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Nowadays, TLS (terrestrial laser scanning) has been a relatively mature measuring equipment categorized to indoor measuring
robots, but it is not widely adopted in indoor construction measurement at present. What accounts for its limited application are
as follows: (1) the high cost of high-accuracy laser LIDAR and (2) existing TLS equipment does not possess self-adaptation
scanning planning and takes no account of e�ciency of point cloud processing and consumption of computing power.�is paper
proposes a novel TLS equipment and a high-e�ciency point cloud processing method customized for the novel equipment, with
purpose to achieve self-adaption measurement on the basis of indoor characteristics of construction during civil engineering at
low cost. �is paper mainly presents two parts of innovations: (1) for planning of scanning, the novel TLS features planning
sampling density of scanning according to room size and converting scanning data from poses to point clouds, and (2) for
processing of point clouds, this paper proposes two novel segmentation algorithms, namely, “on-boundary segmentation al-
gorithm” and “on-angular-distance segmentation algorithm,” based on indoor spatial structure features and characteristics of
TLS. Besides, this paper presents modi�ed RANSAC-TLS (random sample consensus-total least squares) plane �tting algorithm,
on basis of TLS point cloud distribution characteristics and spatial transformation. �rough actual measurement test, it is
concluded that the “on-boundary segmentation algorithm” and “on-angular-distance segmentation algorithm” are suitable for
point cloud segmentation in di�erent types of scenes.�emodi�ed RANSAC-TLS have made a great improvement on accuracy of
�tting versus LS (least squares), TLS (total least squares), and RANSAC-LS. Finally, this paper conducts an experiment by
executing an actual measurement and then preliminarily testi�es the potential and future application of the proposed novel TLS
(terrestrial laser scanning) equipment, withmeasurement parameters from it being changed in the experiment, by comparing with
one existing TLS equipment—FARO.�e test thus proves the relatively high feasibility and potential of the novel TLS presented in
the paper (terrestrial laser scanning) in actual indoor measurement.

1. Introduction

1.1. Background and Meaning. As robot technology and
computer technology are advancing speedily, recent years

have seen a certain degree of development in construction
robot industry [1, 2]. At construction sites, construction
robot replacing manual labour to �nish complex work has
already become a trending [3–5] such as construction
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fabrication robot [6], climbing robot [7], floor-tiling robot
[8], collaborative robots [9], and measurement robot [10].
For example, floor-tiling robot [8] completes the automatic
floor tiling with high-accuracy robot through control
strategy based on visual measurement feedback and finite-
state machine. Collaborative robot [9] controlled continu-
ously by a BCI-based system robot to capture workers’
brainwaves acquired from a wearable electroencephalogram
(EEG) device and interpret them into robotic commands
with 90% accuracy. As the feasibility of setting construction
robot into practical use in construction process has been
enhancing by artificial intelligence and robot technology, the
adaptation of computer algorithm and robotics in civil
engineering is drawing wider and wider attention among
relative science researchers [10–12].

At present, indoor measurement robot is typical of
construction robots, and mainstreaming indoor measure-
ment robot is an automatic machine featuring TLS [13, 14].
Differing from traditional manual measurement possesses
low-efficiency, high human cost, and high health risk since it
needs workers to be exposed to construction environment
and to finish work with many tools like guiding rule and
feeler gauge [15, 16]. (e machine with TLS, which quickly
collects 3D information of a room with LIDAR scanning,
may be more efficient and be able to attain more compre-
hensive information of a 3D room.

However, existing equipment with TLS might lead to a
waste of work, time, and finance because it is high cost and
inevitably produces a tremendous size of point cloud data
that usually consumes a large amount of time to process,
while the house types and indoor structures of most con-
structions are actually not complicated and diversified,
which means that, in most cases, indoor measurement may
not need the possibly excessive collection and processing of
information of an indoor room from robot with traditional
TLS. (erefore, this paper proposes a self-adaptation TLS
system that targets indoor measurement of quantity by
combining relevant computer technology and robot
technology.

1.2. Related Work

1.2.1. Terrestrial Laser Scanning for Measurement.
Terrestrial laser scanning (TLS) is an efficient and reliable
method for collecting point clouds, which have a range of
applications in the construction. Because of efficient laser
scanning data needed in construction, a prior planning
optimization process, which can be called planning for
scanning (P4S), was used in actual construction project. (e
key points of the P4S include the type of inputs they assume
(model and possible scanning locations), the constraints in
measurement, and the algorithm they utilize to solve the
optimization problem [17–19]. In terms of algorithm, many
researchers have proposed many algorithms to apply in
measurement. Nisha Puri [20] presented a compliance-
checking algorithm for detecting elements where dimen-
sions exceed specified tolerance, using the synergy of ter-
restrial laser scanning (TLS) and continuous wavelet

transform (CWT). (e results enabled the localization of
surface undulations during different characteristic periods.
(is case displays that the integration of TLS and appro-
priate algorithm may ensure measurement accuracy. As for
indoor measurement and quality assessment, Bosché and
Guenet [21] presented an approach that demonstrates the
value of this integration for surface flatness control, which
employs the Scan-vs-BIM principle of Bosché and e et al.
[22] to segment TLS point clouds acquired on-site, by
matching each point to the corresponding object in the BIM
model. Although it achieves complete and even data analysis
during the calculation of flatness of ground, it seems to be of
low practicality in real usage because of the requirement for
additional processing. Besides, Guo et al. [23] proposed that
renting TLS or fractional ownership TLS is more economic
for geometric QA, but TLS may be still a high-cost mea-
surement technique.

1.2.2. Advances in Indoor Point Cloud Processing. TLS is
mainly used as a data collector, and the data processor is
point cloud processing [24–26]. (e objective of point cloud
processing is to convert 3D information into index for actual
measurement, and specific processing technologies include
point cloud filtering, point cloud segmentation, and point
cloud fitting, among which point cloud segmentation is one
research hotspot. In this area, Yin et al. [27] proposed a novel
deep learning-based approach, ResPointNet++, by inte-
grating deep residual learning with conventional Point-
Net++ network. ResPointNet++ shows a high
generalizability and remarkable performance, which out-
performs conventional PointNet++ by 42% and 23%.
Nevertheless, this method for segmentation still requires a
relatively large size of dataset for labelling and training. In
addition, Park et al. [28] presented a high-performance
algorithm to detect discrepancies between an as-planned
BIM and the as-is point cloud automatically. (e results of
experiments showed a significant computation performance
improvement: 25.3 and 12.1 times faster than the baseline
method for a complex plant facility and a simple indoor
building. Although the algorithm shows a relatively large
decline in time complexity, a large space complexity
sourcing from its fair-sized data determines that it is still
difficult for users to remove its dependence on computing
power of GPU. Pertinent literature reveals that [29, 30] the
key point is to find the proper algorithm of point cloud
filtering and point cloud fitting.

1.3. Innovation of ,is Article. (e goal of this paper is to
design a low-cost (free from GPU computing power) and
adaptive TLS scanning system based on robotics and
computer technology. (is paper proposes the following
innovations:

(1) We propose a 3D laser scanning structure with two
degrees of freedom to realize the self-adaptive
scanning with a planning model proposed in this
paper, and we realize the conversion of poses from all
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laser scanning points into point clouds by the
“modified D-H model” in robotics.

(2) We propose an indoor point cloud process based on
scanning data from this TLS, including conditional
filtering, two novel point cloud segmentation algo-
rithms, and RANSAC-TLS plane-fitting algorithm
based on spatial transformation. In point cloud
segmentation processing, this paper not only uses the
point cloud but also uses the pose information of the
3D scanning points.

2. Low-Cost and Adaptive IndoorMeasurement
TLS System

(is paper proposes a low-cost and self-adaptive TLS system
blending robot technology and computer software tech-
nology (see Figure 1). It contains 5 links that integrated well:
user level, system layer, drive layer, execution layer, and data
layer. (e user layer, where user operates the whole machine
and reads measuring results, manages human-machine in-
teraction; the system layer performs the master control of
motion control, data reading, and transfer of the TLS system;
the drive layer is where the system implements servo control;
the execution layer regulates motion of servo motor and
reads laser ranging data and pose of laser module during a
specific task; in data layer, measurement data are transferred
from the TLS system to data cloud through a 5G module, by
which it is also downloaded to a computer to implement
following data processing; and finally, the processed data,
transferred to the system layer through the 5Gmodule, turns
to be displayed on the user layer at the end.

