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An inerter system can amplify the deformation of its internal energy dissipation device, thereby improving the e�ciency of energy
dissipation and shock absorption. �is is the so-called damping enhancement mechanism, one of the key mechanisms of the
inerter system. Although the theoretical framework for damping enhancement of inerter systems has been established, the
implementation of this principle for the design of an inerter system requires solving a complicated constrained optimization
problem, which is not easy to be �gured out using traditional approaches. To obtain valid design results through a lucid and robust
method, it is proposed to optimize the damping parameters through a metaheuristic algorithm named harmony search algorithm
in order to maximize the damping enhancement degree of the inerter system with the satisfaction of structural performance. First,
the closed-form seismic response solutions of a single-degree-of-freedom (SDOF) structure with an inerter system are derived
based on the theory of random vibration. �en, the mathematical expression of the constrained optimization problem is
established. Due to the ine�ciency of the original harmony search algorithm to solve the constrained optimization problem, the
algorithm is modi�ed by introducing a new harmony generating method and an adaptive strategy for parameter adjustment. �e
modi�ed harmony search algorithm is compiled to solve the optimal design problem of the inerter system. �e algorithm is
veri�ed by designing a structure with an inerter system. It is found that the number of iterations and time consumption until
convergence required by the modi�ed harmony search algorithm can be reduced by about 20%∼90% compared with the original
algorithm, which con�rms the e�ectiveness of the modi�ed algorithm. �e results of dynamic analyses show that the structure
have achieved the preset performance demands under di�erent cases and the damping enhancement characteristic of the inerter
system is fully utilized.

1. Introduction

�e earthquake has become one of the main natural disasters
that threaten the safety of human life and property because
of its huge destructiveness. �e destruction of engineering
structures is the critical cause of earthquake disaster. Nu-
merous studies have shown that structure control tech-
nology [1, 2] involving adding damping devices to the
structure is an e�ective means to mitigate the structural
response under earthquakes or strong winds or any other
hazard that can cause vibration [3–5]. Inerter, a newly
developed two-terminal acceleration-related element for

structure control, can adjust the vibration characteristics of
the structure �exibly and e�ciently as its dynamic mass can
reach thousands of times the physical mass [6, 7]. �e re-
alization mechanism of the inerter includes ball screw [8],
rack-and-pinion [9], hydraulic [10], and electromagnetic
mechanisms [11, 12]. �e inerter system that is composed of
an inerter, a spring, and an energy dissipation element (EDE;
such as viscous, eddy current, magnetorheological dampers,
etc.) has become an emerging shock absorption device with
the excellent characteristic of damping enhancement. �ere
are three typical types of inerter systems [13, 14]: series-
layout inerter systems (SIS), series-parallel-layout type I
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inerter systems (SPIS-I, also known as TID), and series-
parallel-layout type II inerter systems (SPIS-II, also known
as TVMD), which can be used in different cases to meet
various demands for structure control.

)e research team headed by Inoue and Ikago et al. from
Tohoku University firstly proposed the inerter system
(termed tuned viscous mass damper, TVMD for short) at the
end of the last century. Ikago et al. [6] derived the formulae
for estimating parameters of TVMD in a single-degree-of-
freedom (SDOF) structure based on the fixed-point theory,
which has become the classical design method for the inerter
system. Subsequently, analogous to the tuned mass damper
(TMD), Lazar et al. [15] proposed a tuned inerter damper
(TID) and proved that the TIDs installed between adjacent
floors of multistorey buildings can preferably amplify the
damping effect compared with traditional TMDs. Afterward,
many scholars studied the further characteristics of the TID.
Among them, Gonzalez-Buelga et al. [16] studied the
nonlinear characteristics of TID and conducted real-time
hybrid simulation experiments. De Domenico et al. [17, 18]
attached TID to the base isolation layer for optimized design.
With the continuous deepening of research, Marian et al.
[19] proposed a tuned mass damping inertial (TMDI)
container, which is characterized by installing an inerter in
the TMD system. )ey found that the TMDI is better than
the classic TMD in reducing the displacement response.
Pietrosanti et al. [20] optimized the SDOF structure by
minimizing structural displacement and acceleration under
white noise excitation and maximizing the ratio of TMDI
energy consumption to total input energy. Park and Giarails
et al. [21] pointed out that TMDI can reduce the additional
mass and more effectively control the acceleration responses
compared with traditional TMD. De Domenico and Ric-
ciardi [22] applied TMDI to a base isolation structure to
effectively reduce the displacement of the isolation layer, the
bottom shear force, and the displacement angle of the upper
structure. Jin et al. [23] comparatively studied the two
connection forms of TMDI and analyzed the influence of the
mass ratio of the tuned mass damper and the inertance-mass
ratio on the performance of the system. Zhang et al. [24]
proposed the strategy of using a distributed tuned inerter
system to control the seismic response in multiple modes in
the high-rise chimney, which achieved the lightweight effect.
Faraj et al. [25] proposed a new method to adjust the inertial
mass of the inerter by using impact energy management to
absorb impact and store it in a special device. Javidialesaadi
and Wierschem [26] proposed a new type of nonlinear
energy absorber equipped with an inerter system for passive
vibration control of structures. Zhao et al. [27, 28] proposed
an equation from the perspective of energy, which produces
an analysis method for evaluating the input power of an
inerter-based structure and quantifying the energy dissi-
pation effect of the inerter system. Pan and Zhang et al.
[29–31] proposed principles and methods for the optimal
design of inerter system considering structural performance
demand and control cost simultaneously based on random
vibration theory. Subsequently, Zhang and Pan et al. [32–34]
discovered the principle of damping enhancement of the
inerter system based on the analytical solution of the random

