ −ω1ω2Qp + Λ7 KE C
T
z Λ8

∗ ∗ −c
2
I D

T
z 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −N − N

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (41)

where Λ7 � KA + KBjGsf + (KA + KBjGsf)T;
Λ8 � KBj + (KofCy − NGsf)T. 8e feedback gain G can be
obtained by calculating equation G � N− 1Kof.

Proof 3: Applying the subdividable space aggregate per-
formance, equations (40) and (41) mean that

Λ9 Λ10
∗ −N − N

T
􏼢 􏼣< 0, (42)

−Qp Λ5 0 0 0

∗ −ω1ω2Qp + Λ9 KE C
T
z Λ10

∗ ∗ −c
2
I D

T
z 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −N − N

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (43)

where Λ9 � KA + KB(α)Gsf + (KA + KB(α)Gsf)T;
Λ10 � KB(α) + (KofCy − NGsf)T.

By defining a new variable S � GCy − Gsf, equation (27)
can be written as follows:

−Qp Λ5 0 0

∗ Λ11 KE C
T
z

∗ ∗ −c
2
I D

T
z

∗ ∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (44)

where Λ11 � −ω1ω2 Qp + K(A + B(α)Gsf

+B(α)S) + (K(A + B(α)Gsf + B(α)S))T.
According to the new variable S, equation (44) can be

expressed as follows:

Γ

−Qp Λ5 0 0 0

∗ Λ12 KE C
T
z KB(α)

∗ ∗ −c
2
I D

T
z 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ΓT < 0, (45)

where
Λ12 � −ω1ω2Qp + K(A + B(α)Gsf) + (K(A + B(α)Gsf))T.

Γ �

I 0 0 0 0

0 I 0 0 S
T

0 0 I 0 0

0 0 0 I 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

.e right orthogonal complement of matrix ΓT is as
follows:

NΓT � 0 S 0 0 −I􏼂 􏼃. (47)

If the feedback regular is a state where the feedback is
controlled, the variable S is equal to a zero matrix. .e left
orthogonal complement of the matrix Γ0 is as follows:

NΓ0 � 0 0 0 0 I􏼂 􏼃, (48)

where
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Γ0 �

I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

By using the projection lemma, if equation (45) exists,
then equation (43) can be proved to hold. .erefore, the
proof of equation (42) ensures that equation (26) can be
obtained. □

Corollary 1. 8e static output feedback H∞ control problem
can be expressed as the following convex optimization
problem:

minimize c
2
,

Satisfaction Equations (40) and (41), j � 1, . . . , 2n
.

⎧⎨

⎩

(50)

3.3. Fault-Tolerant Overlapping Decentralized Control. In
this section, the overlapping decentralized control strategy is
combined with the passive fault-tolerant control method,
and the structure overlapping decentralized fault-tolerant
control method based on the H∞ control algorithm is
proposed. .e calculation steps of the proposed control
method are described as follows:

(1) .e motion equation of the shear model of the
n-story building structure is shown in equation (1).
According to the inclusion principle and decom-
position principle in reference [28] and considering
the control output z(t) � Czx(t) + Dzu(t), the first-
order continuous-time state model equation (7) of
the entire building structural vibration control sys-
tem is extended and decoupled into a series of
overlapping subsystems 􏽥S

(i) (i � 1, 2, . . . , L).

􏽥S
(i)

:

_􏽥xi(t) � 􏽥Aii􏽥xi(t) + 􏽥Bii􏽥ui(t) + 􏽥Ei 􏽥wi(t),

􏽥yi(t) � 􏽥Cy􏼐 􏼑
ii
􏽥xi(t),

􏽥zi(t) � 􏽥Cz􏼐 􏼑
ii
􏽥xi(t) + 􏽥Dz( 􏼁ii􏽥ui(t),

i � 1, 2, · · · , L; 2≤ L≤ n − 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(51)

(2) Use the passive fault-tolerant control method to
calculate the feedback gainmatrix 􏽥G

(i) (i� 1, 2, . . ., L)
of each subsystem. For each overlapping subsystem
in equation (51), the following iterative algorithm is
used in this section to solve the convex optimization
problem in equation (50) to obtain the feedback gain
matrix of each subsystem.