3. Adaptive Indoor Measurement
Scanning Strategy

3.1. Indoor Quantity Measurement Process Analysis. (e
main objective of an indoor measurement project is to
obtain and process the indoor construction quantity in-
formation. In traditional manual measurement method, the
flatness and verticality degree of indoor are read with walls,
which are obtained by traditional manual measurement
through the gap between the guiding rule and the feeler
gauge. (rough the analysis of the principle of the measured
quantity engineering, the measured quantity engineering
can be transformed into a process of indoor digital infor-
mation processing.

(1) Obtaining the comprehensive three-dimensional
information of a room with the indoor scanning
equipment.

(2) Classifying the data.
(3) Processing the classified data and categorizing them

into indexes of quantities.

3.2. Adaptive Measurement Scanning Strategy

3.2.1. Scanning Motion Mechanism of Novel TLS in ,is
Paper. (e whole laser scanning process is generated by the

motion of a two-degree-of-freedom motor platform. In this
paper, a motion mode of “equal angle” is proposed: in a fixed
range of motion, we rotate according to the equal angle
interval and stay at this position for distance measurement
with laser module. (e novel TLS will automatically scan the
entire room by repeating the motion mode of “equal-angle”
several times.(e scanning motion of the novel TLS is based
on a two-degree-of-freedom motor platform, with a “hor-
izontal-motion motor” and a “vertical-motion motor.” In
order to complete the indoor laser scanning more efficiently,
the laser module has multilasers in the equal angle distri-
bution (see Figure 2) (more details about the novel TLS
equipment can be watched in a video by clicking on the link
https://youtu.be/h7SavWCaPvc).

(e entire scanning process comprises many such
motor-motion cycles (see Figure 3). (e “vertical pitching-
motion motor” finishes one “equal-angle” (not greater than
360 degree) rotation, with the “horizontal spinning-motion
motor” keeping static and repeating rotations in the same
pattern many times, and the laser scanning will have a
whole-room coverage.

In order to achieve self-adaptation planning for scan-
ning, namely, self-P4S (planning for scanning), with a
certain scanning density preset by operators in specific
measuring projects for different-size rooms, the novel TLS
fulfils to finish scanning in shortest time.

3.2.2. Maximum Distance Interval Scanning in Planning
Model. (e distribution of point cloud under multiprocess
scanning is irregularity. In order to plan the scanning density
of indoor-scanning point cloud, we propose the maximum
distance interval of point cloud in the planning model “s0,”
which is the distance between scanning paths of the largest
plane in the hexahedral room (see Figure 4). Referring to the
ACI standard [31], we define the maximum standard
smax � 330mm, and the relationship between s0 and smax is as
follows:

s0 ≤ smax. (1)

3.2.3. Minimum Time Cost Programming Model. In actual
measurement, not only the density of point cloud but also
the efficiency of measurement should be considered.
(erefore, this paper proposes the “minimum time cost
programming model.”

(e model takes the minimum time consumption as the
objective and the minimum distance interval of scanning as
the constraint condition. (e specific formula is as follows:

TA � nA × Ts + Ty � min . (2)

In the objective function, nA represents the total number
of times the laser module has been executed by the device
during the movement. TA represents the overall elapsed time
for the device to perform an indoor 3D scanning. Ts rep-
resents the time spent by the laser module in a single
scanning. Ty represents the total elapsed time of the device
during the movement. (e constraints of the objective
function are expressed as follows:
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n1 �
θ1A
Δθ1

,

n2 �
θ2A
Δθ2

,

nA � n1 × n2,

Ty � nA − 1( ) × Td,

sm ≤ s0,

Δθ2 � kΔθ1,

Δθ1 � ROUND θc( ).




(3)

θ1A represents the total range of motor rotation angles in
a single pass of the horizontal motor. θ2A represents the total
range of motor rotation angles in a single pass of the pitch
motor. Δθ1 and Δθ2 represent the angular interval values of

the “equal angle” motion of the horizontal motor and the
elevation motor, respectively, in a single process. θc (shown
in Figure 5) is calculated as follows:

θc � arccos
L2c + L

2
b + 2s0Lb

4
��������������
Lb/2( )2 + Lc/2( )2

√ ������������������
Lb/2 − s0( )2 + Lc/2( )2

√  + arccos
D0��������������

Lb/2( )2 + Lc/2( )2
√ 

− arccos
D0������������������

Lb/2 − s0( )2 + Lc/2( )2
√ .

(4)

In the above formula, La, Lb, and Lc, respectively, rep-
resent interior net story height, length of longer wall, and
length of shorter wall.

3.3. Converting from Scanning Data to Point Cloud Data.
Some parameters may be obtained from the novel absolute
angles of the “horizontal spinning-motion motor” and the
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Figure 1: �e frame of the self-adaptive TLS system.
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“vertical pitching-motion motor.” (e poses of laser scan-
ning points (the TLS machine as the origin in the coordinate
system) can be attained on these parameters. In order to
convert poses of laser scanning points into point clouds, this
paper makes use of “modified DH modelling” in robotics
and realizes it in this way.

(e following is an illustration of the converting process
of the data from one single laser scanning point. Based on
the novel TLS equipment and “modified DH modelling,”
this paper builds four coordinate systems marked as
0{ }, 1{ }, 2{ }, and 3{ }. (e origin of 0{ } system is the inter-
section point of medial axis of the horizontal motor and the
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Figure 3: (e flow chart of the indoor scanning process.
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medial axis of the vertical motor; the origin of 1{ }, with the
horizontal spinning-motion motor as its origin, represents a
coordinate system overlapped with 0{ }; 2{ } is the coordinate
system with the vertical pitching-motion motor as its origin;
and 3{ } is established with the single laser scanning point as
its origin. In modified D-Hmethod, the coordinate frame i is
attached to the near (proximal) end of link i as shown in
Figure 6. (e link and joint parameters are defined as D-H
parameters and are summarized in Table 1.

In practice, because measuring with single-laser laser
module is not efficient enough, this paper presents a laser
module with four lasers. (e four lasers array around the

centre of the laser module, which is coaxial with the vertical
pitching-motion motor, with an angular distance of 90
degree between every two of them. Such laser modulemay be
referred as multi-laser-ranging module.

As for all lasers in the laser module, the link and joint
parameters are defined as D-H parameters and are sum-
marize in Table 1. In the table, θi represents the angular
separation of laser i from the initial laser. Li represents the
measured value of laser i.

(e link transformation from frame 0{ } to frame 3{ } can
be written as follows:

3
0Ti �

cos θ1 cos θ2 + θi( 􏼁 − cos θ1 sin θ2 + θi( 􏼁 sin θ1 D0 sin θ1 + D1 cos θ1 cos θ2 + θi( 􏼁

sin θ1 cos θ2 − sin θ1 sin θ2 + θi( 􏼁 − cos θ1 D1 cos θ1 sin θ1 − D0 cos θ1
sin θ2 + θi( 􏼁 cos θ2 + θi( 􏼁 0 D1 sin θ2 + θi( 􏼁

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

(e three-dimensional coordinates of the laser point are
as follows:

pxi � D0 sin θ1 + D1 cos θ1 cos θ2 + θi( 􏼁,

pyi � D1 cos θ1 sin θ1 − D0 cos θ1,

pzi � D1 sin θ2 + θi( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩
(6)

4. Indoor Point Cloud Process

4.1. Overview of Point Cloud Processing Procedures.
According to text above, 3D point clouds and poses of 3D point
clouds are presented by converting laser scanning data through

modified DHmodelling. Next, the novel TLS will enter phase of
point cloud processing. As shown in the flow chart (see Fig-
ure 7), the data obtained from previous scanning activity will go
through point cloud processing, including point cloud filtering,
point cloud segmentation, and point cloud fitting. Experiencing
the three procedures of processing, the processed point cloud
data can be directly used to calculate quantities of the measured
construction since every interior surface of the construction can
be represented by a mathematical equation.