vibration response, and the principle can provide a clear
physical explanation of the mechanism of the inerter system.

Damping enhancement, a mechanism of inerter system
with clear physical meanings, has been adopted as the op-
timal design principle for a structure with an inerter system.
However, traditional numerical optimization methods re-
quire complicated gradient expressions and appropriate
initial guesses, which are not easy to obtain. Gradient
metaheuristic algorithms provide an alternative way to
perform optimization in engineering practice [35–39]. Al-
though new algorithms emerge one after another nowadays,
such as grey wolf optimizer [40], chaos game optimization
[41], aquila optimizer [42], and atomic orbital search [43],
the classical algorithms are still vital because they are simple,
easy to implement, well-known, and widely accepted. )e
harmony search algorithm is just one of the widely used
classical algorithms in the field of structural control. Bekda
and Nigdeli [44] proposed using harmony search algorithm
to find the best parameters for tuned mass dampers. Yazdi
et al. [45] proposed an improved harmony search algorithm
for designing tuned mass dampers, and it is found that the
improved harmony search algorithm is more efficient than
the gene algorithm and the particle swarm optimization
algorithm. Nigdeli and Alhan [46] optimized the parameters
of the seismic isolation system through the harmony search
algorithm. Ocak et al. [47] optimized TLDs via metaheuristic
methods, including the harmony search algorithm. Ulusoy
et al. [48] used the harmony search algorithm to investigate
the PID parameters of a multistorey structure incorporating
active tendon control systems. )ese studies show the good
performance of the harmony search algorithm and provide a
theoretical basis for this paper.

To perform the optimization of the inerter system, one of
the novel structural control systems, more efficiently and
robustly, a modified harmony search algorithm with better
performance is proposed in this study. First, the closed-form
stochastic seismic response solutions of an SDOF structure
with an inerter system are derived based on the theory of
random vibration under white-noise excitation, and then the
mathematical description of the damping enhancement
maximization principle of the inerter system is provided. To
obtain the solutions more efficiently, a new harmony gen-
eration method is proposed as an improvement to the
original harmony search algorithm. Besides, an adaptive
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Figure 1: Mechanical model of an SDOF system with the inerter
system.
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adjustment strategy of the parameters in harmony search
algorithm is adopted to improve the solving efficiency
further. )en a computer program is developed to solve the
nonlinear constraint optimization problem of the inerter
system by the modified harmony search algorithm. Finally,
the design cases are executed to prove the effectiveness of the
proposed algorithm compared with the original algorithm
and an existing harmony search algorithm. Meanwhile, the
structural dynamic analysis of the design cases shows that
the designed parameters have met the preset performance
demands and the damping enhancement characteristics of
the inerter system are fully utilized. Moreover, what needs to
be pointed out is that the focus of the paper is the modi-
fication of the harmony search algorithm, so that only the
simple SDOF structure is concerned in this paper. In fact,
optimized parameters obtained from an SDOF structure can
also be used in a multi-degree-of-freedom structure through
certain mathematical transformations [31].)at is to say, the
research works on an SDOF structure with an inerter system
are meaningful.

2. Theoretical Basis of Structure with the
Inerter System

2.1. Equation of Motion for SDOF Structure with the Inerter
System. When an SDOF structure with an inerter system (as
shown in Figure 1) is subjected to a ground motion exci-
tation (the acceleration of the ground motion is ag ), the
equation of motion can be established as follows:

m€u + c _u + ku + FIS � −mag. (1)

)e corresponding extra equations with respect to FIS

are as follows:

FIS � kd u − uin( 

min €uin

+ cd _uin � kd u − uin( . (2)

)e definitions of the other symbols can be found in
Table 1.

)erefore, the integrated equation of motion for an
SDOF system with the inerter system is

Table 1: Notations.

