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Scarcity of water resources is becoming a threatening issue in arid regions like Gulf. Accurate prediction of quantities and quality of
groundwater is the �rst step towards better management of water resources where groundwater is the major source of water supply.
Groundwater modelling with respect to its quantity and quality has been performed in this paper using Arti�cial Neural Networks
(ANNs), Adaptive Neurofuzzy Inference System (ANFIS), and hydraulic model MODFLOW. Five types of ANN models with
various training functions have been investigated to �nd themost e�cient training function for the prediction of quantity and quality
of groundwater, which is an original contribution useful for engineering sector. e results of the hydraulic model, ANFIS, and ANN
have been compared. Nash-Sutcli�e Model E�ciency and Mean Square Error have been used for assessing the performance of
models. Taylor’s Diagram has also been used to compare variousmodels. e part of Saq Aquifer lying in the Qassim Region has been
investigated as the study area. Modern tools, including Geographical Information System (GIS) and Digital Elevation Model (DEM)
are applied to process the required data for modelling. Climatic, geographical, and quality of groundwater (contaminants) data are
obtained from the Ministry of Environment, Water, and Agriculture, Jeddah/Riyadh. ANFIS model is found to be the most e�cient
for modelling both the quality and quantity of the aquifer. Sensitivity analysis was performed, and then various future scenarios were
investigated for sustainable groundwater pumping.  e results of the research will be useful for the community and experts working
in the �eld of water resources engineering, planning, and management in arid regions.

1. Introduction

Groundwater resources of the Gulf region are under high
stress.  ese are being depleted at an alarming rate of about
6.8mm/year in some transboundary aquifers like Saq shared
by Iraq, Jordan, and Saudi Arabia.  is rapid depletion of
groundwater resources (Figure 1) is due to anthropogenic
and climatic factors.  e rainfall in the region is small, but
the extraction rate of groundwater for irrigation and do-
mestic purposes is very high due to phenomenal increase in
the population [1, 2]. For sustainable management and
development of water resources around the globe, the future
predictions of groundwater levels are of utmost importance

[3–6].  e changes in groundwater levels are a�ected by
several factors.  e timing, location, and extent of hydro-
logic responses to human activities or natural events depend
on the duration, intensity, and nature of the activities/event
a�ecting groundwater, the subsoil properties, and the in-
teraction of groundwater and surface water. e �eld surveys
or remote sensing data of various aquifer characteristics may
provide a theoretical understanding of the groundwater
system, but often the measured data is scarce with respect to
space and time, and hence the system-understanding re-
mains unde�ned and inadequate in most cases.

Some awareness of the complex behavior of the
groundwater system can be developed through groundwater
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models. Once a model is developed and designed properly, it
can be used to predict the future behavior of groundwater,
which may help in decision-making and exploring the al-
ternative approaches for management, planning, and de-
velopment of water resources [6–9]. ,is paper has multiple
goals. One of the main goals of this paper is to develop
groundwater models for the simulation of water levels of the
Saq Aquifer. However, there is no single model which may
provide results to the entire satisfaction of the researcher
because there is always some degree of uncertainty in model
results. Hence a variety of data-driven models based on

Artificial Neural Networks (ANNs), Adaptive Neurofuzzy
Inference System (ANFIS), and hydraulic model MOD-
FLOW have been investigated in this research.

,e hydraulic models for transboundary aquifers having
undefined boundary conditions for specific regions demand
very expensive data acquisition schemes. Although this
difficulty has been resolved in this paper by using the
“general head boundary condition,” there is a need to in-
vestigate some other alternative modelling techniques. ,e
data-driven models can be a good alternative for predicting
groundwater levels in the vicinity of some crucial areas like
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Figure 1: Groundwater depletion and pumping rates for Saq Aquifer (Qassim Region).

Table 1: Review of data-driven models and hydraulic model MODFLOW.

Characteristics ANN/ANFIS Hydraulic
model Remarks

Efforts/costs involved in
computation expenses
(need high-speed
computers and time for
computations)

x About 10 times
x

Although the hydraulic models like MODFLOW require computers with
relatively large processing speed as compared to the data-driven models
like ANN and ANFIS, which require only ordinary-type computers [12],
this factor is not considered nowadays as high-speed computers are easily

available.

Requirements related to the
processing of models and
data

x About 3 times x

Data for only water levels, pumping rates, and concentration of
contaminants are required. ,e data for hydraulic parameters and

topography (Digital Elevation Model (DEM)) are required in addition to
data for water levels, pumping rates, and concentration of contaminants.
,e hydraulic model (MODFLOW) requires highly accurate aquifer-
parameter values. Furthermore, a mesh of an extraordinary resolution
and lower time steps but qualifying the limiting ratio of time step to the
nodal distance is required, whereas only a good dataset can be sufficient

for data-driven models like ANN and ANFIS [13–15].

Model category
Data-driven
(black box/

semiblack box)

Distributed
(based on laws
of physics)

Hydraulic models incorporate physical processes and equations based on
laws of physics in predicting groundwater levels and groundwater
contamination parameters, whereas ANFIS/ANN, being data-driven

models, do not use equations based on laws of physics.,ese models only
use the recorded data for their training, testing, and validation [13–16].

Model prediction biases x About 10 times
x

,ere is a wide range of variation in biases in the case of hydraulic model
results, whereas the biases are mostly limited to a certain range for data-
driven model (ANFIS/ANN) predictions. However, the ANFIS/ANN

lack generality [13–16].