Step 1: Calculate the initial state feedback gain
􏽥G

(i)

sf,0 by using .eorem 2;
Step 2: When k � 0, the initial static output
feedback gain 􏽥G

(i)

of,0 and H∞ performance 􏽥ci
0 can

be obtained by using the initial state feedback
gain 􏽥G

(i)

sf,0 and solving the convex optimization
equation (50) of Corollary 1;

Step 3: while k<Nmax do,
(1) k � k + 1,
(2) 􏽥G

(i)

sf,k � 􏽥G
(i)

of,k−1(
􏽥Cy)ii,

(3) Solve the convex optimization problem of Cor-
ollary 1 to obtain the initial static output feed-
back gain 􏽥G

(i)

of,k and H∞ performance 􏽥ci
k, if

􏽥ci
k − 􏽥ci

k−1 < ε then,
Exit the loop

end if
end while
Step 4: .e static output feedback gain 􏽥G

(i) (i� 1,
2, . . ., L) of each subsystem can be obtained by
this algorithm.

(3) According to the feedback gain 􏽥G
(i) (i� 1, 2, . . ., L)

calculated in the above steps, the diagonal extended
feedback gain matrix of equation (51) of the ex-
tended decoupled system is formed,

􏽥GD � diag 􏽥G
(1)

, 􏽥G
(2)

, . . . , 􏽥G
(L)

􏼔 􏼕. (52)

(4) According to the contraction principle and linear
transformation [28], the extended controller 􏽥GD is
shrunk into an overlapping controller:

Go � Q􏽥GDV. (53)

4. Control Schemes Design and
Numerical Simulation

In order to verify the proposed structure overlapping
decentralized passive fault-tolerant control method based on
H∞ control algorithm, this section takes the four-story
shearing building structure (see Figure 2) as an example, and
its mass, stiffness, and damping parameters are [29–31]:
m1 � 450×103 kg, m2 �m3 �m4 � 345×103 kg;
k1 � 18.05 kN/m, k2 � 340×103 kN/m, k3 � 326×103 kN/m,
k4 � 280×103 kN/m; c1 � 26.170 kN•s/m, c2 � 490 kN•s/m,
c3 � 467 kN•s/m, c4 � 410 kN•s/m. .e seismic load was
Hachinohe seismic wave (Magnitude 8.3) on May 16, 1968,
the peak acceleration was 2.250m/s2, the duration was 36 s,
and the sampling step was 0.01 s. In Figure 2,
ai, (i � 1, 2, 3, 4) are the control devices. .e Hachinohe
seismic wave is shown in Figure 3. Based on the principle of
the wavelet transform, the energy distribution diagram of
the input time history on the natural frequency-time plane
can be obtained (Figure 4). .e overlapping decentralized
control scheme of building a structural vibration system is
shown in Figure 5.

In the control output setting, only the feedback of ve-
locity of the structural floor is considered, and the feedback
of floor displacement is not considered. A drive is set in each
layer of the structure, and a total of four drives are set. .e
fault matrix Mfi of equation (10) over time is shown in
Figure 6. Driver failure factor is 0.5 or 1. Wherein, the
coefficient 0.5 is expressed as half failure of the drive, and the
coefficient 1 is expressed as no failure of the drive..e failure
matrix has the following 16 cases. Namely,
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Mi
f � diag a1, a2, a3, a4􏼈 􏼉, aj � 0.5 or 1; j � 1, 2, 3, 4. can be

specifically expressed as follows:

M
1
f � diag 0.5, 0.5, 0.5, 0.5{ }, M

2
f � diag 1, 0.5, 0.5, 0.5{ }, M

3
f � diag 0.5, 1, 0.5, 0.5{ }

M
4
f � diag 0.5, 0.5, 1, 0.5{ }, M

5
f � di ag 0.5, 0.5, 0.5, 1{ }, M

6
f � diag 1, 1, 0.5, 0.5{ }

M
7
f � diag 1, 0.5, 1, 0.5{ }, M

8
f � di ag 1, 0.5, 0.5, 1{ }, M

9
f � diag 0.5, 1, 1, 0.5{ }

M
10
f � diag 0.5, 1, 0.5, 1{ } , M

11
f � di ag 0.5, 0.5, 1, 1{ }, M

12
f � diag 0.5, 1, 1, 1{ }

M
13
f � diag 1, 0.5, 1, 1{ }, M

14
f � diag 1, 1, 0.5, 1{ }, M

15
f � diag 1, 1, 1, 0.5{ }

M
16
f � diag 1, 1, 1, 1{ }.