Notation Definition
p(t) External excitation
ag Acceleration of ground motion
m Mass of the primary SDOF structure
c Damping coefficient of the primary SDOF structure
k Stiffness of the primary SDOF structure
u Displacement response of the primary SDOF structure
_u Velocity response of the primary SDOF structure
€u Acceleration response of the primary SDOF structure
FIS )e control force of the inerter element
kd Stiffness of the spring element in the inerter system
cd Damping coefficient of the EDE in the inerter system
min Inertance of the inerter
uin Displacement response of the inerter
_uin Velocity response of the inerter
€uin Acceleration response of the inerter
ω0 �

����
k/m

√
Original circular frequency of the primary SDOF structure

ζ � c/2mω Inherent damping ratio of the primary SDOF structure
μ � min/m Inertance-mass ratio of the inerter system
k � kd/k Stiffness ratio of the inerter system
ξ � cd/2mω Nominal damping ratio of the inerter system
U Laplace transformation of u

HU(iω) )e frequency-domain transfer function of u

Ag Laplace transformation of ag

S0 )e amplitude of the input power spectral density of white-noise excitation
σ2u Stochastic mean square deformation response of the structure
σ2u,d Stochastic mean square deformation response of the EDE in the inerter system
σ2u,0 Stochastic mean square displacement response of the original SDOF structure
c Stochastic response mitigation ratio
α Damping deformation enhancement factor (DDEF)
ud Deformation of the EDE in the inerter system
ct Target response mitigation ratio according to performance demands
ω Circular frequency of harmonic excitation
β � ω/ω0 Relative frequency of harmonic excitation
HM Harmony memory
HMCR Harmony memory considering rate
PAR Pitch adjusting rate
HMS Harmony memory size
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m €u + c _u + ku + kd u − uin(  � −magmin €uin + cd _uin � kd u − uin(  .

(3)

2.2. Closed-Form Expressions of Stochastic Response. Both
sides of equation (3) are divided by m to normalize as
follows:

€u + 2ζω0 _u + ω2
0u + κω2

0 u − uin(  � −agμ€uin + 2ξω0 _uin � κω2
0 u − uin(  .

(4)

)e definitions of key symbols in (4) are shown in Ta-
ble 1. It can be found that μ, ξ, an d κ are the three key
parameters for the inerter system.

Equation (4) can be transformed into the Laplace do-
main, and then the displacement frequency-domain transfer
function of the primary SDOF structure can be obtained as

HU(s) �
s
2μ + 2sξω0 + κω2

0

κ2ω4
0 − s

2μ + 2sξω0 + κω2
0  · s

2
+ 2sζω0 +(1 + κ)ω2

0 
. (5)

According to the random vibration theory [49], under
the white-noise excitation (power spectral density is S0), the
mean square value of the structure displacement response is
as follows:

σ2 � 
∞

−∞
|H(iω)|

2
S0dω. (6)

By substituting (5) into (6), the closed-form expression
of the stochastic mean square value of the deformation
response of the SDOF structure with inerter system can be
obtained [28]:

σ2u �
πS0

2ω3
0

·
A

B
, (7)

A � 4ζ2κμξ + ξ κ2 + κ(−2 + μ)μ + μ2 + 4ξ2 

+ ζ κ2μ2 + 4κξ2 + 4μξ2 ,
(8)

B � 4ζ3κμξ + κ2ξ2 + ζ2 κ2μ2 + 4μξ2 + 4κ(1 + μ)ξ2 

+ ζξ μ2 + κ2 1 + μ2  + 4ξ2 + 2κ −μ + μ2 + 2ξ2  .
(9)

)e closed-form expression of stochastic mean
square deformation response of the EDE in the inerter
system is

σ2u,d �
πS0

2ω3
0

·
κ ζ(1 + κ)μ2 + κξ + 4ζ2μξ + 4ζξ2 

F
, (10)

F � 4ζ3κμξ + κ2ξ2 + ζ2 κ2μ2 + 4μξ2 + 4κ(1 + μ)ξ2 

+ ζξ μ2 + κ2 1 + μ2  + 4ξ2 + 2κ −μ + μ2 + 2ξ2  .
(11)

For a classic SDOF structure, the stochastic mean square
deformation response can be expressed as follows:

σ2u,0 �
πS0

2ω3
0

·
1
ζ
. (12)

Based on the random vibration response expression, the
stochastic response mitigation ratio of the structures with
inerter system c can be defined as [29]

c �
response of structure with inerter system

response of original structure

�

����������

σ2u(ζ, μ, ξ, κ)

σ2u,0(ζ)




.

(13)

By substituting (7) and (12) into (13), the expression of
the stochastic response mitigation ratio of the structure
inerter system is as follows:

P � 4ζ2κμξ + ξ κ2 + κ(−2 + μ)μ + μ2 + 4ξ2 

+ζ κ2μ2 + 4κξ2 + 4μξ2 

Q � 4ζ3κμξ + κ2ξ2 + ζ2 κ2μ2 + 4μξ2 + 4κ(1 + μ)ξ2 

+ζξ μ2 + κ2 1 + μ2  + 4ξ2 + 2κ −μ + μ2 + 2ξ2  .

(14)

2.3.OptimizationProblemofStructurewith the InerterSystem.
When the inerter system resonates with the external exci-
tation, the internal freedom of the inerter system has a phase
difference with respect to the vibration of the primary

Deformation

Damping force

Deformation of EDE in inerter system

Deformation of inerter system

Energy dissipated by
traditional EDE

Energy dissipated by
EDE in inerter system

Figure 2: Damping enhancement of inerter system.