Future predictions for a
long time

Highly
challenging

Much easier
once the model
is calibrated

After calibration and validation of the hydraulic model, it is very easy to
use it for future predictions, whereas very high experience and expertise
in definite phenomenon is required for long-time future predictions by

ANFIS/ANN [13–16].
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pumping stations [10, 11]. Both types of models, that is,
hydraulic and artificial intelligence, are compared in Table 1.
Data-driven models are divided into several categories.
Khedri et al. [17] compared five different data-driven models
for the prediction of groundwater levels. ,ey have inves-
tigated the performance of ANN, Adaptive Neurofuzzy
Inference System, Fuzzy Logic, Support Vector Regression,
and Group Method of Data Handling. According to them,
the ANN are the most commonly used efficient method.
Majumder and Eldho [18] applied ANN coupled with an
optimization technique to model groundwater flow. ,ey
have also observed better convergence by ANN combined
with optimization. Suprayogi et al. [19] applied ANN to
forecast groundwater levels in Meskom, Indonesia. ,ey
have observed high values of correlation coefficient having a
successful application of ANN for groundwater level forecast
for a short time basis. Wunsch et al. [20] have outlined the
ability of prediction of groundwater levels by recurrent
ANNs using data from t 17 groundwater wells within the
Upper Rhine Graben, one of the largest groundwater re-
sources in Central Europe. Solgi et al. [21] have investigated
the performance of ANN for long- and short-term
groundwater level predictions using more than 17 years of
the most recent observed data of groundwater levels in San
Antonio, Texas, United States of America. In addition to the
prediction of groundwater levels, another dimension of
groundwater modelling is predicting its quality [9, 22, 23].
Fadipe et al. [24] have studied groundwater quality for the
community of Boluwaduro, Ofatedo, Osun State. ,e
concentrations of nitrite, nitrate, iron, and lead have been
investigated by training ANN structure to get the best
possible output. Al-Adhaileh and Alsaade [25] have studied
groundwater quality for various locations of aquifers in
India using various types of artificial intelligence methods. A
thorough literature survey shows that there are several di-
mensions of data-driven models which need to be investi-
gated to choose the best possible model for groundwater
predictions.

In this paper, the ANN techniques and Adaptive Neu-
rofuzzy Inference System (ANFIS) have been investigated
rigorously for the prediction of both the quantity and quality
of flow through an aquifer. ,e areas of research regarding
ANN include the selection of architecture of ANN, the study
of the impact of activation functions, and the choice of an
efficient training algorithm. ,e ANN may have several
types of architectures depending upon the number of hidden
layers, the number of neurons in each hidden layer, and the
activation function [2, 26]. Working of these models further
changes if different types of training functions are used
[2, 20]. ,ere are twelve types of training functions that can
be used. ,e performances of three types of ANN models in
order to predict groundwater levels have been investigated
by Coulibaly et al. [27]. Input delay neural network, re-
current neural network, and generalized radial basis func-
tion models have been tested and it was found that recurrent
neural networks are the most efficient models for predicting
monthly groundwater level fluctuations in the Gondo plain,
northwestern Burkina Faso. Two types of architectures of
ANN have been applied to study groundwater modelling by

Nordin et al. [28]. Quantities of different effluents in
groundwater have been predicted. ,e model was applied to
real data from groundwater in Faisalabad, the largest in-
dustrial city of Pakistan. Seven categories of ANN archi-
tectures and training algorithms have been applied by
Daliakopoulos et al. [29] to forecast monthly groundwater in
Messara Valley in Crete, Greece. ,ey observed that the
standard feedforward ANN with the Levenberg-Marquardt
algorithm provided the best results for forecasts up to
18months. Yoon et al. [30] applied ANN with the back-
propagation algorithm as a training function to forecast
groundwater levels in the beach of the coastal town of
Mukho, Donghae city, Korea, on a short-term basis. ,ey
found some degree of uncertainty in ANN results and
suggested that these should always be designed very care-
fully. Lohani and Krishan [31] also used backpropagation
algorithm as training function in ANN to simulate
groundwater level changes in Punjab, India districts of
Patiala, Faridkot, Ludhiana, and Ferozepur. ,ey found that
groundwater levels can be successfully predicted with ac-
ceptable accuracy for future six months using ANN-back-
propagation algorithm as training function. ,e process of
learning in advanced types of ANN is achieved by the use of
a training algorithm which is similar to optimization [22].
,e main aim in each iteration of ANN learning/training is
to minimize the error between the predicted and observed
groundwater levels and concentration of contaminants.

,e weights and biases are adjusted in different trials of
training in an efficient way to obtain a global minimum with
the help of the training algorithm. ,ere are about 12 dif-
ferent training functions for the multilayer perceptron. ,e
ANN will achieve the best performance in the minimum
possible computer time if the most efficient training function
is used. Performances of only a few out of 12 have been
reported in past studies. Hence, in this paper, we have
compared the performances of the five most important
training functions to simulate the levels and quality of
groundwater around pumping stations of Buraydah, Qas-
sim, Saudi Arabia.

,ere are several parameters/contaminants which need
to be investigated for studying the quality of the ground-
water. However, the main objective of this paper is to
compare the performances of various ANN and ANFIS
models, so only a few quality parameters have been chosen to
make the comparison visible and comparatively easier. TDS,
Fe, and Mn were easily available from recorded data.
,erefore, these three contaminants have been selected for
the quality study. Another point is worth mentioning here
that the available data consists of annual values of con-
centration and groundwater levels. Hence, the investigation
regarding seasonal variability is out of the scope of this
paper.