(54)

u4 (t)

u3 (t)

u2 (t)

u1 (t)

w (t)

m4

m3

m2

m1

–u4 (t)

–u3 (t)

–u2 (t)

a4

a2

a2

a1

Figure 2: A four-story building structural vibration control system.
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Figure 3: Hachinohe earthquake of ground motion acceleration time histories.
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When the frequency band [0.3, 8] Hz is selected, an
iterative algorithm is applied to solve the structural vibration
control inequality. .e gain matrix of state feedback

obtained from the first iteration of Case1 in Figure 5 can be
obtained:

Gsf,Case1 � 108 ×

−1.5555 −9.6777 −1.8997 −6.6986 −1.2733 −4.4648 −6.2956 −2.2322

−1.5558 −9.6804 −1.9477 −6.7667 −1.2722 −4.4676 −6.4716 −2.2331

−1.5556 −9.6801 −1.9199 −6.7680 −1.3216 −4.5335 −6.3485 −2.2341

−1.5554 −9.6790 −1.8977 −6.7675 −1.3072 −4.5344 −6.8076 −2.3002

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (55)
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Figure 4: .e wavelet-based energy distribution of input time-history on natural frequency-time plane.
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Figure 5: .e overlapping decentralized control scheme of four-story building structure.
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Figure 6: Actuator faults in the simulation.
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Figure 7 shows the controller singular values of Case1
scheme under consideration of 16 fault-tolerant fault ma-
trices. As can be seen from the figure, the optimal singular
value cCase1 � 7.8225, and the corresponding static output
feedback control gain matrix is as follows:

GCase1 � 108 ×

4.7434 4.9433 5.7701 −2.4312

8.1733 −2.2761 −8.8142 1.6732

−6.9247 −5.4721 3.2535 −6.3904

−2.323 3.8482 −1.3565 8.8640

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(56)

When considering the Case2 overlapping decentralized
control scheme in Figure 5, the vibration control system of
the whole four-story building structure can be divided into
two overlapping subsystems 􏽥S

(1) and 􏽥S
(2) according to

equation (51) in Section 3.3. Static output feedback gains
􏽥G

(1) and 􏽥G
(2) of subsystems 􏽥S

(1) and 􏽥S
(2) can be obtained

from Section 3.3. Considering 16 fault tolerance matrices
Mi

f, (i � 1, 2, ..., 16), the static feedback gain matrix GCase2

of Case2 scheme and the corresponding optimal singular
value cCase2 � 8.6592 can be obtained according to equations
(52) and (53). .e singular values of the controller under the
Case2 scheme are shown in Figure 8.

GCase2 � 108 ×

−3.9331 −2.7410 0 0

−3.9327 −1.8275 6.2847 −3.9142

0 −1.8273 −9.3248 8.43035

0 1.3750 4.2053 2.2391

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(57)

Considering the Case3 multioverlapping decentralized
control scheme in Figure 5, the vibration control system of
the whole four-story building structure can be divided
into three overlapping subsystems 􏽥S

(i) (i � 1, 2, 3).
According to equation (51) in Section 3.3, static output
feedback gains 􏽥G

(1), 􏽥G
(2) and 􏽥G

(3) of the three subsystems
can be obtained by considering the 16 fault-tolerant fault
matrices Mi

f, (i � 1, 2, ..., 16) in Section 3.3. According to
equations (52) and (53), the static feedback gain matrix
Gcase3 of Case3 scheme and the corresponding optimal
singular value cCase3 � 9.48249 can be obtained. .e sin-
gular values of the controller under the Case3 scheme are
shown in Figure 9.

GCase3 � 108 ×

−1.7968 −4.6898 0 0

−6.5322 −1.5132 −5.5350 0

0 −6.1810 1.6297 3.0554

0 0 1.0504 5.7050

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (58)

When the building structure is externally excited by
Hachinohe seismic wave, and 16 fault-tolerant fault situa-
tions are considered. .e interstory displacement of the
structure is shown in Table 1.

It can be seen from Table 1 that the overlapping
decentralized passive fault-tolerant control method of
building structure based on H∞ norm proposed in this
paper is applied to the vibration control system of building
structure under earthquake excitation and achieves a good
control effect. Among them, the centralized control (Csae1)
scheme has the best control effect. Compared with the
control effect of Case1 to Case3 in Table 1, the control effect
is getting worse and worse with the increase of overlapping
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Figure 8: .e controller singular values of case2 scheme.
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Figure 7: .e controller singular values of case1 scheme.
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and dispersing times of the building structure. However, on
the whole, both the overlapping decentralized control
strategy (Csae2) and the multioverlapping decentralized
control strategy (Csae3) achieve better control effects.

.e time history of the control force installed on the drivers
of each floor is shown in Figures 10–12. In the time history
diagram of the control force, ui (i � 1, 2, 3, 4) is the time
history of the control force of corresponding digital floors.