Table 2: Comparison of optimization and music performance.

Analogy diagram

Analogy element Optimization
process Realization process

Best state Global best Excellent harmony
Be evaluated
by. . .

Objective function Aesthetic evaluation

Evaluate with. . . Design variable value Pitch of the instrument
Process unit Every iteration Every practice

4 Advances in Civil Engineering



structure [32], so that the displacement of the internal
freedom of the inerter system will be greater than its de-
formation of the primary structure. )erefore, the inerter
system can absorb and dissipate more input energy com-
pared with a directly installed traditional EDE and can
reduce the dynamic response of the structure more effi-
ciently, as shown in Figure 2.

To measure the degree of damping enhancement, Zhang
et al. [32] defined a dimensionless parameter damping
deformation enhancement factor (DDEF) α as follows:

α �
deformation of EDE of the inerter system

deformation of the inerter system
. (15)

Considering (7) and (10), the specific expression of
DDEF for an inerter system in an SDOF structure is as
follows:

α �

��������������������������������������������������

κ ζ(1 + κ)μ2 + κξ + 4ζ2μξ + 4ζξ2 

4ζ2κμξ + ζ κ2μ2 + 4κξ2 + 4μξ2  + ξ κ2 + κ(μ − 2)μ + μ2 + 4ξ2 




.

(16)

To give full play to the damping enhancement charac-
teristics of the inerter system, the key parameters of the
inerter system should be optimized based on the principle of
maximizing the damping enhancement degree of the inerter
system with satisfaction of structural performance. )e
above optimization problem can be expressed as a con-
strained optimization problem:

max f(μ, ξ, κ) � α(μ, ξ, κ)

s.t. c(μ, ξ, κ) � ct

0≤ μ≤ 1

0≤ ξ ≤ 1

0≤ κ≤ 1.

(17)

In (17), f(μ, ξ, κ) � α(μ, ξ, κ) is the objective function; ct

is the target stochastic response mitigation ratio [29],

according to the damping enhancement equation of the
inerter system [32]:

α2 �
ζ
ξ

1
c
2 − 1 . (18)

When c is constant, the DDEF of the inerter system is
inversely proportional to its nominal damping ratio. In other
words, when α reaches the maximum value, ξ would reach
theminimum value.)erefore, the constrained optimization
problem can be rewritten as follows:

min f(μ, ξ, κ) � ξ

s.t. c(μ, ξ, κ) � ct

0≤ μ≤ 1

0≤ ξ ≤ 1

0≤ κ≤ 1.

(19)

For the established constrained optimization problem, if
the classical numerical calculation method is adopted, the
calculation process is complicated due to the cumbersome
mathematical expressions. In order to simplify the calcu-
lation, zero inherent damping is usually assumed for the
primary SDOF structure, which is not accurate enough. As a
metaheuristic algorithm, the harmony search algorithm has
the advantages of simple principle, simple operation, easy
implementation, and strong search diversity. By adopting
the algorithm, it is not necessary to ignore the existence of
the inherent damping ratio of the primary SDOF structure
and is easy to adjust when the topological form of the inerter
system or the structure is changed. )erefore, this paper
chooses to modify the harmony search algorithm to opti-
mize the key parameters of the structure with inerter system.

3. Harmony Search Algorithm and Modification

3.1. Original Algorithm. )e harmony search algorithm is a
novel intelligent optimization algorithm proposed by Z. W.
Geem et al. in 2001.)e harmony search algorithm simulates

Yes

Establish the
optimization

problem
Start

Generate new
harmony

Update the HM

Finish

No

Initialize HM

Output the best
harmony

�e new
harmony is

better?

�e stop
condition is

met?

Figure 3: Flowchart of harmony search algorithm.
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the procedure of music creation. )e musicians rely on their
memory to understand the pitch of the instruments in the
band. Repeated adjustments finally made the band play a
beautiful harmony state. )e analogy is shown in Table 2
[50].

)e procedure of the original harmony search algorithm
(Figure 3) can be summarized as follows.

Step 1. Establish the optimization problem (take solving the
minimization problem as an example).

minf(X
→

), (20)

where f(X
→

) is the objective function to be optimized; X
→

�

(x1, x2, · · · , xi · · · , xn) is the solution vector and
xi(i � 1, 2, · · · , n) is the decision variable that constitutes the
solution vector; n is the dimension of solution space.

Step 2. Initialize HM. Randomly generate HMS harmonies,
and put them into HM; the mathematical form of HM is as
follows:

HM �

X
→(1)

X
→(2)

⋮

X
→(HMS)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

x
(1)
1

x
(2)
1

⋮

x
(HMS)
1

x
(1)
2

x
(2)
2

⋮

x
(HMS)
2

· · ·

· · ·
· · ·
· · ·

x
(1)
n

x
(2)
n

⋮

x
(HMS)
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

Step 3. Generate a new harmony. When a random number
is greater than the retention probability HMCR, the new

harmony is randomly generated in the feasible region.
Otherwise, a new harmony is generated as follows:

x
→

new(i) � HM(R, i), (22)

where R is a random number between 1 and HMS.
For every tone in the new harmony, if a randomly

generated random number is less than PAR, the tone is
randomly generated near the original tone:

x
→

new � x
→

new + bw · 2(Rand
�����→

− 0.5), (23)
where bw is bandwidth for pitch adjusting; Rand

�����→
is a vector

that contains randomly generated values between 0 and 1.