2. Materials and Methods

2.1. Methodological Framework. In this paper, two types of
techniques, the hydraulic model MODFLOW and the data-
driven models (ANFIS and ANN), have been used to predict
the groundwater quality and quantity for the Saq Aquifer. A
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conceptual comparison of the two techniques is given in
Table 1. An overall methodology framework is shown in
Figure 2. ,ree main steps are involved in this research
work. ,e first step comprised data collection, including
pumping rates, groundwater levels, well locations, the
concentration of contaminants, and parameters of the

aquifer. ,e data for pumping rates, groundwater levels, and
concentration of contaminants have been normalized in the
case of ANFIS and ANN models. ,e second step was to
calibrate/train/test/validate as per the requirement of both
categories of models (hydraulic/ANFIS andANN). Part of
the data (say 60%) was used for calibration/training, and the

Study area identification and collection of baseline data+Analysis of data and its normalization

Hydraulic Modeling (Use of MODFLOW

Developing Maps and Pumping Wells Demarcation

Data Sheets Preparation (Parameters of Aquifer and Pumping-rates)

Boundary-Conditions Selection and Development

MODFLOW Calibration &Validation

Analysis of various pumping rate scenarios to study the impact on aquifer depletion with respect to
both the quality and quantity

groundwater quantity (groundwater levels using MODFLOW MODFLOW 

Simulation of groundwater quality (groundwater contaminants using MODFLOW 

MODFLOW model

Quality Quantity

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Simulation Using Hydraulic Model

ANFIS Modeling (Generalized bell-shaped membership function) with 100 number of epochs)

ANN modeling (Different types of architecture, 2 and 3 hidden layers with 5, 10, and 5 neurons
in each layer, and three training functions)

ANN2

ANN3

ANN1

ANN4

ANN5

5 Neurons

10 Neurons

15 NeuronsThree hidden layers

Two hidden layers

Sensitivity Analysis

Figure 2: Groundwater modelling framework to explore the impacts of pumping on depletion of aquifer.
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remaining (40%) was used for validation/testing. It is worth
mentioning that calibration and validation were done for
both the quantity and quality of groundwater. Hydraulic
parameters were adjusted to obtain accurate groundwater
levels at certain locations after a certain model runtime as
close to the observed groundwater levels as possible. ,e
calibration of the pollutant transport model has mainly been
done by adjusting the contaminant transport parameters
(dispersion coefficient, etc.) until the observed concentration
values were consistent with the model’s predicted values. Six
wells were processed and used as concentration observation
wells with their coordinates and historical records of
groundwater levels.

,e data were divided into two parts, 60% for calibration
and 40% for validation of the hydraulic model, and three
parts, 60%, 20%, and 20%, for the training, validation, and
testing of ANFIS/ANN models, respectively. A computer
program (coding) was prepared in MATLAB to develop
ANFIS/ANN models to achieve the required objectives.

Sensitivity analysis of parameters was made to see the
impact of various hydraulic and quality parameters on
model results. Step three included the application of the
chosen model for future predictions of groundwater quality
and levels to study the aquifer depletion in both quality and
quantity. Due to the phenomenal increase in population and
high living standards of people, there is an increasing trend
in groundwater use [32]. Eight future scenarios for different
pumping rates (as given below) have been tested to inves-
tigate the depletion of an aquifer with respect to both quality
and quantity. ,e farthest optimistic scenario, farthest
pessimistic scenario, and possible scenarios between the two
extremes have been examined as given in Table 2.

2.2. StudyArea. ,e study area included the most important
area of Saq Aquifer located in the Qassim Region, as shown
in Figure 3. Qassim region is one of the important regions of
the Kingdom of Saudi Arabia. It is characterized as an arid
region. It has an area of approximately 80,000 km2, located
between latitudes 25°00′ and 27°00′ N and longitudes 42°30′
and 45°00′ E [2, 5]. It has an altitude ranging between 600
and 850m above sea level. Qassim has a population of nearly
1,423,935 capita as per 2017 records. It is the second-largest
agricultural region in Saudi Arabia, and groundwater from
the Saq Aquifer is available easily. ,e region comprises a
desert climate, characterized by cold and rainy winter and
hot summer with low humidity. ,e evaporation is nearly

4500mm per annum on average. ,e summer temperature
is as high as 49°C during the daytime and 36°C during the
nighttime. However, the winter temperature may sometimes
fall below 0°C. ,e average annual rainfall in Qassim Region
is about 125mm [2]. ,e main source of water supply to the
region is groundwater extracted mainly from the Saq
Aquifer, which is one of the most important aquifers in the
Kingdom [5, 33]. It has a very vast outcrop, which spreads
over a length of approximately 1200 km only in the Kingdom
of Saudi Arabia and joins the border of Jordan as far south as
latitude 24°30′ N and longitude 45°00′ E. ,e huge aquifer is
confined in nature with a thickness varying from 400m in the
southern part to 700m in its northern part. ,e part of the
aquifer under study has an average thickness of about 500m
[2]. ,e strata consist of sandstone having medium to course
size. A few areas comprise sandstone of fine size at local levels.
Most of the private and public tube wells are partially pen-
etrating, with 125m screen and a depth of approximately
650m [2]. Wadi Al-Rummah is considered a big valley that
passes through the Saq area in the Qassim Region. ,e Saq
Aquifer has a high salinity value in the area near Wadi Al-
Rummah compared to the area away fromWadi Al-Rummah.
Recharge fromWadi, agriculture processes, and effluent from
wastewater treatment plants are essential factors that may
contribute to its comparatively higher salinity in the sur-
rounding area of Wadi Al-Rummah [5].

2.3. Description of Hydraulic Model (MODFLOW)

2.3.1. Groundwater Levels and Flow Modelling. ,e
groundwater flowmodelling is highly complicated [34] as it is
governed by partial differential equations as given below [35].

z
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(1)

where the parameters “Kxx,” “Kyy,” and “Kzz” represent the
hydraulic conductivities in the x, y, and z directions, re-
spectively; the groundwater head is expressed by “h”; “Ss” is
the parameter called the specific storage of the aquifer; the
source/sink is represented by W; and “t” is time. A denser
mesh was created at the locations of wells to model the wells
as accurately as possible [36–39].

Table 2: Future scenarios for pumping rates.