4.2. Indoor Conditional Point Cloud Filtering. Because re-
fraction occurs when laser beam hits on glasses and it will
cause the laser ranging value to be greater than the actual
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Figure 5: (e scanning model analysis diagram.
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value, point clouds extracted around door and window may
usually present abnormality in practical measuring. Ab-
normal point clouds need to be eliminated during point
cloud processing.

(is paper utilizes conditional point cloud filter and
distributing characteristics of indoor point clouds to identify
abnormal point clouds. Indoor point clouds roughly dis-
tribute in form similar to hexahedron, and the centre of TLS
equipment is basically located at the centre of measuring
room. (is paper defines the distance between the centre of
the TLS equipment and the farthest point relative to the
centre of the TLS equipment as “maximum polar radius”; in
this situation, distance from every point cloud to the centre
of the equipment is not supposed to surpass the “maximum
polar radius”; and any point cloud not in conformity with
the criterion above should be identified as an abnormal point
cloud.

It is known that La, Lb, and Lc, respectively, represent
interior net story height, length of longer wall, and length of
shorter wall; the “maximum polar radius” of room is rt; the
distance from any point cloud (xi, yi, zi) to the centre of the
novel TLS equipment is marked as ri; rt and ri can be
expressed as follows:

rt �

����������������������

β1ra( 􏼁
2

+ β2rb( 􏼁
2

+ β3rc( 􏼁
2
,

􏽱

ri �

����������������

xi( 􏼁
2

+ yi( 􏼁
2

+ zi( 􏼁
2

􏽱

.

⎧⎪⎪⎨

⎪⎪⎩
(7)

In the formula above, β1, β2, and β3 are correction factors
within the range (1, 1.5). (e correction factor is of sig-
nificance since only under ideal condition, the centre of the
novel TLS equipment may be located just at the centre of a
room.

4.3. Segmentation of Indoor Point Clouds Based on Structural
Characteristic. Segmentation of point clouds is a core
procedure of data processing, and this paper proposes two
algorithms for segmenting point clouds based on structural
characteristics. Namely, this paper makes full use of point
clouds and poses of them and spatial geometric features of
room to create two novel algorithms.

4.3.1. On-Boundary Segmentation Algorithm for Indoor Point
Cloud. In this paper, point clouds extracted from the novel
self-adaptive TLS equipment present following features: 1. in
each “process one,” the angle distance between the original
point cloud and the final point cloud from the same single
laser will present 90 degree. 2. Similarly, in one “process
two,” the angle separation between the original point cloud
and the final point cloud from a single laser is sure to be 180
degree. 3. Point clouds distribute in a form similar to a
hexahedron. 4. Original state of the novel TLS equipment is
with four lasers in the laser module separately vertical to four
different interior surfaces, and the centre of the equipment is
put close to the centre of the room.

(is paper names this novel segmentation algorithm as
“on-boundary segmentation for indoor point cloud,” and
the whole process is consisted of two rounds of segmen-
tation. (e first round is segmenting out the ceiling and
floor, and the second round is segmenting out four interior
walls of measured room (see Figure 8).
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Table 1: Parameters of modified D-H method for all lasers.
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Figure 7: (e flow chart of the indoor point cloud process.
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(1) First Round of Segmentation. Here, only one laser Li is
taken to illustrate distributing characteristics and dataset of
point clouds from one single laser after the whole scanning
process. When the entire scanning phase of measurement is
over, it is manifested that all point clouds extracted from
laser Li are placed on WallDatai, WallData(i+1), WallData(i+2),
and a plane (ceiling or floor). All point clouds from laser
Liform a point cloud dataset PLiij

􏽮 􏽯, in which the “Li”
represents point clouds from the laser, and “i” and “j” rep-
resent, respectively, the first-conducted “one-step process one”
in first “process one” and first-conducted “one-step process
two” in first “process two.” In addition, it is known that single
“process one” contains n1 times of “one-step process one” and
single “process two” contains n2 times of “one-step process
two.”

With the point cloud dataset, distributing characteristics
explained above and the concept “offset point” mentioned
before, the following will demonstrate the first round of
segmentation in detail. Firstly, all the point cloud data from
first “one-step process two” gather into a dataset PLii1􏽮 􏽯,
anddata in it may be present as PLi11, PLi21, PLi31. . . PLin11􏽮 􏽯.
(e coordinates of every PLii1 may be marked as
(xLii1, yLii1, zLii1). In that, the borderline segmentation al-
gorithm requires the distance from point clouds to the
“offset point” to identify the boundary of surfaces, and the
coordinates of the “offset point” need to be used in calcu-
lation (see Figure 9). As for the coordinates of “the offset
point” OpLiij

, this paper has to acquire them by classified
discussion and the formula is as follows:

xpLiij
� sin Δθ2j( 􏼁D0, ypLiij

� − cos Δθ2j( 􏼁D0, zpLiij
� 0, 0<Δθ2j<

π
2

􏼒 􏼓,

xpLiij
� cos Δθ2j −

π
2

􏼒 􏼓D0, ypLiij
� sin Δθ2j −

π
2

􏼒 􏼓D0, zpLiij
� 0,

π
2
<Δθ2j< π􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)
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Figure 8: (e flow chart of on-boundary segmentation algorithm.
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(e equation represents the distance between every
point cloud and the offset point, which is as follows:

PLii1d �

����������������������������������������

xLii1 − xpLiij
􏼐 􏼑

2
+ yLii1 − ypLiij

􏼐 􏼑
2

+ zLii1 − zpLiij
􏼐 􏼑

2
􏽲

. (9)

Next, this paper identify the maximum value of the
dataset PLii1 d􏽮 􏽯:

PLii1 dmax � max PLi11 d, PLi21 d, PLi31 d . . . PLin11d􏽮 􏽯. (10)

(is paper puts serial numbers on every point clouds in
sequence according to clockwise direction, and the

PLii1 dmax � max PLi11d, PLi21d, PLi31 d . . . PLin11 d􏽮 􏽯 is num-
bered as Lii1max. (e Lii1max can be the dividing point of this
set of point clouds so that all the point clouds can be
separated into ceiling surface or wall surface, and they may
be present as follows:

PlaneData � PLiimax1, PLi imax+1( )1, PLi imax+2( )1 . . . PLin11􏼚 􏼛,

WallData � PLi11, PLi21, PLi31 . . . PLi imax− 1( )1􏼚 􏼛.

(11)

(e end of the entire set of procedures in the first round
of segmentation signifies that the segmentation of point
clouds from laser Li in a “one-step process one” is over.
When the set of procedures is repeatedly executed n2 times
with n2 sets of point clouds to be put into the algorithm, all
point clouds of laser Li that are obtained from the entire
scanning process and that are also distributed on ceiling or
floor surfaces will be segmented out from other point cloud
clusters.

(2) ,e Second Round of Segmentation. Points clouds from
laser Li on ceiling and floor are segmented out through the
first round of segmentation, but those on three walls are left
for segmenting. However, there are also edges between every
two walls, and the borderline segmentation method is also
applicable to segmenting point clouds from laser Li on four
walls, which are ready to be put into three dataset marked as
WallDatai, WallData(i+1), and WallData(i+2). During the first
round of segmentation of point clouds from laser Li, in one

A
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E F
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Angle-range under one condition
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(b)

Figure 9: Offset point in laser scanning. (a) Condition 1. (b) Condition 2.

Advances in Civil Engineering 9



“process one,” all point clouds not in dataset of ceiling or
floor are retained in the form of an array and all point clouds
are present in dataset PLiij

􏽮 􏽯􏽮 􏽯
m×n2

(m is the maximum
number in one case process one in first round of
segmentation).

PLiij
􏽮 􏽯􏽮 􏽯

m×n2
� PLii1􏽮 􏽯

m×1, PLii2􏽮 􏽯
m×1, PLii3􏽮 􏽯

m×1, . . . , PLiin2
􏽮 􏽯

m×1􏽮 􏽯.

(12)

(is paper selects point clouds numbered as the first one
in every array to form a point cloud dataset PLi1j􏽮 􏽯

t
for

tagging, which will be used to identify the “tagging point on
edges” (the point cloud nearest to the cross-point of the
horizontal cross-lines and edges of two adjacent walls) (see
Figure 10).