Step 4. Update the HM. If the new harmony vector is better
than the worst vector in theHM, then the new vector replaces

Table 5: Design optimization parameters of the structure with the
inerter system based on the modified harmony search algorithm.

Optimized parameters
Case ζ ct μ ξ κ c α

1 0.02 0.70 0.0113 0.0004 0.0113 0.6981 7.25236
2 0.02 0.60 0.0282 0.0016 0.0289 0.5981 4.73649
3 0.02 0.50 0.0680 0.0061 0.0727 0.5005 3.13189
4 0.02 0.45 0.1058 0.0123 0.1176 0.4500 2.53163
5 0.05 0.70 0.0655 0.0053 0.0692 0.7000 3.1333
6 0.05 0.60 0.1437 0.0188 0.1648 0.5999 2.1750
7 0.05 0.50 0.2832 0.0581 0.3848 0.5000 1.60672
8 0.05 0.45 0.3800 0.0981 0.5949 0.4500 1.41687
Note.)e inherent damping ratio ζ and the target response mitigation ratio
ct are the performance indices.

Table 4: )e average solution of benchmark functions.

Function category Function
Average value of objective function

Original harmony search algorithm Improved harmony
search algorithm [45]

Modified harmony
search algorithm

Unimodal benchmark function f1 5.075197 0.000154 0.000185
f5 1.796811 0.000017 0.078591

Multimodal benchmark function f9 3.440918 0.011626 0.032503
Constrained minimization problem 1.393897 1.389428 1.393615

Table 3: )e three benchmark functions.

Function category Function name Function Dim Range fmin

Unimodal benchmark
function

Sphere function f1(x) � 
n
i�1 x2

i 30 [−100, 100] 0
Generalized Rosenbrock’s

function f5(x) � 
n−1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30 [−30, 30] 0

Multimodal benchmark
function Generalized Rastrigin’s function f9(x) � 

n
i�1[x2

i − 10 cos (2πxi) + 10] 30 [−5.12, 5.12] 0

Constrained minimization problem
min f(x) � (x1 − 2)

2
+ (x2 − 1)

2

s. t.
x1 − 2x2 + 1 � 0
−x

2
1/4 − x

2
2 + 1≥ 0

2 [0, 1]

1.3935
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the worst harmony vector; otherwise, no operation is
performed.

Step 5. Check whether the stop condition is reached; if the
stop condition is reached, the algorithm terminates; oth-
erwise, the algorithm repeats steps 3-4.

3.2. Modification of Harmony Search Algorithm. With the
widespread application of the harmony search algorithm,
scholars continue to develop some modifications over the
original harmony search algorithm. For example, Omran and
Mahdavi [51] improved the search mechanism of harmony and
proposed a global harmony search. Fesangharya et al. [52]
proposed a hybrid harmony search algorithm and so on.

0.010

0.100

1.000

κ

1.0000.100
μ

0.180
0.550
0.920
1.290
1.660
2.030
2.400
2.770
3.140

α

(a)

α

0.010

0.100

1.000

κ

1.0000.100
μ

0.120
0.423
0.725
1.027
1.330
1.632
1.935
2.238
2.540

(b)
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Figure 4: Contours of the damping deformation enhancement factor α of an SDOF structure with the inerter system (note: the black square
in the figure represents the parameters optimized by the modified harmony search algorithm). (a) Case 3. (b) Case 4. (c) Case 7. (d) Case 5.

Table 6: Average convergent iterations of modified and original harmony search algorithms.

Case

Original harmony search algorithm Modified harmony search algorithm Rate of increase (%)

Number of
iterations at the
convergence

Number of the
objective
function

evaluations

Consumed
Time (s)

Number of
iterations at the
convergence

Number of the
objective
function

evaluations

Consumed
time (s)

Number of
iterations at the
convergence

Consumed
time

1 >100000 301701 >7.21 29927 92432 3.04 >70.07 >57.86
2 >100000 304551 >7.28 13700 43251 1.36 >86.30 >81.83
3 >100000 306651 >7.32 7922 25917 0.81 >92.08 >88.91
4 52100 163601 3.81 19260 62331 1.90 63.03 50.00
5 >100000 304701 >7.64 9097 29392 0.86 >90.90 >88.74
6 27397 89342 2.01 16789 55868 1.64 38.72 18.47
7 39431 130344 2.86 20565 68246 1.99 47.85 30.39
8 42582 144897 3.12 22371 75014 2.28 47.46 26.80
Note. )e symbol “>” indicates that, during the 100 solutions of the case, there are 1 or more nonconvergent solutions. )e computer for calculation is a
common office computer with an Intel Core i7-6700 CPU and an 8GB RAM. Since the improved harmony search algorithm [45] did not converge in all
solutions, the results are not listed here.
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)e original harmony search algorithm is not efficient
for solving constrained optimization problems. Given this, a
simple modification is made to replace the classic behavior
of generating new harmony in this paper, that is, select two
harmonies x