Scenario
no. Description Scenario

no. Description

1 Assuming a decrease in the pumping rate by 1% yearly 5 Assuming the pumping rate to increase 3%
yearly

2 Assuming the present pumping rate to continue during the
entire period 6 Assuming the pumping rate to increase 4%

yearly

3 Assuming the pumping rate to increase 1% yearly 7 Assuming the pumping rate to increase 5%
yearly

4 Assuming the pumping rate to increase 2% yearly 8 Assuming scenario 2 with an artificial
recharge case
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Visual MODFLOW is a commercial graphical user in-
terface. It has unique features in which users have the ability
to use Excel files, Surfer grids, GIS, and AutoCAD data as
input files instead of the form of text files. Also, the results
can be shown in the charts and contour maps.,ese features
help in lowering the execution time and making the analysis
of results easier [37–39]. In addition to finite element, there
are many finite difference schemes to solve (1), including
explicit finite difference and implicit finite difference. ,e
model MODFLOW uses an implicit finite difference scheme
to achieve the solution of equation (1). ,e input and output
data for MODFLOW are presented in Table 3. Selection of
the mesh size and appropriate boundary conditions is a

highly challenging task in large aquifers like Saq. In this
paper, a rectangular type of mesh of 30 km× 20 km was
developed by creating 80 rows and 70 columns; in one case,
slightly bigger area was modelled in case of studying the area
around Wadi Al-Rummah. ,e numbers of columns and
rows for the mesh around the pumping wells were signifi-
cantly increased to determine a highly dense mesh for the
prediction of the quantity and quality of groundwater as
accurately as possible. ,e thickness of the aquifer in the
vertical direction was taken as approximately 500m with an
impermeable cover of about 628m above 500m thick layer
of Saq Aquifer [2, 33]. As mentioned above, the pumping
wells are partially penetrating with a 125m long screen.

Figure 3: Map of the study area showing the locations of pumping wells, Saq in the Qassim Region, and Saq outcrop.
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,erefore, for simulating the effects of well screen accurately,
the confined 500m thick aquifer has been divided into four
layers of equal thickness (125m each). Accordingly, five
layers of 631, 125, 125, 125, and 125m thickness have been
adopted (the top 631m layer being impermeable) (Figure 4).

2.3.2. Quality Modelling. For groundwater quality investi-
gations, the transport and concentration of contaminants
are modelled. Hence an additional equation is required for
quality modelling on the basis of the transport of con-
taminants. ,e equation given below is a partial differential
equation for the three-dimensional transport of contami-
nants in a groundwater flow system [41]:

z∁
zt

�
z

zxi

Dij

z∁
zxi

􏼠 􏼡 −
z

zxi

υiC( 􏼁 +
qs

θ
Cs + 􏽘

N

1
Rk, (2)

where “C” is the dissolved concentration of contaminant k in
groundwater, “θ” is porosity of the subsurface porous me-
dium, “Dij” is hydrodynamic dispersion coefficient, “xi” is
the distance along the respective Cartesian coordinate axis,
“vi” is seepage or linear pore water velocity, “qs” is volu-
metric flow rate, “Rk” is the chemical reaction term, and “Cs”
is the concentration of the source [41, 42].

,ere are several techniques to solve (2) combined with
equation (1). Finite difference and finite element are the
most commonly used techniques. Simultaneous solutions of
equations (1) and (2) by numerical methods are used for
groundwater quantity and quality modelling, which is a
challenging task. Several commercial packages are available
for this purpose. MODFLOW is used in this paper to model
both the quality and quantity of groundwater.

All the above parameters described under Section 2.3.1
and used in the prediction of groundwater levels were kept
the same for contaminant transport simulations (quality

Table 3: Input values of data for MODFLOW.

Required data Data description/estimation Adopted values of data
Transmissivity and
conductivity

Cooper-Jacob technique applied on pumping test to estimate the
hydraulic conductivity of Saq Aquifer in Qassim Region [33, 40]

T� 0.024 to 1.62m2/minute,
Kyy �Kxx �Kzz � 2.8m/day

No. of aquifer layers Published research papers [2, 33] Adopted layers� 5, each of 631, 125, 125, 125,
and 125m, respectively

Mesh size By running model with different mesh sizes and choosing the best As much dense as possible. It was further
made dense around the wells

Pumping rates As per data collected from the Ministry of Environment, Water,
and Agriculture, Saudi Arabia

Public and private tube wells data available
from 1980 to 2018

Water levels (a) As per data collected from the Ministry of Environment, Water,
and Agriculture, Saudi Arabia

Public and private tube wells data available
from 1980 to 2018

Initial conditions As per data collected from the Ministry of Environment, Water,
and Agriculture, Saudi Arabia Water levels at the start time of simulations

Boundary conditions Calibrated assuming general head boundary conditions Highly challenging work

Storage coefficient Cooper-Jacob technique applied on pumping test to estimate the
hydraulic conductivity of Saq Aquifer in Qassim Region [33, 40] 2.5×10 – 3 to 6.3×10 – 5

Contaminant
concentrations Recorded values Recorded data

Ground
surface

Impermeable
Layer

Screen

Saq Layer

-500

-375

-250

-125

AEMSL = 628

Monitoring well

Legend

Impermeablle Layer

Saq Layer 1

Saq Layer 2

Saq Layer 3

Saq Layer 4

AEMSL: Averge Elevation Above Mean Sea Level

0

Figure 4: Layers of the Saq Aquifer for MODFLOW models (after Almuhaylan et al. [2]).
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modelling). ,e constant concentration option has been
selected as a transport boundary condition in the Visual
MODFLOW. Average values of TDS, Mn, and Fe during
2010 were taken as initial values in the model. To assign
initial concentration values, “Assign” from the menu bar of
MODFLOW was selected, and the values of initial con-
centration were added in “Assign Window.” ,e MT3DMS
module of Visual MODFLOW was used to simulate the
contaminants transport route and concentration of con-
taminants in groundwater. ,is module solves (2) coupled
with (1) by finite difference technique. ,e standard dis-
persion parameters have been adopted. ,e option of sat-
urated constant density was chosen. ,e calibration of the
contaminant (TDS, Fe, and Mn) transport model was ex-
ecuted by adjusting the contaminant transport parameters
(dispersion coefficient, etc.) until the observed concentration
values of TDS, Fe, and Mn were consistent with the pre-
dicted values of the model for these contaminants. As de-
scribed above, the six wells were used as the observation
wells for concentration. ,e coordinates of these wells,
concentration of TDS, Fe, and Mn, and historical records of
groundwater levels were provided to the model.