PLi1j􏽮 􏽯
t

� PLi11, PLi12, PLi13 . . . PLi1n2
􏽮 􏽯. (13)

Since there are two “tagging points on edges” in the point
cloud set for tagging, this paper divides the whole dataset
into two parts, PLi1m􏽮 􏽯 and PLi1n􏽮 􏽯.

PLi1m􏽮 􏽯 � PLi11, PLi12, PLi13 . . . PLi1 n2/2( )􏼚 􏼛,

PLi1n􏽮 􏽯 � PLi1 n2/2( )+1( ), PLi12, PLi13 . . . PLi1n2
􏼚 􏼛.

(14)

Actually, the two tagging points on edges are separately
in the two datasets PLi1m􏽮 􏽯 and PLi1n􏽮 􏽯, and they are two
point clouds that, respectively, have longest distance to the
centre of the equipment in their dataset. (e formulae of
them are as follows:

PLi1md �

����������������������

x11m( 􏼁
2

+ y11m( 􏼁
2

+ z11m( 􏼁
2

􏽱

,

PLi1nd �

�����������������������

xLi1n􏼐 􏼑
2

+ yLi1n􏼐 􏼑
2

+ zLi1n􏼐 􏼑
2
.

􏽲 (15)

Identifying the two “tagging points on edges” is as
follows:

PLi1m dmax � max PLi11 d, PLi12 d, PLi13 d . . . PLi1 n2/2( )d􏼚 􏼛,

PLin dmax � max PLi1 n2/2( )+1( )d, PLi1 n2/2( )+2( )d, PLi1 n2/2( )+3( )d . . . PLi1n2d􏼚 􏼛.

(16)

From this, the number of the two tagging points is
obtained and they serve as dividing points to segment point

clouds separately into three walls WallDatai, WallData(i+1), and
WallData(i+2).

WallDatai � P1i1􏼈 􏼉, P1i2􏼈 􏼉, P1i3􏼈 􏼉, . . . , P1immax
􏽮 􏽯􏽮 􏽯,

WallData(i+1) � P1i mmax+1( )􏼚 􏼛, P1i mmax+2( )􏼚 􏼛, P1i mmax+3( )􏼚 􏼛, . . . , P1inmax
􏽮 􏽯􏼚 􏼛,

WallData(i+2) � P1i nmax+1( )􏼚 􏼛, P1i nmax+2( )􏼚 􏼛, P1i nmax+3( )􏼚 􏼛, . . . , P1in2
􏽮 􏽯􏼚 􏼛.

(17)

After implementing the first and second rounds, the
segmentation processing for all points clouds extracted from
entire scanning of laser Li comes to its end and all point
cloud data are segmented into four datasets PlaneData,
WallDatai, WallData(i+1), and WallData(i+2).

When point clouds collected from all the four laser
modules have finished the first and second rounds of seg-
mentation algorithm processing, the results of segmentation
of point clouds on all interior surfaces will be attained.

4.3.2. On-Angular-Distance Segmentation Algorithm for
Indoor Point Cloud. Apart from the novel segmentation al-
gorithm introduced above, this paper proposes a novel seg-
mentation algorithm for indoor point clouds based on angular
distance emerging during scanning process (Figure 11). (e
laser beam from laser Li will hit on some points in the in-
tersection line of two wall surfaces when the laser module on

vertical pitching-motion motor moves in circle along with the
horizontal spinning-motionmotor. At themoment, an angular
distance presents between two lines, one from current position
of laser module to the centre of the equipment and another
from original position of laser module to the centre. (is
angular distance is marked as θwiw(i+1)

, which is called “wall-to-
wall angular distance” in this paper, and θw(i+1)w(i+2)

is another
“wall-to-wall angular distance.” (Figures 12(a) and 12(d)).
θ(wip)j

represents an angular separation occurs when the laser
beam from Li hits on the intersection line of wall and ceiling or
floor, and one line starts from the intersection line to the spatial
position of the laser module and another line from it to the
centre of the TLSmachine. θ(wip)j

is named to be “wall-to-plane
angle” (Figure 13), and the “j” means the times of conducting
“process two.” However, accompanying implementation of all
times of “process two,” there are four different formulae for
calculating “wall to plane angle” in correspondence to four
range of angular distance.
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(1) Procedures of Segmentation Algorithm on Angle Char-
acteristics. (is segmentation algorithm on angle charac-
teristics needs information, apart from point clouds,
including interior net story height and the length of long and

short wall of room. With this information, the procedures of
segmentation algorithm on angle characteristics for point
clouds collected from a single laser are demonstrated in
Figure 12. As shown in Figure 12, after obtaining “wall-to-
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Figure 10: (e diagram of on-boundary segmentation algorithm. (a) First-round segmentation. (b) Second-round segmentation.
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Figure 11: (e flow chart of the on-angular-distance segmentation algorithm.
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wall” or “wall-to-plane” angles, the algorithm processes
point clouds in different formulae in accordance with which
range the jΔθ2 is divided into.

(e procedures of algorithm processing are shown in
Figure 11. Firstly, the point clouds and parameters of room size
are loaded and the systemwill calculate the “wall-to-wall angle”
and “plane-to-wall angle” on the given parameters. (en, it
enters the branch structure to judge which formula to be

invoked based on angular ranges of jΔθ2.When the branch
structure is terminated, point clouds extracted from one single
laser Li during the entire scanning process will be segmented
into four datasets, respectively, relative to four interior surfaces:
PlaneData, WallDatai, WallData(i+1), and WallData(i+2).

(2) ,e Calculation of “Wall-to-Wall Angle.” Here, only a
single laser Li is taken as a sample to calculate “wall-to-wall
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Figure 12: (e diagram of “wall-to-wall angle” and different conditions (∠OsOOm in (a), (d) is the “wall-to-wall angle”). (a) Condition 1.
(b) Condition 2. (c) Condition 3. (d) Condition 4.
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angle.” As shown in Figures 12(a) and 12(d), this paper may
calculate the angle θwiw(i+1)

and θw(i+1)w(i+2)
with given interior

net story height and length of walls in the following formula:

θwiw(i+1)
�
π
2

+ arccos

��������������

Lb/2( 􏼁
2

+ Lc/2( 􏼁
2

􏽱

�������������������

Lb/2( 􏼁
2

+ Lc/2( 􏼁
2

− D
2
0

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − arctan
Lc

Lb

􏼠 􏼡,

θw(i+1)w(i+2)
� π + arccos

��������������

Lb/2( 􏼁
2

+ Lc/2( 􏼁
2

􏽱

�������������������

Lb/2( 􏼁
2

+ Lc/2( 􏼁
2

− D
2
0

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − arctan
Lb

Lc

􏼠 􏼡.

(18)

(3) ,e Calculation of “Wall-to-Plane Angle.” With loaded
point cloud data and parameters of room size, the variable
range of jΔθ2 determines different formulae to calculate the
“wall-to-plane angle,” which is relative to the position of the

“horizontal spinning-motion motor” as the angular distance
of it and its original position is equal to jΔθ2. All four
different formulae for calculating “wall-to-plane angle” (see
Figures 12 and 13), also “θ(wip)j

,” are as follows:

θ wip( )j
� arctan

La cos jΔθ2( 􏼁

2 Lc/2( 􏼁 − sin jΔθ2( 􏼁D0( 􏼁
􏼠 􏼡, 0<Δθ2j<Δθwiw(i+1)

􏼒 􏼓,

θ wip( )j
� arctan

La sin jΔθ2( 􏼁

2 Lb/2( 􏼁 + cos jΔθ2( 􏼁D0( 􏼁
􏼠 􏼡, Δθwiw(i+1)

<Δθ2j<
π
2

􏼒 􏼓,

θ wip( )j
� arctan

La cos jΔθ2 − (π/2)( 􏼁

2 Lb/2( 􏼁 − sin jΔθ2 − (π/2)( 􏼁D0( 􏼁
􏼠 􏼡,

π
2
<Δθ2j<Δθw(i+1)w(i+2)

􏼒 􏼓,

θ wip( )j
� arctan

La cos π − jΔθ2( 􏼁

2 Lc/2( 􏼁 + sin π − jΔθ2( 􏼁D0( 􏼁
􏼠 􏼡, Δθw(i+1)w(i+2)

<Δθ2j< π􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)
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Figure 13: (e diagram of point cloud segmentation in scanning of “process one.”
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(4) Procedures of Data Segmentation. As known above, ac-
companying jΔθ2 within different range, the calculation for-
mula to get one certain degree value θ(wip)j

diverges and so
does the segmentation results of relevant point clouds. Here, it
comes a iθ1 to help in segmenting point clouds into different
datasets, and its equation is iθ1 � θ(wip)j

/Δθ1.
All the point clouds are loaded in a dataset PLiij

􏽮 􏽯􏽮 􏽯
n1×n2

,
and it is comprised of many datasets. PLiij

􏽮 􏽯
n1×1 is the only

object to be processed in loop structure

PLiij
􏽮 􏽯􏽮 􏽯

n1×n2
� PLii1􏽮 􏽯

n1×1, PLii2􏽮 􏽯
n1×1, PLii3􏽮 􏽯

n1×1, . . . , PLiin2
􏽮 􏽯

n1×1􏼚 􏼛.