→
i, x

→
j in the HM and generate a new harmony

as follows:

x
→

new � x
→

i + 2(Rand
�����→

− 0.5) x
→

j − x
→

i . (24)

In (24), Rand
�����→

is a random vector, and each value of it is
between 0 and 1. )e selection of the harmonies x

→
i, x

→
j is

based on the individual fitness value fi and the cumulative
probability pi, which are calculated as follows:

pi � 
i

k�1
fk/ 

n

k�1
fk. (25)

If a generated random number is greater than pi−1 and
less than pi, the i-th harmony is selected.

PAR and bw play an important role in searching for
high-quality harmony. To carry out an effective search in the
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Figure 5:)e variation trends of key indices during the optimization process for case 1. (a))e nominal damping ratio ξ. (b))e constraint
function |c(μ, ξ, κ) − ct|.
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Figure 6:)e variation trends of key indices during the optimization process for case 2. (a))e nominal damping ratio ξ. (b))e constraint
function |c(μ, ξ, κ) − ct|.
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whole solution space and improve the efficiency of the al-
gorithm, PAR and bw are set to change adaptively as follows
[53]:

PAR � PARmin +
PARmax − PARmin

Niter

· t, (26)

bw � bwmax · e

t

Niter

log
bwmin

bwmax
. (27)

)e damping enhancement optimization problem of the
inerter system is a constrained optimization problem, and the
modified harmony search algorithm is essentially an uncon-
strained searchmethod.)erefore, the penalty functionmethod
is adopted to convert the optimization problem of the inerter
system into an unconstrained optimization problem, so that the
modified harmony search algorithm can be applied. After in-
troducing the penalty function, the expression of the optimi-
zation problem of the inerter system is as follows:
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Figure 7:)e variation trends of key indices during the optimization process for case 3. (a))e nominal damping ratio ξ. (b))e constraint
function |c(μ, ξ, κ) − ct|.
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Figure 8:)e variation trends of key indices during the optimization process for case 4. (a))e nominal damping ratio ξ. (b))e constraint
function |c(μ, ξ, κ) − ct|.
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minimize
μ,ξ,κ∈[0,1]

f(μ, ξ, κ) � ξ + h · c(μ, ξ, κ) − ct


, (28)

where h is the penalty factor that can eliminate indi-
viduals who do not meet the constraint. However, a
proper penalty factor is not easy to be found to obtain a

satisfactory solution. Given this, an adaptive penalty
factor is adopted in this paper, and its expression is

h � h0 · δts . (29)
In (29), δ and h0 are constants, and their value ranges are

suggested to be δ ∈ (1, 1.1) and h0 ∈ (0.01, 0.1); ts is the
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Figure 9:)e variation trends of key indices during the optimization process for case 5. (a))e nominal damping ratio ξ. (b))e constraint
function |c(μ, ξ, κ) − ct|.
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Figure 10: )e variation trends of key indices during the optimization process for case 6. (a) )e nominal damping ratio ξ. (b) )e
constraint function |c(μ, ξ, κ) − ct|.
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number of successful iterations, that is, the serial number of
the iterative step when the new harmony is better than all the
harmonies in the HM.

Based on the above descriptions, the Python pro-
gramming language is used to develop an object-oriented
computer program termed Modified Harmony Search
Algorithm for Optimization of Inerter System

(MHSAOIS) to solve the parameter optimization prob-
lem of the inerter system.

3.3. Benchmark Test of the Modified Algorithm.
Benchmark functions in [50, 54] are selected to make a
preliminary test of the performance of the modified
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Figure 11: )e variation trends of key indices during the optimization process for case 7. (a) )e nominal damping ratio ξ. (b) )e
constraint function |c(μ, ξ, κ) − ct|.
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Figure 12: )e variation trends of key indices during the optimization process for case 8. (a) )e nominal damping ratio ξ. (b) )e
constraint function |c(μ, ξ, κ) − ct|.
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harmony search algorithm. )e benchmark functions are
listed in Table 3, where Dim denotes the dimension of the
function and fmin denotes the analytical minimum value of
the function.

Each benchmark problem is solved 100 times independently
by the original, improved [45], and modified harmony search

algorithms, and the average values of the benchmark functions
are listed in Table 4. It can be found that the values of the
benchmark functions solved by the modified and improved
algorithms are obviously closer to the analytical solutions than
that of the original algorithm. )at is, the efficiency of the
modified harmony search algorithm is testified.
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Figure 13:)e convergence efficiency of original andmodified harmony search algorithms. (a) Relative converge tolerance 20%, (b) relative
converge tolerance 10%, (c) relative converge tolerance 5%, and (d) relative converge tolerance 2%.