2.4. Artificial IntelligenceModels. In groundwater modelling,
the application of models based on artificial intelligence (AI)
is becoming highly popular and is useful in fact [2, 20, 22, 26].
AI techniques have been effectively used in water resources
planning/development/management, hydrological processes,
water quality predictions, and operation of reservoirs [43–46].
,e AI models are gaining importance and expansion in
application scope because of their ability to generalize the
relationships for a complex phenomenon based on the
learning process [47, 48]. However, the use of AI models in
the area of specialization of prediction of both groundwater
quality and quantity is limited and is still a vital and critical
research issue [47–49]. A general layout of AI models is
shown in Figures 5(a) and 5(b).

2.4.1. Artificial Neural Network (ANN) Models. In ANN
type models, the neurons play a key role in determining the
values of output variables comparable to the target values
from input variable values. As shown in Figure 5(a), there
are mainly three layers: input, hidden, and output layers. An
internal-structural procedure is performing the calculations.
,e hidden layers in an internal-structural procedure, that is,
the backbone of the predictions, work as the back-
propagation (BP) and the feedforward mechanism for de-
livering outputs with required precision.,e case of multiple
hidden layers generates the well-known “Multilayer Per-
ceptron” (MPL). ,e training function is another important
entity of ANN models which are of several types [50]. ,is
paper has used 5 distinct training functions (Table 4). On
these bases, the ANN models are termed as ANN1, ANN2,
ANN3, ANN4, and ANN5. Both the triple and double
hidden layers have been tested. ,ese are represented by the
symbol “DL” for the double layer and the symbol “TL” for
the triple layer. ,e hidden layers may have a different
number of neurons which need to be fixed for the best

possible results [51–53]. ,e hit-and-trial method has been
used in this research for the selection of the best possible
number of neurons. A model is considered to be precise if its
predictions are matching to the measured values. In modern
techniques of ANN, it is accomplished by combining an
effective optimization methodology in which weights are
adjusted ANN process to find the highest possible accuracy.

2.4.2. Adaptive Neurofuzzy Inference Systems. An effective
optimization subroutine with a hybrid AI model may be-
come a basis for a robust technique for modelling the quality
and quantity of groundwater. It is termed as an “Adaptive
Neurofuzzy Inference System” (ANFIS). ANFIS can be used
to solve a complex nonlinear hydraulic phenomenon with
high precision [2, 50]. Figure 5(b) shows the structure of
ANFIS, including five layers (Table 5).

2.5. Model Performance Evaluation. ,e performances of
models in this paper are represented by two statistical pa-
rameters, the Nash-Sutcliffe Model Efficiency (NSE) and
Mean Square Error (MSE). Both parameters are based on
some weighted difference between the recorded and simu-
lated values of variables (groundwater levels, TDS, Fe, and
Mn). About 38 years (1980–2018) of data for groundwater
levels and pumping rates and long records of TDS, Mn, and
Fe have been used to evaluate the model performance for
different runtime stages (training/calibration, testing, and
validation). Many of the previous studies have utilized a
similar approach [2, 50, 54].

,e Nash-Sutcliffe Model Efficiency (NSE) is given as

NSE � 1 −
􏽐

n
i�1 GWL

o
i − GWL

p
i􏼐 􏼑

2

􏽐
n
i�1 GWL

o
i − GWLavg􏼐 􏼑

2, (3)

where “(GWLo
i and GWL

p
i )

2” denote the observed and
predicted groundwater levels, respectively, for the ith data
value and “n” is the total number of observed/predicted data
points. ,e NSE values ranging from 0.75 to 1.0 may be
termed as “very good,” 0.65 to 0.75 may be taken as “good,”
and 0.5 to 0.65 as “satisfactory,” and the values ranging
between 0.4 and 0.5 may be expressed as “acceptable” re-
garding the model’s performance [55, 56].

,e Mean Square Error (MSE) is given as

MSE �
1
n

􏽘

n

i�1
GWL

o
i − GWL

p
i􏼐 􏼑

2
. (4)

In the case of quality modelling,GWLwill be replaced by
the values of TDS or the concentrations of Mn and Fe in (3)
and (4).

3. Results and Discussion

3.1. Quantity Modelling

3.1.1. Results of Hydraulic and AI Models. ,e results of
calibration, adjustment of general head boundary condition,
and validation are shown in Figures 6(a) and 6(b).
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Figure 5: AI modelling approach. (a) Flowchart representing the MLP (a feedforward-ANN). (b) Five functional blocks in ANFIS.

Table 4: Various training functions used for ANN models.

Model Description of training function Function
ANN1 Scaled Conjugate Gradient BP Trainscg
ANN2 Levenberg-Marquardt BP Trainlm
ANN3 Bayesian regularization Trainbr
ANN4 BFGS Quasi-Newton BP Trainbfg
ANN5 Resilient backpropagation (rprop) Trainrp
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Figure 6(a) indicates that a value of NSE equal to 0.9 has
been achieved. It is quite a reasonable value. It falls in the
range of “very good” as per the conditions stated by previous
researchers [55, 56]. ,e simulated versus recorded graph
shown in Figure 6(b) is also close to the 1 :1 line (the 1 :1 line
represents ideal fitting between the simulated and recorded
groundwater levels). ,e NSE equal to 0.87 has been ob-
tained in validation which advocates that the validation
results are also acceptable. As mentioned in Section 2.3, one
of the highly challenging and original tasks of this research
work is the adjustment of the general head boundary
condition for the hydraulic model.,e results represented in
Figures 6(a) and 6(b) show that this task has been executed
plausibly. Some of the simulated groundwater depths have
been minutely underestimated, whereas others are slightly
overestimated. Previous research works by Lyons et al. [57]
and Mohanty et al. [58] support these results. Such results
are acceptable in groundwater modelling. ,ere are several
reasons for this aspect. Firstly, the selection of the hydraulic
parameters of the model, including hydraulic conductivity
and specific storage, always contributes to the uncertainty in
the model results. Secondly, the quality of data in techno-
logically developing countries is not that excellent to obtain
very high efficiencies of a groundwater model. ,irdly, the
local grid refinement may have a significant impact on
parameter estimates, which can ultimately affect the mod-
elling results. Finally, the accuracy of the results also depends
upon how sophisticated the optimization technique that has
been used in MODFLOW. In short, it is concluded from

these results that the traditional methods (physical and
numerical models) rely on various input values of param-
eters and the underlying mechanisms are normally too
complicated to grasp. Hence the data-driven approaches
should also be tested.