(20)

If for jΔθ2, 0< jΔθ2 <Δθwiw(i+1)
:

PlaneData � PLiiθ1j, P
Li iθ1+1􏼐 􏼑j

, P
Li iθ1+2􏼐 􏼑j

. . . PLin1j􏼨 􏼩,

WallDatai � PLi1j, PLi2j, PLi3j . . . P
Li iθ1− 1􏼐 􏼑j

􏼨 􏼩.

(21)

If for jΔθ2, Δθwiw(i+1)
<Δθ2j< π/2:

PlaneData � PLiiθ1j, P
Li iθ1+1􏼐 􏼑j

, P
Li iθ1+2􏼐 􏼑j

. . . PLin1j􏼨 􏼩,

WallData(i+1) � PLi1j, PLi2j, PLi3j . . . P
Li iθ1− 1􏼐 􏼑j

􏼨 􏼩.

(22)

If forjΔθ2, π/2<Δθ2j<Δθw(i+1)w(i+2)
:

PlaneData � PLiiθ1j, P
Li iθ1+1􏼐 􏼑j

, P
Li iθ1+2􏼐 􏼑j

. . . PLin1j􏼨 􏼩,

WallData(i+1) � PLi1j, PLi2j, PLi3j . . . P
Li iθ1− 1􏼐 􏼑j

􏼨 􏼩.

(23)

If forjΔθ2, Δθw(i+1)w(i+2)
<Δθ2j< π:

PlaneData � PLiiθ1j, P
Li iθ1+1􏼐 􏼑j

, P
Li iθ1+2􏼐 􏼑j

. . . PLin1j􏼨 􏼩,

WallData(i+2) � PLi1j, PLi2j, PLi3j . . . P
Li iθ1− 1􏼐 􏼑j

􏼨 􏼩.

(24)

When the data segmentation above is finished, point
clouds collected from a single laser after entire scanning
process will be attached to three walls and one horizontal
plane, ceiling, or floor.

4.3.3. Analysis of Point Cloud Segmentation in ,is Paper.
As for the point cloud measured by the four lasers in the
point cloud data, each laser contains four planes, including
the point cloud data of three indoor walls and one plane
(ceiling or floor). And the main idea of the above two al-
gorithms is to segment the four planes of each one laser-
scanning point cloud and then combine all the segmentation
results from each laser to finally realize the segmentation of

the point cloud of the six planes in the whole room. Both
algorithms use the different scanning path’s characteristics
of TLS in the hexahedron-type room. On-boundary seg-
mentation uses edge features of indoor space, so two rounds
of segmentation are required for point cloud data seg-
mentation of single laser measurement data. One turn is for
the edge feature of the intersection line between wall and
plane, and the second turn is for the edge feature of the
intersection line between wall and wall. On-angular-distance
segmentation algorithm uses the angle features in space to
segment point clouds. On the premise of knowing the size of
indoor rooms, the angle features are used to realize the
presegmentation of all point clouds on the walls. (us, point
cloud segmentation of four planes can be realized only
through a cycle of data traversal. (erefore, the time
complexity of on-angular-distance segmentation algorithm
is lower.

To better understand the data process of the two algo-
rithms, the principle of two algorithms can be understood
through figure (see Figure 14). All point cloud can be
regarded as a array in n2 rows and n1 columns. Due to the
execution of “one-step process 2” for n2 times, the arrays are
combined with the n2son-arrays.(e son-array which size of
1× n1 represents the point cloud scanned in “Procedure 1.”
In the point cloud segmentation scenario in this paper, the
key of point cloud segmentation is to find the “cut-off point”
for point cloud segmentation (the red areas of the picture
represent the “cut-off points”). Although the on-angular-
distance segmentation algorithm is better than the on-
boundary segmentation in time complexity, the on-angular-
distance segmentation algorithm needs to know get indoor
room size, and the centre of TLS cannot be completely
placed in the middle of the room during scanning, so the
segmentation accuracy will be affected. On-boundary seg-
mentation algorithm can segment point cloud without in-
door house size. For regular hexahedral rooms, ideal point
cloud segmentation can be achieved, but for indoor rooms
with no obvious “edge features,” the segmentation accuracy
will be affected.(erefore, the advantages and disadvantages
of the two algorithms should be analysed through seg-
mentation experiments in actual point cloud in reality.

4.4. Plane Fitting Algorithm for Indoor Point Clouds

4.4.1. Rotation Transformation in Point Cloud Fitting.
After the segmentation, the fitting of point clouds is
launched. Higher accuracy of algorithm for fitting means
higher accuracy of plane equation and higher accuracy of
measuring results. However, during measuring, superve-
nient random error and assembly error of mechanized
equipment will lead to a degree of error of final measuring
data. Referring to pertinent literature, this paper adopts
RANSAC-TLS algorithm for fitting 3D planes. In the ma-
jority of plane fitting with 3D point clouds, Z-axis is mostly
set as the dependent variable of least squares fitting, which
will result in that point clouds parallel to the XOY plane have
priority to get fitting, and therefore, relatively great error
may come out.
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Psi � xsi, ysi, zsi( 􏼁
T
. (25)

When the point cloud cluster Psi rotates αx degree
around the x-axis, its rotation matrix is as follows:

rotx �

1 0 0

0 cos αx − sin αx

0 sin αx cos αx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (26)

(e point cloud cluster after spatial transformation is
Psxi:

Psxi � rotx × Psi. (27)

When the point cloud cluster Psi rotates αy degree
around the y-axis, its rotation matrix is as follows:

roty �

cos αy 0 sin αy

0 1 0

− sin αy 0 cos αy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

(e point cloud cluster after spatial transformation is
Psxi:

Psyi � roty × Psi. (29)

4.4.2. Modified RANSAC-TLS Algorithm for Fitting Based on
Spatial Transformation

(1) Total Least Squares. Total least squares are a kind of
algorithm for fitting that does not exclude interference
factors in regression matrix during calculation. (e basic
principle of it is as follows:

(e equation represents a surface

z� aix + biy + ci. (30)

Point cloud on the surface is present in the dataset
(xi, yi, zi), i � 1, 2, . . . , ni􏼈 􏼉, considering that there are errors
on three directions of x, y, z and vx, vy, vz are, respectively,
three correction factors on x, y, z, and the equation of the
surface above may be changed into:

z + vz� ai x + vx( 􏼁 + bi y + vy􏼐 􏼑. (31)

It can be transformed as

n2
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Figure 14: (e diagram of point cloud segmentation in all. (a) On-boundary segmentation algorithm. (b) On-angular-distance seg-
mentation algorithm.

Advances in Civil Engineering 15



A + EA( 􏼁X � L + EL,

A �

x1 y1 1

x2 y2 1

⋮ ⋮ ⋮

xni yni 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

EA �

vx1
vy1

1

vx2
vy2

1

⋮ ⋮ ⋮
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Generally, singular value decomposition of matrix
(SVD) is used to solve the following equation:
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(2) ,e Procedures of RANSAC-TLS Algorithm Based on
Spatial Transformation. First, point clouds on walls will be
spatially transformed to become nearly parallel to plane
XOY. (en, the RANSAC algorithm continuously removes
the abnormal point clouds, and thus, the point clouds left
will contain a relatively small quantity of abnormal point
clouds. Finally, TLS will be used for fitting. (e complete
procedures of TLS are shown below:

(1) Identifying the surface where point cloud Psi is and
implementing spatial transformation on it according

to Psxi � rotx × Psi or Psyi � roty × Psi, also
Psi � Psxi or Psi � Psyi.