Table 7: Mean and standard deviation of the count of iterations at convergence for different algorithms.

Relative converge tolerance (%)
Modified harmony search algorithm Original harmony search algorithm
Mean Standard deviation Mean Standard deviation

20 3748.88 1362.16 >48727.18 >31498.65
10 4924.59 3695.10 >72731.49 >32507.04
5 5494.83 3323.34 >82034.17 >26944.20
2 6151.28 4454.48 >93258.13 >18715.29
Note. )e symbol “>” indicates that, during the 100 solutions, there are 1 or more nonconvergent solutions.
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4. Case Study

4.1. Optimal Design Cases. An SDOF structure is selected
and its key parameters are as follows: mass m � 1900 ton,
stiffness k � 280000 kN/m, natural frequency f � 1.93Hz,
and period of free vibration T � 1/f � 0.52 s. It is planned
to equip an inerter system to control its seismic response.
Considering the difference in inherent damping ratio ζ
and target response mitigation ratio ct, 8 design cases are
set in Table 5, and the MHSAOIS program is used to solve
the optimal design of the key parameters of the inerter
system. )e parameters of the algorithm are set as HMS �

50, HMCR � 0.9, PARmin � 0.3, PARmax � 0.9, bwmin �

0.00001, an d bwmax � 0.1.
After optimization, the designed parameters (μ, ξ, an d κ)

and performance indices (c and α) are also listed in Table 5.
From Table 5, the actual stochastic response mitigation ratio
c based on the modified harmony search algorithm is
consistent with the target response mitigation ratio ct. )e
correctness and rationality of the optimized parameters will
be verified later.

4.2. Verification of Optimization Objective. To verify the
correctness of the obtained parameters, a large number of
parameter analyses are carried out for obtaining the values of
DDEFs of the inerter system as the parameters change. )e
results are shown in Figure 4.

In Figure 4, the horizontal and vertical coordinates are the
inertance-mass ratio μ and the stiffness ratio κ, respectively,
and the height is the DDEF calculated through (16). It can be
found that each contour line in the figure is closed and each
contour has a single peak value, which is the maximum value
of DDEF. )e key parameters obtained from the modified
harmony search algorithm are marked in the contours, and
they are found to be consistent with the peaks of the contours,
which verifies that the designed parameters realize the
maximization of damping enhancement.

4.3. Efficiency Verification of Modified Harmony Search
Algorithm. To investigate the performance and efficiency
of the modified harmony search algorithm, the influences
of the modified harmony generating strategy and the
adaptive penalty weight strategy on the solution efficiency
are investigated. Compared with the original harmony

search algorithm (HCR � 0.9, PAR � 0.3, an d bw � 0.01)
and the improved harmony search algorithm [45], the
solution efficiency of the modified harmony generating
strategy is studied. All design cases in Table 5 are solved
100 times by the original algorithm, the improved al-
gorithm [45], and the modified algorithm, respectively.
)e maximum number of iterations of each algorithm is
set as 100,000. Since the correctness of the optimized
parameters in Table 5 is proved by Figure 4, the values of ξ
are regarded as the criteria to judge if the solution is
converged. )at is, if the solved value of ξ is closed
(relative error is less than 10-2) to the corresponding
value in Table 5, the solution is regarded as converged.
)e average converged number of iterations and iteration
time required for each case are listed in Table 6 (since the
improved harmony search algorithm [45] did not con-
verge in all solutions, the results are not listed). It can be
seen from Table 6 that the number of iterations and
consumed time required by the modified harmony search
algorithm are reduced by more than 50% on average

Table 8: Approximate number of iterations for convergency under different penalty weight strategies.

Case
Fixed penalty weight strategy Adaptive penalty weight strategy

h � 0.01 h � 0.1 h � 1 h � 10 h � h0 · δts h � h0
�
t100

√
h � h0 + t/1000

1 21000 52000 N N 30000 100000 N
2 N 25000 55000 N 14000 100000 N
3 N 12000 34000 N 8000 80000 N
4 N N 32500 N 19000 45000 N
5 N N N 13000 35000 46000 8500
6 N N 9000 18000 31000 9000 9000
7 N N 13500 44000 17000 23000 N
8 N 11000 47000 N 9000 55000 N
Note. N in the table means that the solution does not converge after 100000 iterations.
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Figure 14: Frequency-domain displacement transfer function
curves of SDOF structure with the inerter system.
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compared with the original harmony search algorithm.
Among the design cases, the most obvious solution ef-
ficiency enhancement occurs in case 3, and the corre-
sponding number of iterations for convergence and
consumed time are reduced by about 90%. )is means
that the modified algorithm has a stronger solving ability.
)e variation trends of the nominal damping ratio ξ of the
inerter system and the value of the constraint function of
each case as the number of iteration increases are shown
in Figures 5–12. It can be seen from Figures 5–12 that all
the designed cases are converged under the modified
harmony search algorithm, but there are nonconvergent
cases under the original harmony search algorithm, such
as case 1, case 2, case 3, and case 5. As for the improved
harmony search algorithm [45], although its performance in
the benchmark test (Section 3.3) is the best for unconstrained
problems, it failed to converge in all cases here. )e variation
trends of these nonconvergent cases show that the original
harmony search algorithm and the improved harmony search
algorithm [45] are easy to fall into a local optimal solution and
no longer change during the iteration process. In addition,
although the values of the objective functions for case 4, case
6, case 7, and case 8 for both the original algorithm and the
improved algorithm [45] are less than that of the modified
algorithm, it can be seen that the values of the constraint
functions are about 3 orders of magnitude smaller, which
means that the constraint conditions are more satisfied.)ese

results prove the advantages of the modified harmony search
algorithm over the original one.