5. Discussions

(1) .e corresponding controller gain matrices are
calculated according to different overlapping
decentralized control strategies. .e Maximum
Singular Values c under the consideration of 16
fault-tolerant fault matrices become larger and larger
as the degree of overlap and decentralization of
structural vibration control schemes increases.
However, the design of the controller can be cal-
culated independently by the frequency of the
structure itself when solving the vibration control
problem of the actual engineering structure.

(2) According to the maximum interlayer displacement
values in Table 1, the control rate is between 56.08%
and 63.92% under the centralized control strategy

(Case1). Under the overlapping decentralized con-
trol strategy (Case2), the control rate ranged from
47.77% to 52.50%. Under the multioverlapping
decentralized control strategy (Case3), the control
rate ranges from 43.95% to 47.92%. .erefore, in the
building structural vibration control strategy, the
control effect of the centralized control strategy is
better than the overlapping decentralized control
strategy and the multioverlapping decentralized
control strategy.

(3) MATLAB software is used to program and calculate
the different control strategies of the four-story
building structural vibration control system. Among
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Figure 10: .e control force of case1 scheme of the four-story
building structure.

0

2

4

6

8

10

12

14
Si

ng
ul

ar
 V

al
ue

10-1 100 101 102

Frequency (Hz)

Figure 9: .e controller singular values of case3 scheme.

Table 1: Maximum interstory displacement.

Stories No
control

Case1 (cm
(%))

Case2 (cm
(%))

Case3 (cm
(%))

1 1.803 0.744 (58.74) 0.856 (52.50) 0.939 (47.92)
2 1.480 0.650 (56.08) 0.773 (47.77) 0.798 (46.10)
3 1.580 0.570 (63.92) 0.816 (48.35) 0.862 (45.47)
4 1.545 0.650 (57.93) 0.794 (48.61) 0.866 (43.95)
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Figure 11: .e control force of case2 scheme of the four-story
building structure.
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them, the running time of the centralized control
strategy (Case1) is 1 hour, the running time of
overlapping decentralized control strategy (Case2) is
20 minutes, and the running time of multi-
overlapping decentralized control strategy (Case3) is
30 seconds. .e overlapping decentralized control
strategy (Case2) and the multioverlapping decen-
tralized control strategy (Case3) reduce the calcu-
lation cost.

6. Conclusions

.e overlapping decentralized control is an effective method
to solve complex, large-scale vibration control systems with
overlapping information constraints. In this paper, an
overlapping decentralized fault-tolerant control method
based on H∞ control algorithm is proposed for the vi-
bration control system of a 4-story building structure. Select
the driver failure factor of 0.5 or 1 and the frequency band
[0.3, 8] Hz. Using MATLAB program to solve and calculate
the motion equation and linear matrix inequality in this
paper, the results show the following.

(1) In this paper, finite frequency H∞ control strategy is
adopted in the design of overlapping subcontrollers,
and a two-stage method is proposed to solve the
derived bilinear matrix inequality.

(2) In the passive fault-tolerant control system with 16
fault-tolerant fault matrices, the interstory dis-
placement of the four-story building structure is
effectively controlled. Among them, the centralized
control (Case1) scheme has the best control effect.
Compared with the control effect of Case1, the
control effect is getting worse and worse with the
increase of overlapping and dispersing times of
building structures. However, on the whole, both the
overlapping decentralized control strategy (Case2)

and the multioverlapping decentralized control
strategy (Case3) achieve better control effects.

(3) When the building structure is subjected to seismic
load excitation, the number of subsystems should be
divided according to the actual situation. Because the
number of subsystems and overlapping information
is different, the overlapping decentralized control
scheme increases the flexibility of the controller
setting.

(4) In this paper, the computational efficiency of vi-
bration control of building structures under seismic
excitation is studied, and an interstory actuator with
fault-tolerant control is designed. In the future, the
theory can be combined with structural health de-
tection technology to facilitate the real-time moni-
toring and control of structural vibration.
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[15] D. Stipanović, G. Inalhan, R. Teo, and C. J. Tomlin,
“Decentralized overlapping control of a formation of un-
manned aerial vehicles,” Automatica, vol. 40, no. 8,
pp. 1285–1296, 2004.
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[29] R. Güçlü, “Fuzzy logic control of vibrations of analytical
multi-degree-of-freedom structural systems,” Turkish Journal
of Engineering and Environmental Sciences, vol. 27, pp. 157–
167, 2003.

[30] H. Yazici, R. Guclu, and I. B. Kucukdemiral, “Seismic vi-
bration attenuation of a structural system having actuator
saturation with a delay-dependent H∞ controller,” Springer
Proceedings in Physics, Springer, Netherlands, pp. 413–417,
2011.
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