,e results of ANN are shown in Figures 7(a)and 7(b).
,e hit-and-trial method was used to find the optimal value
of neurons in the case of all 5 ANN models (ANN1, ANN2,
ANN3, ANN4, and ANN5). ,e best performance was
noticed for ANNs with 10 hidden neurons in both the two-
layer architecture and the three layer architecture. ,e
performance for 5 or 15 neurons was not as good as that for
10 neurons. Within an ANN, a neuron is a mathematical
function that models the functioning of a biological neuron.
,ere is a lot of literature on the function of neurons. How
the behavior of ANN changes with changing the number of
neurons is also a topic of reading. However, engineers are
interested in obtaining the best solution of an applied
problem. ,erefore, the exercise performed in this paper is
sufficient for solving the groundwater problem at hand. So,
the use of 10 neurons has been adopted in the comparison of
ANN for the double layer (DL) and the triple layer (TL).,is
exercise was done for model ANN1 only. ,e values of NSE
equal to 0.97, 0.81, and 0.92 for training, testing, and vali-
dation, respectively, in case of TL have been obtained in
comparison to the NSE values of 0.95, 0.94, and 0.96 for
training, testing, and validation, respectively, in case of TL.
,e performance of themodel with NSE values ranging from
0.75 to 1.0 may be termed as “very good.” ,e MSE error is

Table 5: Structural layers of ANFIS.

Layer no. Description

1 A fuzzy layer in which every intersection is called an adaptive node. ,e member functions may be treated as nodal functions
like the generalized bell, and Gaussian functions may be used as nodal functions

2 A product layer in which every nodal output represents the firing strength of a rule
3 A normalized layer in which each node expresses the firing strength of a rule in the normalized form

4 A defuzzy layer in which each node represents an adaptive node with a nodal function specifying the influence of the rules in
terms of the overall output

5 A total output layer that describes the defuzzified output values
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Figure 6: MODFLOW results. (a) ,e values of NSE. (b) Comparison of simulated versus observed groundwater depths and 1 :1 line (45o
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also very small in the range of 0.002 to 0.004. Hence the
performances of both models are “very good.” However, the
ANN with TL performs comparatively better than the ANN
with DL. Deep understanding of the behaviors of ANNs with
DL and TL needs a lot of reading of the literature on ANN,
but, for engineers working in the field of groundwater hy-
drology, the results of this part of the paper may be sufficient.
Similar results have been reported by Stylianoudaki et al.
[50] and Almuhaylan et al. [2]. Hence, for further analysis,
the ANNs with 10 neurons and TL have been used.

,e performances of five ANN models are shown in
Figures 8(a) and 8(b). According to Figure 8(a), the per-
formance of ANN1 (the Scaled Conjugate Gradient training
function) is observed to be comparatively better than those
of the other ANN models (ANN2: Levenberg-Marquardt
training function, ANN3: Bayesian regularization training
function, ANN4: BFGS Quasi-Newton BP training function,
and ANN5: resilient backpropagation training function).
,e Scaled Conjugate Gradient is an efficient training al-
gorithm having highly quick convergence with a very high
degree of accuracy. Most probably, comparatively better
performance of ANN1may be due to the reason that a highly
effective optimization routine has been used in the Scaled
Conjugate Gradient for obtaining the best possible global
minimum [2, 57, 58]. However, Figure 8(a) shows that the
NSE values range from 0.65 to 0.97 for almost all the ANN
models. Hence, the overall performance of all the fivemodels
can be categorized as “good” to “very good.” ,e value of
Mean Square Error (Figure 8(b)) ranging from 0.02 to 0.03
further strengthens these findings. Quite similar predictions
have been reported by the previous research works
[2, 17, 50, 59, 60]. However, most of these publications lack
in one way or the other covering a wide range of aspects of
groundwater flow, which makes the present research a
comprehensive study and an original contribution.

Figures 9(a), 9(b), and 9(c) show modelling results re-
garding the quantity of groundwater by various techniques.
Overall values of NSE for training, testing, and validation are
shown in these figures. It is observed that the performances
of ANN and ANFIS models are comparatively better than
that of the hydraulic model (MODFLOW). ,e values of
NSE are noticed to be 0.998 for ANFIS1, 0.997 for ANFIS2,
0.997 for ANN1, 0.995 for ANN2, 0.996 for ANN3, 0.995 for
ANN4, and 0.995 for ANN5 to 0.997 for ANN and 0.9 for
hydraulic model (Figure 9(a)). ,e predictions by recent
publications also support our simulations [12, 13, 15, 16, 50].
Figures 9(b) and 9(c) further confirm this finding. ,e
simulated versus recorded graph is close to the 1 :1 line in
case of ANN and ANFIS [61–63]. As stated above, the 1 :1
line represents the best matching between the simulated and
recorded groundwater levels. In the case of hydraulic model,
the simulated groundwater depths in the beginning have
been minutely underestimated, whereas others are slightly
overestimated (Figure 9(b)). ,e reason for this has already
been explained in Section 3.1.1.