Design case 3 is selected to conduct detailed statistical
analysis. )e problem is solved 100 times independently by the
original and modified harmony search algorithms.)e value of
nominal damping ratio (i.e., the value of the objective function)
for design case 3 in Table 5 is used as the criterion for judging
convergence, and the tolerances of the relative errors are set as
20%, 10%, 5%, and 2%, respectively, to demonstrate the con-
vergency of the original and modified algorithms. )e results
are shown in Figure 13 and Table 7. It can be found that the
average number of iterations for convergence of the modified
algorithm is significantly smaller than that of the original al-
gorithms. As the tolerance decreases, the convergence proba-
bility of the original algorithm becomes lower and lower, while
the modified algorithm can easily converge after fewer itera-
tions. )is proves that the modified harmony search algorithm
has a more powerful ability for solving optimization problems.

)e next step is to verify the specific advantages of adopting
an adaptive penalty weight strategy (equation (28)). )e fixed
penalty weight strategy and different forms of adaptive penalty
weight functions are tested, and the results are shown in Table 8.
It can be seen that the fixed penalty weight strategy requires
more iterations than the adaptive penalty weight strategy.
Furthermore, there are nonconvergent cases under the fixed
penalty weight strategy. Meanwhile, it can be seen that the
adopted expression of adaptive penalty weight h (h � h0 · δts ,
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Figure 15: Displacement response curves of structures with inerter systems under different seismic excitations. (a) White noise excitation.
(b) Artificial seismic excitation. (c) Natural seismic excitation.
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i.e., (28)) can give the best solution effect compared with other
forms of penalty weight functions because h � h0 · δts can
guarantee the convergency but the other penalty weight
functions cannot. )erefore, the currently adopted adaptive
penalty weight strategy is more powerful in solving the opti-
mization problems of inerter systems.

5. Structural Responses in the Frequency
Domain and Time Domain

Substituting the parameters in Table 5 into the analytical
expression of the displacement response frequency response
function ((5)), the frequency-domain displacement transfer
function curves are shown in Figure 14. It can be seen that
the parameters obtained can effectively control the seismic
response of the SDOF structure.

To visually demonstrate the damping enhancement effect,
the design parameters of case 2 are chosen as example, and the
structure with inerter system and the original structure are
analyzed under dynamic excitation. Seismic excitations with
different spectral characteristics (white noise excitation, artificial
seismic excitation, and natural seismic excitation) are consid-
ered, and the displacement responses are shown in Figure 15. It
can be found that the displacement response of the structure
with the inerter system is smaller than that of the original
structure under different seismic excitations, and the root-
mean-square response mitigation ratio is similar to the target
one (ct � 0.6), which proves the effectiveness of the proposed
method and the rationality of design parameters.

In addition, a comparison between the inerter system and
the traditional viscous damper is also conducted. An inerter
system and a viscous damper (they have the same viscous
damping coefficient) are installed in the structure simulta-
neously.)e responses of dampers are shown in Figure 16.)e
comparison of the hysteresis curves shows that the deformation

and damping force of the damper in the inerter system is greater
than that of the traditional viscous damper. As for the enclosed
area of the hysteresis curve, that is, the dissipated energy, the
damper in the inerter system is also significantly larger than the
traditional viscous damper.

6. Conclusion

In this paper, a modified harmony search algorithm is
proposed to design the inerter system for the maximization
of the damping enhancement effect. It is verified that the
algorithm is effective and easy to implement, and the fol-
lowing conclusions are drawn:

(1) )e key parameters of the inerter system can be
effectively obtained according to the target demands
by the modified harmony search algorithm. No as-
sumptions or engineering experiences are needed
during the optimal design.

(2) )e design problem of the maximum damping en-
hancement of the inerter system can be described as a
mathematical optimization problem and the con-
straint condition can be replaced by a penalty
function.

(3) With respect to the original harmony search algo-
rithm, the convergence performance of the modified
harmony search algorithm is significantly improved.
)e number of iterations at the convergence of the
modified harmony algorithm can be reduced by
38%∼92%, and the consumed time can be reduced by
18% ∼ 89%.

(4) )is paper only discusses the single-degree-of-free-
dom structure with the inerter system. )e opti-
mization of the multi-degree-of-freedom structure
with inerter systems by the modified harmony search
algorithm will be further investigated in detail in the
future.
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