(2) Selecting randomly three processed point clouds that
are not on any common line and solving the equation
of the three points: z� aix + biy + ci.

(3) Calculating the distance from every point cloud to
the plane z� aix + biy + ci in the following formula:

di �
aixi+biyi+ci − zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�������������

ai( 􏼁
2

+ bi( 􏼁
2

+ 1
􏽱 . (34)

(4) Calculating the standard deviation σ from point
clouds to the plane di in the formula:

σ �

������������

􏽐
n
i�1 di − d􏼐 􏼑

2

n − 1

􏽳

. (35)

In the formula above, d � 1/n 􏽐
n
i�1 di, and thresh-

olding t � 2σ. If di > t, then the point is identified as
null point ready to be deleted; otherwise, the point is
efficient point to be retained and the amount of
efficient points will be totaled to Mi.

(5) Repeating the procedures above k times and iden-
tifying the model with most efficient points:
Mf � max Mi􏼈 􏼉.

(6) Adopting TLS to conduct point clouds fitting of
surfaces and obtaining the parameters of plane
equations.

5. Experimental Verification and Discussion

5.1. Experiment Preparation

5.1.1. Preparation of TLS in,is Paper. In order to verify the
feasibility of the novel TLS and data processing system, we
conducted scanning and processing in several rooms ready-
to-move-in in a room shape that basically conforms with a
hexahedron (see Figure 15(a)).

We implemented 3D scanning to collect data of the
room on the novel self-adaptation TLS equipment; as for
software system for laser scanning, we designed and de-
veloped two software systems: one for data collecting and the
another for point cloud processing. All data collection was
carried out on the equipment (see Figure 15(c)), and then,
the data were transferred to a cloud server through which the
scanning data were downloaded into a computer terminal to
implement processing. In this paper, we temporarily
adopted TCP/IP on a local area network to transfer the data
for the sake of short-term experimental stage.

When the TLS machine was appropriately located, we
clicked on the “To Scan” to start 3D scanning of the entire
room. After it finished, scanning points were transferred to
computer where we proposed two novel point cloud seg-
mentation algorithms: one based on edges of interior sur-
faces and one based on angle range. On data-processing
interface, the process of the data point processing was vi-
sualized and the interior quantities of room were obtained
by data processing (see Figure 15(b)).
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5.1.2. Experiment Process of Data Analysis. Afterwards, the
collected data will be processed on computer and the
entire processing procedures are displayed in Figure 16.
We collected indoor 3D point cloud data with the
multilaser module on the self-adaptation novel TLS
equipment, but there was a possibility for laser beam to
hit outside the room or on some light-reflecting objects
causing high measuring error of data and high error of
the point clouds corresponding to the measured data,
which were called noisy points. Hence, we needed the
filter mentioned in the paper to filter out the noisy points
and retain point clouds applicable to indoor point cloud
processing. (en, retained indoor point clouds were
segmented by the point cloud segmentation algorithms
for point clouds. (e segmented clusters of point clouds
were fitted into different surfaces. (e equations of fitted
surfaces will be used in the analysis of the measuring
accuracy of this measuring system with a traditional
manual laser-ranging method.

5.1.3. ,e Evaluation for Segmentation Algorithms for Indoor
Point Clouds. To evaluate the measuring accuracy of two
kinds of segmentation algorithms proposed in this paper
for indoor point clouds and analyse the merits and de-
fects of the two algorithms, we referred to and selected
the precision, recall, and F1 index to perform as the
evaluating standard [32]. (e equation of them is as
follows:

presion �
Nt

Nt + No

,

recall �
Nt

Nt + Nc

,

F1 �
2 × recall × presion
presion + recall

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

(e Nt, No, and Nc, respectively, represented the num-
bers of relatively accurately segmented point clouds,
omissive-in-segmenting point clouds, and wrongly seg-
mented point clouds.

5.1.4. ,e Verification for Fitting Accuracy of Indoor Point
Clouds. Once the data processing was finished, we started
verifying the fitting accuracy of segmented point clouds of
surfaces. (e verifying method was proposed by making use
of calibrating method for indoor measuring and also the
characteristics of measured objectives—indoor rooms.

(1) Calibration for Indoor Measurement. We calibrated the
measurement in manual way and the calibrated objective is
the net-length of the room. Specifically, we measured the
net-length from the laser range finder in hand to the laser
point hits on a relatively smooth surface and repeated the
measurement on multipoints many times. Afterwards, we

(a) (b)

Laser module

Action module

Interface screen

(c)

Figure 15: (e platform of indoor measurement. (a) Interface of TLS. (b) Interface of PC. (c) TLS designed in this article.
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calculated the average value of all measuring results. Mea-
suring value in every time was marked as Lmi(i � 1 . . . n).

(e standard value for calibration is as follows:

Lms �
􏽐

n
i�1 Lmi

n
. (37)

(2) ,e Evaluation for the Fitting Accuracy of Point Clouds.
(e plane equations of two planes obtained by fitting al-
gorithm were as follows: Asx + Bsy + Csz + Ds � 0 and
Ajx + Bjy + Cjz + Dj � 0.

(e vertical distances of two plane equations to the
origin, also the pose of the TLS equipment, were marked,
respectively, as ds and dj, and their values can be calculated
in the formulae for distance presented below.

ds �
Ds

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
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􏽱 .
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

(e net-length obtained from the equipment was as
follows:

LTLS � ds + dj. (39)

Comparing the LTLS with the standard value for cali-
bration Lms, the difference value can reflect the measuring
accuracy.

5.2. Experiment Result and Discussion

(1) ,e Analysis of Effectiveness of 3D Scanning. (e results of
actual indoor 3D scanning data collected by the novel self-
adaptation TLS equipment might basically reflect indoor
constructional features, and the general configuration of win-
dows and door in the real roomwas presented by visualizing 3D
point clouds data (see Figure 17).

(2) ,e Result of Point Cloud Segmentation. As shown in
Figure 18, for point clouds from hexahedral room with clear
boundaries between surfaces, “on-boundary segmentation al-
gorithm” will perform relatively effective segmentation but for
that from rooms without clear boundaries of surfaces, and the
segmentation results of “on-boundary segmentation algorithm”
are not close to 6 indoor surfaces. (e unclear boundaries of
surfaces are shown in these two forms: (1) carvings made be-
tween ceiling and walls, and (2) relatively big internal and
external corner existing on the edge zones of surfaces. However,
“on-angular-distance segmentation algorithm” will be able to
perform normal segmentation under these two kinds of con-
ditions and it is noticeable that known room indoor sizes are the
premise of performing high-accuracy segmentation.

We have implemented data scanning and collecting of the
two kinds of rooms in different conditions and evaluation of
segmentation accuracy of two types of segmentation algorithms
mentioned in this paper (shown in Table 2). On house type of
room 1, the performance of two kinds of segmentation algo-
rithms is ideal, with the F1 index of point cloud clusters from
“on-boundary segmentation algorithm” up to highest value of
0.9663 and the down to 0.7692 and the F1 index from “on-
angular-distance segmentation algorithm” ranging from 0.6866
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Figure 16:(e flow chart of the point cloud processing in indoor measurement experiment. (a) Indoor TLS measurement. (b) Indoor point
clouds of laser scanning. (c) Indoor point clouds of filtering. (d) Indoor point clouds of structural segmentation. (e) Indoor point clouds of
fitting. (f ) Manual measurement for precision checking.
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to 0.9789. As for house type of room 2, the segmentation ac-
curacy of “on-angular-distance segmentation algorithm” is
higher than that in another. Highest F1 index of point cloud

clusters from “on-boundary-segmentation algorithm” is 0.7713
and the lowest one is 0.2969, while the F1 index from the
another segmentation algorithm has highest value of 0.9781 and

(a) (b) (c)

Window

Door

(d)

Figure 17: Actual room and point cloud of scanning. (a) Actual room in view 1. (b) Actual room in view 2. (c) Actual experiment in actual
room. (d) Scanning point cloud in actual room.