3.2. Quality Modelling

3.2.1. Results of Hydraulic and AI Models. ,e overall results
of ANN, ANFIS, and hydraulic models are compared in
Figures 10(a)–10(g). In quality modelling, the performances
of the double-layer and triple-layer ANN models are found
to be nearly similar. ,ere is not much difference between
the NSE values for the DL and TL architecture (visual
comparison is made in Figures 10(a) and 10(b), and exact
values of NSE can be seen in Tables 6 and 7).,eMSE values
given in Figures 10(c) and 10(d) also confirm this finding.

Regarding five ANN models, the performance of ANN1
is outstanding. ,e NSE values are 0.99, 0.756, and 0.859 for
TDS, Fe, and Mn, respectively, in the case of TL and 0.989,
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Figure 7: ANN1 results. (a) ,e values of NSE. (b) ,e values of MSE.
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0.769, and 0.843 for TDS, Fe, and Mn, respectively, in the
case of DL architecture of model. However, the perfor-
mances of the other four ANN models are also acceptable
(Figures 10(a)–10(g), Figures 11–11(d), and Table 6 and 7).
Only five or six values of NSE out of 30 are less than 0.7.

According to Figures 10–10(d), the performances of
ANFIS1 and ANFIS 2 are better than that of ANN. ,e
values of NSE range from 0.886 to 0.998, although the
performances of ANN and hydraulic models can also be
rated as “good” to “excellent.” ,e values of NSE for ANN1
in the case of TDS, Fe, and Mn are 0.99, 0.756, and 0.859,
respectively.,e values of NSE for ANN2 in the case of TDS,
Fe, and Mn are 0.995, 0.642, and 0.738, respectively; for
ANN3, these values are 0.91, 0.638, and 0.729, respectively;
for ANN4, these values are 0.939, 0.73, and 0.84; for ANN5
in the case of TDS, Fe, and Mn, these values are 0.937, 0.71,
and 0.655 respectively; for ANFIS1 in the case of TDS, Fe,
andMn, these values are 0.998, 0.953, and; for ANFIS2, these
values are 0.96, 0.999, 0.93, and 0.887, respectively. However,
Figures 10(e)–10(g) and Taylor’s Diagrams (Figures 11(a)–
11(d)) show different behavior. Wide range scatters from 1 :
1 line for predicted values indicate that the performances of
the models are not that good, as shown by NSE and MSE.
Hence the researchers should not always depend upon the
NSE and MSE values only to assess the performance of
models. In Taylor’s Diagram, the graphs showing predicted
versus measured results and some other statistical param-
eters should also be investigated. ,is fact is confirmed by
Taylor’s Diagram (Figures 11(a)–11(d)). ,e discrepancy in
model results may be due to several reasons. ,e code se-
lection, impacts of simplifying assumptions in conceptual-
ization, spatial, temporal resolution, and data accuracy are a
few parameters that play an important role in determining
the reliability and accuracy of the model predictions.

,e standard deviation values for different parameters
are given in Table 8. ,e maximum concentrations of TDS,
Fe, and Mn in the groundwater have been found to be
3553mg/L, 4.29mg/L, and 1.49mg/L, respectively. ,e
corresponding minimum values are 456mg/L, 0.78mg/L,
and 0.19mg/L, respectively. ,e standard deviation and the
ranges of minimum and maximum values of TDS and
concentrations of Fe and Mn show that there is a large
variation in amounts of contaminants. Furthermore, the
maximum values of TDS and concentrations of Fe and Mn
exceeded the WHO standard limits set for drinking, which
are 700mg/L, 0.3, and 0.1mg/L, respectively, for TDS, Fe,
and Mn. Hence the studied groundwater needs treatment
before its use for drinking purposes.

3.3. Results of Sensitivity Analysis. It was found from sen-
sitivity analysis that hydraulic conductivity is the most
crucial hydraulic parameter as compared to the other pa-
rameters. Any small change in hydraulic conductivity results
in significant changes in the predicted groundwater levels.
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Figure 10: Results of the ANN, ANFIS, and hydraulic models. (a) Values of NSE for DL ANN, (b) values of NSE for TL, (c) values ofMSE for DL
ANN, (d) values of MSE for TL ANN, (e) predicted versus recorded TDS, (f) predicted versus recorded Fe, and (g) predicted versus recordedMn.

Table 6: NSE values for DL and TL ANN Models.

Model
TL NSE values DL NSE values

TDS Fe Mn TDS Fe Mn
ANN1 0.99058 0.75591 0.85916 0.98956 0.76975 0.84309
ANN2 0.99473 0.64238 0.73868 0.9949 0.6594 0.75012
ANN3 0.91311 0.6384 0.72918 0.65739 0.81614 0.94077
ANN4 0.93889 0.73029 0.84036 0.94077 0.74665 0.73341
ANN5 0.93736 0.70563 0.65495 0.71182 0.81811 0.99058
ANFIS1 0.99815 0.95308 0.96003 0.99815 0.95308 0.96003
ANFIS2 0.9987 0.93051 0.8866 0.9987 0.93051 0.8866
HM 0.989 0.78665 0.79341 0.989 0.78665 0.79341
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Table 7: MSE values for DL and TL ANN Models.

Model
Quality parameters

TL NSE values DL NSE values
TDS Fe Mn TDS Fe Mn

ANN1 0.000272 0.008811 0.002763 0.000387 0.008324 0.003474
ANN2 0.000166 0.016562 0.005208 0.000145 0.011591 0.004689
ANN3 0.002585 0.012132 0.004986 0.000213 0.011575 0.003553
ANN4 0.001848 0.009636 0.003139 0.001645 0.009123 0.005025
ANN5 0.001816 0.010232 0.006052 0.002927 0.01019 0.00364
ANFIS1 5.24E−05 1.87E−03 1.64E−03 5.24E−05 1.87E−03 1.64E−03
ANFIS2 9.01E−05 0.00273 0.002249 9.01E−05 0.00273 0.002249
HM 0.001296 0.008911 0.002963 0.001296 0.01019 0.00414
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Hence it is the key parameter in the groundwater quantity
modelling and must be estimated with very high accuracy
either by pumping tests or by using a powerful optimization
technique in the calibration of the model.