1500
1000

500

-500
-1000
-1500
-2000
-2000

2000
3000 2000 1000 -1000 -2000 -30000

0

0

ZL
ab

el

XLabel

YLabel

(a)

1500
1000

500

-500
-1000
-1500
-2000
-2000

2000

-1000

1000

3000 2000 1000 -1000 -2000 -30000

0

0

ZL
ab

el

XLabel

YLabel

(b)

3000
2000
1000

-1000
-2000
-3000

-2000
-1000

0
1000

2000
-2000 -1000

0 1000
2000

3000

YLabel
XLabel

ZL
ab

el 0

(c)

-3000

-2000 -1000
0 1000 2000

3000

YLabel

-2000
-1000

0
1000

2000XLabel

3000
2000
1000

-1000
-2000

ZL
ab

el 0

(d)

Figure 18: (e result of the point cloud segmentation. (a) On-boundary segmentation in room 1. (b) On-angular-distance segmentation in
room 1. (c) On-boundary segmentation in room 2. (d) On-angular distance segmentation in room 2.

Advances in Civil Engineering 19



lowest one of 0.7824. From the perspective of data, we can draw
a conclusion that these two kinds of segmentation algorithms
are both able to attain relatively high-accuracy segmentation for
indoor point clouds and the accuracy of segmentation is lower
when the segmented objective is a lesser order of magnitudes of
point cloud clusters.

Apart from that, viewing for the segmentation accuracy
of room 2, whereas the distinction of surfaces in the house
type as room 2 is less significant relative to that of room 1,
the particular point clouds used for “on-boundary seg-
mentation” are not easy to identify, and hence, the seg-
mentation accuracy is not high. On the other hand, the
accuracy of two kinds of segmentation algorithms for two
rooms is basically close, attributing to the oneness of de-
terminant for the segmentation accuracy of “on-angular-
distance segmentation algorithm”—the accuracy degree of
distance from equipment to every surfaces in a room.

Hence, the key to enhance the accuracy of segmentation
is to ensure the room size and type as-near to a standard
hexahedron as possible and also the normative location of
the TLS equipment at the centre of a room.

(3) ,e Accuracy of Point Cloud Fitting. After finishing the
point cloud segmentation, this paper selects the segmented
point cloud clusters of two planes with symmetrical dis-
tribution for plane fitting and plane distance calculation.
And we calculated the actual distance result through the
manual measurement, which was carried out by the method
proposed above. Referring to relevant literature, in the fitting
process, this paper selects different plane fitting algorithms,
including TLS, LS, WTLS-D, RANSAC-LS, and the im-
proved RANSAC-TLS proposed in this paper.

In the fitting experiment, we divided the segmented
point cloud clusters into three categories: class 1 point cloud
clusters, class 2 point cloud clusters and class 3 point cloud
clusters. Among them, class 1 point cloud clusters were
mainly the point cloud clusters distributed on the two
opposite walls with the largest area of the blank part on the

indoor surface; class 2 point cloud clusters were the point
cloud clusters on the floor and ceiling; and class 3 point
cloud clusters referred to the point cloud clusters on the wall
with windows and opposite to the wall. We selected five
house types of rooms for data scanning and point cloud
segmentation, and three kinds of point cloud clusters were
extracted for fitting accuracy experiment. (e experimental
results are shown in the Figure 19.

It can be seen from the figure that among class 1, class
2, and class 3 point cloud clusters, RANSAC-TLS algo-
rithm is the closest to the results of manual measurement.
(e second is RANSAC-LS and WTLS-D algorithm. LS
and TLS algorithm performed worst in fitting, and the
changing trend of the two algorithms is similar in the
calculation results of different rooms. Because there were
some noise points of information in the whole segmented
point cloud cluster, these noise points are composed of
random error in the scanning process and systematic
error of the equipment. Moreover, in the process of point
cloud segmentation, because the segmented point cloud
clusters are sparse point cloud clusters, and not all of the
point cloud clusters are ideal point clouds in the flat wall
area; on the contrary, there are often some outliers in the
point cloud clusters, which become noise points in the
sparse point cloud clusters and affect the fitting accuracy
evaluation results.

According to the measurement results, LS and TLS do not
filter all point cloud data in the fitting process, so these two
algorithms are easy to introduce some noise data into the fitting
process. Although WTLS-D algorithm also performed iterative
fitting based on the distance to the TLS plane as the weight, its
initial fitting planewas still the fitting result of TLS.(erefore, in
the fitting process, although its fitting accuracy was improved,
its robustness was relatively poor. Both RANSAC-LS and
RANSAC-TLS belong to combined algorithms, which get the
advantages of RANSAC algorithm.(e ideal point cloud region
of plane fitting was found by calling out a reasonable threshold.
From the results, compared with RANSAC-LS, RANSAC-TLS

Table 2: Evaluation of the point cloud segmentation.

Type of the room Segmentation algorithm Index
Number of point cloud cluster

1 2 3 4 5 6

Room 1

On-boundary segmentation

Numbers 94 228 105 215 20 30
Precision 0.9362 0.9561 0.9238 0.9805 0.8824 0.9000
Recall 0.9671 0.9689 0.9604 0.9526 0.6818 0.7500

F1 0.9514 0.9625 0.9417 0.9663 0.7692 0.8182

On-angular-distance segmentation

Numbers 88 227 105 214 27 31
Precision 0.9545 0.9824 0.8762 0.9766 0.7407 0.7419
Recall 0.9333 0.9696 0.9388 0.9812 0.9091 0.6389

F1 0.9438 0.9759 0.9064 0.9789 0.8163 0.6866

Room 2

On-boundary segmentation

Numbers 392 649 265 705 247 441
Precision 0.6582 0.6336 0.8302 0.9062 0.3644 0.2063
Recall 0.9314 0.50141 0.9016 0.4628 0.4348 0.5291

F1 0.7713 0.5598 0.8644 0.6127 0.3965 0.2969

On-angular-distance segmentation

Numbers 278 777 362 800 221 261
Precision 0.9389 0.9781 0.8785 0.9750 0.9638 0.7510
Recall 0.7957 0.9596 0.9845 0.9811 0.8987 0.8167

F1 0.8614 0.9688 0.9285 0.9781 0.9301 0.7824
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better optimized the fitting weights of all point clouds in the
filtered point cloud data, and finally performed better in the
fitting results. For class 1 point cloud, it could be seen that there
were relatively few noise points in its point cloud cluster, so all
fitting algorithms were relatively stable in the measurement
results. However, complex outliers would appear in the data
scanning of class 2 and class 3 point cloud clusters. For example,
the point cloud of objects such as lampshade often appeared in
the ceiling data in class 2 point cloud clusters. In the three kinds
of point cloud clusters, due to the measurement target of
window, there would bemore complex point cloud clusters. For
the point cloud fitting algorithm without prescreening in the
fitting process, the calculation results based on the fitting plane
equation would have a large deviation from the actual mea-
surement results.

(us, in the fitting process, RANSAC can screen out
noise and outliers and improve the fitting accuracy. From
the overall fitting results, RANSAC-TLS algorithm performs
best in fitting accuracy.

(4) Analysis of Scanning Parameters ,reshold in Actual
Measurement. To test measurement accuracy and efficiency
of the proposed planning-scanning method in real indoor
condition, we conducted one measurement experiment with
the novel TLS equipment in a room, in shape of a hexa-
hedron, ready to move in, in size of
4250mm× 3510mm× 3065mm. According to the plan-
ning-scanning method proposed in Chapter 3, the relevant
planning parameters in this house shape include
D0 �142mm, Lb � 4250mm, Lc � 3510mm, smax � 330mm,
Td � 0.5 s, and Ts � 1 s.

For the planning model of indoor scanning, smax is a
reference value, and value s0 determines the distributing
density of the entire laser scanning point cloud data. To
make TA a relatively small value, which is an expectation,
smax is usually taken from s0, and k is taken as large as
possible. In this experiment, for value taking, we set
different s0 values for actual data collecting. Besides, we
obtained segmented point cloud clusters and the point-
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Figure 19: (e result of the point cloud fitting and manual measurement. (a) Result of class 1 point cloud. (b) Result of class 2 point cloud.
(c) Result of class 3 point cloud.
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cloud-cluster-plane equation based on the proposed
point-cloud-processing algorithm.

Referring to the calculation method presented in the
relevant literature [33], the flatness and verticality of four
indoor walls of the measured room are calculated with
different scanning parameter. In addition, we obtained the
same two indexes by manual measurement with guiding
rule. Based on the above operation, the mean error of
flatness (mF.E) and mean error of verticality (mV.E) can be
achieved by first attaining errors between manually mea-
sured values and variable values coming from the novel TLS
equipment with varying scanning parameters.

Next, the calculation is executed in method proposed in
this paper alike with changing scanning parameter, and the

results of the actualmanualmeasurement, respectively, find the
error of the measurement value and manual measurement
value of the equipment based on different scanning parameters,
and calculate the mF.E of the wall and the mV.E of the wall.

Five groups of real quantities of measured indoor walls were
taken from the entire experiment (see Table 3). As shown in the
below table, S0 ranges from 200, 330, 400, and 630.When S0 and
k are both in a relatively-low value, TA will reach an excessively
large value. In this case,Δθ2 was once set at 10° by controlling the
value of k. Additionally, with s0 in value of 330 and meanwhile
Δθ2 at 5°, a scanning was executed for contrasting (shown in
Table 4) presents the specific experiment results.

From the calculation results with different parameters, it
should be known that although the scanning scheme 2 takes the

Table 4: Result of actual measurement with different schemes.

(mm)
Wall 1 Wall 2 Wall 3 Wall 4

mF.E mV.E
F.R V.R F.R V.R F.R V.R F.R V.R

Manual measurement 3.33 7 3 2.26 3 2 2.5 4.5
Scheme 1 2.528 6.32 2.716 5.67 2.134 6.18 1.182 6.94 0.82 2.68
Scheme 2 3.47 5.32 4.22 1.24 4.13 1.71 2.0 6.33 0.75 1.21
Scheme 3 4.247 6.34 4.34 5.79 4.58 6.126 2.513 6.87 0.96 2.67
Scheme 4 3.503 6.38 4.25 5.78 3.86 5.71 1.683 6.44 0.78 2.45
Scheme 5 2.55 2.32 3.857 1.34 2.09 13.6 2.11 6.45 1.78 5.79

Table 5: Comparison of the device parameters.

Device parameters FARO focus M70 Novel TLS
Measurement accuracy ±1mm ±1mm
Laser module type LIDAR module Point laser module
Range of distance
measurement 0.6m–70m 0.3m–10m

Measurement speed 488000 points/s 4 points/s
Vertical field of
scanning 305° 360°

Horizontal field of
scanning 360° 360°

External dimensions
(mm) 240∗ 200∗100 350∗ 300∗ 300

(e characteristics of
the scan

(e dense point cloud is used to reconstruct the 3D space and
completely simulate the measured indoor real quantity

Measure the indoor real quantity with spare
point cloud of point cloud process

Table 6: Comparison of the two devices for actual measurement.

Device name Scanning time (min) mF.E (mm) File size Equipment cost (＄)
FARO focus M70 4 0.7[21] 7.68GB 90,000
Novel TLS 1 5 1.8 7 kB 7,000
Novel TLS 2 13 0.8 26 kB 7,000

Table 3: Experimental parameters in different schemes.

TA (min) S 0 (mm) θc (°) k θc (°) ∆θ2 (°) File size (kB)

Manual measurement 25
Scheme 1 13 330 4.75 2 5 10 26
Scheme 2 26 330 4.75 1 5 5 56
Scheme 3 10 400 5.87 1.67 6 10 20
Scheme 4 15.25 200 2.78 3.33 3 10 30
Scheme 5 4.75 630 9.89 1 10 10 7
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longest time, the measurement results have the smallest mean
error by being compared with manual measurement results.
(e scanning scheme 5 takes the shortest time, but the mea-
surement mean error is the largest in the same comparison
pattern.Walls 3 and 4 are twowalls further away from the novel
TLS equipment than the other two, corresponding to point
cloud clusters 5 and 6. Associating with the point cloud seg-
mentation results, it can be concluded that point clouds dis-
tributed on the two walls are less so that the wall point cloud
data are less and the measurement error emerges greater, which
is less, and the measurement error is greater. Because of lower
mV.E value in scheme 2, it might be true thatminimizingΔθ2 is
more efficient in enhancing measurement accuracy. However,
scheme 2 has one flaw that the time consumption of scanning in
this scheme is even larger than traditionalmanualmeasurement
method.

5.3.ComparisonResult between theNovelTLSand theExisting
TLS

(1) Comparison of the Device Parameters. Most existing TLS
adopted in indoormeasurement is nothingmore than FARO
Focus 3D laser scanner. In Table 5, the parameters of the two
TLS devices are compared, and the existing TLS devices have
higher efficiency and density in environment-sensing data
collection. However, the existing TLS equipment and the
novel TLS equipment can both achieve ranging accuracy
ranging within ±1mm. In another word, in the perspective
of scanning range, the mechanical structure of the novel TLS
equipment proposed in this paper has no scanning blind
area.

(2) Comparison of the Actual Measurement Result. In order to
verify the further application and practical potential of the novel
TLS equipment in indoor actual measurement, we compare the
measurement accuracy, efficiency, and cost of FARO focus [21]
and novel TLS in similar experimental conditions, taking the
mF.E results of flatness in the indoor slab measurement [21] as
accuracy-evaluating standard. Next, contrasting FARO equip-
ment and the novel TLS equipment in two aspects are presented
in Table 6: scanning time and amount of point cloud data in
actual measurement.

As seen in Table 6, in scanning time consumption, the
scanning scheme 1 of the novel TLS equipment proposed in this
paper is 1 minute slower than FARO. (e measurement ac-
curacy in scanning scheme 2 is 0.8mm, near to FARO.
However, the cost of novel TLS equipment is much lower than
FARO. Besides, in the aspect of file size of scanning data, the
novel TLS equipment features lower cost of data processing due
to its smaller size of collected scanning data than existing TLS
equipment.

6. Conclusion and Future Research

It can be concluded that the novel TLS presented in this paper is
able to achieve self-adaptation scanning in indoor condition. As
for P4S, this paper presents a “scanning method by process” to
realize planning for scanning of an indoor space of a room. In
view of continuous changes of point clouds poses in one-step

process in “measurement by process,” the segmentation
methods mentioned in this paper not only make use of point
clouds extracted from TLS, which is a kind of discrete data, but
also make use of the poses of every laser scanning points. Fi-
nally, the actualmeasurement tests display that the “on-angular-
distance segmentation algorithm” is of higher robustness than
“on-boundary segmentation algorithm” in actual measurement.
However, if themeasured room is near to a regular hexahedron,
the accuracy of the two segmentation algorithm is close. In
terms of fitting of point clouds, this paper presents a modified
plane fitting algorithm based on the point cloud distribution
characteristics in a hexahedral room and it is proved that the
modified plane fitting algorithm can achieve millimetre-level
accuracy. Accuracy and efficiency of the novel TLS may be
tested by analysing measured quantities drawn from an actual
measurement experiment with a threshold of equipment pa-
rameters. Furthermore, for testing accuracy and efficiency, this
paper introduces a series of measurement results of an existing
TLS equipment, FARO, attained in basically the same condi-
tions to compare with that of the novel TLS equipment pro-
posed in this paper, with costs of the two pieces of equipment
being compared too. In this way, the accuracy, efficiency, cost
and potential, and future application of the proposed novel TLS
equipment based on sparse point clouds are preliminarily
tested.

Although the self-adaptation TLS has merits of self-plan-
ning, low-cost, and high-efficiency computing, there is an
abundance of optimisation and upgrading to fulfil: 1. creating
structural parameter calibration methods because several pa-
rameters are introduced in the DH modelling, which brings
some systematic errors into the result, requiring an appropriate
calibration scheme to reduce the systematic error; 2. upgrading
segmentation algorithm based on structural characteristics of
irregular room. (is paper achieves segmentation of point
clouds from a regular hexahedral room, but if the room
structure is more complicated, the robustness of the segmen-
tation algorithm is apt to decline; 3. by implementing semantic
segmentation of the indoor information based on this kind of
lightweight dataset presented in this paper, this paper has just
researched data features of wall surfaces but not covered se-
mantic segmentation for indoor 3D data or segmentation for
details, such as those of doors and windows, and internal and
external corners. (erefore, our team will continue relevant
researches and tests in the future.
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