,e sensitivity analysis of contaminant transport model
parameters showed that sensitivity from small to large was as
follows: hydraulic conductivity, porosity, and dispersion
coefficient. ,e results of sensitivity analysis are quite re-
alistic. ,e most important parameter in contaminant
transport is the dispersion coefficient.

3.4. Future Predictions (8 Scenarios). ,e future predictions
of groundwater depths have beenmade byMODFLOW for 8
different scenarios, as shown in Figures 12(a) and 12(b). ,e
drawdown values up to the year 2070 with respect to the
groundwater levels in 2020 are found to be 52, 70, 82, 90,
105, 118, 135, and 66 for scenarios 1 to 8, respectively
(Figure 12(a)). ,e scenarios have developed with respect to
the reference pumping rates in 2020. It is observed that even
if the pumping rates are not increased as per increase in the
population, the drawdown is very high (70m). ,e decrease
in pumping rates also results in a drawdown of 52m. ,is
alarming situation not only threatens the water stress but
also warns of a very bad pollution situation (Figure 12(b)).
,e Saq Aquifer is a confined aquifer. ,e confining cover
has another unconfined aquifer called Qassim Aquifer. It has
shallow depths of groundwater which is highly contami-
nated. Extremely high drawdowns in the Saq Aquifer may
cause excessively low pressures in the underlying aquifer,
permitting polluted water from overlying Qassim Aquifer to
travel downwards. ,is may cause a severe ecological di-
saster. Hence adaptation of highly effective sustainable
planning, development, and management strategies be-
comes inevitable.
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Figure 11: Taylor’s Diagram showing correlation, standard deviation, and Root Mean Square Error (RMSE, represented by blue contours)
for (a) TDS, (b) Fe, (c) Mn, and (d) groundwater levels.

Table 8: Standard deviation of data from different sources/models.

Model TDS Fe Mn
Measured 466.3118 0.635919 0.170473
ANN1 447.1221 0.513361 0.153118
ANN2 445.2609 0.538902 0.103719
ANN3 475.0653 0.367694 0.131233
ANN4 385.5242 0.469438 0.157027
ANN5 464.1002 0.432464 0.116558
ANFIS1 459.8986 0.592823 0.161822
ANFIS2 459.3005 0.579713 0.152165
HM 442.9413 0.474132 0.161737
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4. Conclusions and Recommendations

,e MODFLOW, a well-known hydraulic model, has been
applied to forecast the variations in the groundwater
quantity and quality of the Saq Aquifer in the Qassim Re-
gion. AI models have also efficiently simulated the quantity
and quality of groundwater in this aquifer. Different ar-
chitectures of ANN with triple and double layers having 5,
10, and 15 hidden neurons in every layer have been in-
vestigated. Five different categories of training functions are
examined in ANN models. Furthermore, two versions of
ANFIS have been utilized successfully to predict the de-
pletion of aquifer with respect to both quantity and quality.
,ree main quality parameters, TDS, Fe, and Mn, have been
investigated.

,e study concluded that both versions of ANFIS
(ANFIS1 and ANFIS2) can efficiently predict groundwater
levels and contaminants (TDS, Fe, and Mn) with NSE up to
0.99. ,e ANN model provides the best results with 10
hidden neurons in each hidden layer. ,e performance of
ANN with the architecture having three layers and 10
neurons in each layer is better than the one with two layers
in case of the quality and quantity modelling of

groundwater. ,e Scaled Conjugate Gradient training
function in ANN has comparatively better performance
compared to the Levenberg-Marquardt, Bayesian regula-
rization, BFGS Quasi-Newton BP, and resilient back-
propagation training functions for predicting groundwater
levels and contaminants. ,e performance of the hydraulic
model is good, but, for the given set of data of pumping
wells and contaminants, its performance is not as good as
that of the ANN or the ANFIS models. However, it is the
most robust and reliable model based on the laws of
physics. ,e hydraulic modelling is comparatively more
demanding than the ANN and ANFIS models for both the
contaminant and flow transport.

,ere will be extremely excessive drawdowns in
groundwater levels of the Saq Aquifer (ranging from 70 to
135m with respect to the reference water levels in 2020) for
various scenarios of pumping rates. Even with the constant
rate of pumping without looking at the needs of the in-
creasing population in the region, the drawdown is 70m for
the coming 50 years. ,e concentrations of contaminants
(TDS, Fe, and Mn) are also increasing significantly. ,ere
may be a major ecological disaster if preventative actions are
not adopted. However, the constant rate of pumping may
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Figure 12: Future prediction results of groundwater depths/aquifer depletion for various pumping rate scenarios.
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result in a comparatively increased life of the Saq Aquifer as
compared to the other scenarios of pumping.,e drawdown
will reduce by 33% over the next 50 years’ period compared
to the pumping at increased rates to meet the water needs of
a growing population. ,ere is a negligible amount of re-
charge to the Saq Aquifer, which may fade away, causing
severe scarcity of water in the future. ,ereby, some alter-
native sources of water should be established to fulfil the
goals of the Kingdom’s Vision 2030.

,e results and models developed in this paper may be
very useful in obtaining the pumping rates for an envi-
ronment-friendly future. For instance, by keeping pumping
rates constant (no increase in pumping), there may be a
substantial increase in the Saq Aquifer’s life. A 33% decrease
in drawdown may be accomplished in the coming 50 years
by implementing groundwater preservation strategies
compared to the situation of uninterrupted increase in
pumping rates which otherwise may be necessary tomeet the
water requirements of the promptly rising population. Re-
sults of this research will assist in the planning, development,
and management of stressed water resources in the Gulf
Region, Saudi Arabia, and the arid regions with analogous
water scarcity situations.

An extensive research work to preserve the existing
sources and develop new sources of water is recommended.
Highly efficient technology, extremely accurate and suffi-
cient data, and demarcation of the location of outcrops are of
utmost importance for the study area.
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