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China’s construction industry makes important contributions to energy consumption and pollution emissions. It is signi�cant to
improve energy e�ciency in the construction industry. Since 2011, the introduction of China’s carbon emission trading policy has
had a great impact on energy conservation and emission reduction. �e implementation of the carbon emission trading policy
provides us with an opportunity to �nd solutions to improve the energy e�ciency of the construction industry (EECI) in China. In
this article, the implementation of carbon emission trading is regarded as a quasi-natural experiment, and the impact of the carbon
emission trading policy on the energy e�ciency of the construction industry is evaluated by analyzing the panel data related to the
energy of the construction industry in 30 provincial regions from 2008 to 2016 through a di�erence-in-di�erences method. �e
main conclusions are as follows. First, the carbon emission trading policy can improve EECI. Second, the carbon emission trading
policy can achieve the policy e�ect of improving EECI by optimizing the allocation of construction machinery resources and
enhancing regional technical innovation. At the same time, strengthening government environmental regulation can strengthen
the policy e�ect as well. Finally, some policy implications based on the study are proposed.

1. Introduction

Since the twentieth century, the coordination between
economic development and environmental protection has
gradually attracted the attention of most of the world. To
realize sustainable development, some consensus on envi-
ronmental protection has been reached among many
countries [1]. Climate change is one of the most important
issues, and some international clauses have been signed. For
example, the Paris Agreement reached in 2015 is a measure
for mankind to jointly deal with climate change after the
United Nations Framework Convention on Climate Change
in 1992 and the Kyoto Protocol in 1997, which committed to
reducing greenhouse gas emissions. Representatives of
China signed the Paris Agreement in 2016, which was fol-
lowed by the approval of the National People’s Congress
Standing Committee [2]. In 2020, the President Xi of the
People’s Republic of China announced at the 75th UN

General Assembly that China is striving to peak its carbon
dioxide emissions by 2030 and to achieve the carbon-neutral
target by 2060.

As a matter of fact, the Chinese government has
implemented several policies trying to achieve energy
conservation and emission reduction in the past two de-
cades, and the carbon emissions trading policy is one of
them. Carbon emission trading policy is considered as a
market-oriented environmental regulation [3], which has
been e�ectively carried out in Europe and other regions; and
has recently proved to be an e�ective energy conservation
and emission reduction policy implemented in China by
empirical research [1]. In 2011, China’s National Develop-
ment and Reform Commission (NDRC) declared a pilot
carbon emissions trading scheme, approving Beijing,
Shanghai, Tianjin, Chongqing, Hubei, Guangdong, and
Shenzhen to start carbon emissions trading. In June 2013,
the pilot project gradually started carbon emission trading.
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At the end of 2016, Fujian launched carbon emissions
trading. In 2017, the national power industry issued the
policy. In 2021, the national carbon emissions trading
market opened. ,e implementation of the carbon emission
trading policy in different regions in China covers different
industries. ,e specific industries covered include power,
heat, cement, chemical, metal, petrochemical, automobile,
public construction, etc. [4]. It can be seen that the power,
steel, and cement industries are the key regulated industries.
Looking back at the policy implementation of the first six
pilots, as of December 31, 2016, the seven carbon market
pilots (including Fujian) had a transaction volume of 160
million tons, valued at nearly 2.5 billion yuan [2]. Un-
doubtedly, the implementation of the policy has had a
significant impact on energy consumption in pilots [5].

China’s construction industry is a national pillar in-
dustry, which not only contributes to the world economy;
but also makes important contributions to energy con-
sumption and pollution emissions [6]. Based on life cycle
assessment, the energy consumption of the construction
industry in China has increased rapidly. In 2016, its total
energy consumption was 410 million tons of standard coal,
accounting for about 9% of the whole society, and it qua-
drupled from 2000 to 2016 [7]. Actually, the implementation
of the carbon emission trading policy provides us with an
opportunity to find solutions to the energy consumption
problem in China. In addition, compared with developed
countries, China’s energy technology and management level
are relatively low and underdeveloped, and energy efficiency
is not high [8]. For the construction industry, energy effi-
ciency is a key indicator for evaluating the sustainable de-
velopment of the construction industry [6]. ,erefore, the
study uses energy efficiency to measure and evaluate the
impact of the carbon emissions trading policy on the energy
efficiency of the construction industry in China.

,is article takes the implementation of the carbon
emission trading policy as a quasi-natural experiment.
Difference-in-differences (DID) approach is used to evaluate
the policy effect of the carbon emission trading policy on
EECI, while Propensity Score Matching (PSM)-DID ap-
proach is used to further test the benchmark results and
simulated repeated random sampling is used for the placebo
test. ,e robustness of the benchmark results is further
examined by other methods. ,e article explores three ways
to strengthen the policy effect through mechanism analysis.
At the same time, several influencing factors of EECI are
presented. According to the research results, policy impli-
cations for the implementation of the carbon emission
trading policy to enhance EECI are proposed.

,e rest of this study is organized as follows. Section 2 is the
literature review. Section 3 describes methods and data. Section
4 presents the empirical analysis. Robustness tests are provided
in Section 5. Section 6 explores the mechanism analysis. In the
end, Section 7 is the conclusion and policy implications.

2. Literature Review

,e implementation of carbon emission trading policies
mainly depends on the carbon emission trading system. ,e

carbon emissions trading system refers to a market trading
system for the control of greenhouse gas emissions and
targets greenhouse gas emission allowances or greenhouse
gas emission credits [9]. ,e party that produces more
emissions gets the right to emit coal from the other party,
and the other party produces lower levels of carbon emis-
sions. Buyers can use emissions reductions to mitigate
greenhouse effects and meet emissions reduction goals [10].

,e carbon emissions trading market has been effectively
implemented in Europe, the USA, and other places after
years of development. ,e EU has an earlier and more
mature organization of carbon trading in the world [11].
,ere are many studies to evaluate the policy effect of carbon
emissions trading policy. Lise et al. analyzed the impact of
the EU Emissions Trading Scheme on electricity prices by
studying 20 countries [12]. Martin et al. studied the EU’s
carbon emission system and found that carbon trading could
reduce the pollutants emitted by these companies [13].
Murray and Maniloff demonstrated that a regional emis-
sions trading program of the Regional Greenhouse Gas
Initiative lead to substantial reductions in carbon dioxide
emissions in the northeastern USA [14]. Simulation results
of Choi et al. suggested that South Korea’s emissions trading
scheme had significant abatement effects [15]. As these
studies have shown, carbon emissions trading policies can
reduce carbon dioxide emissions.

In China, recent studies related to carbon emission
trading policy are increasing and varying. Such as the impact
on carbon emission reduction [16], carbon trading prices
[17], carbon market maturity [18], and carbon trading ef-
ficiency [19]. ,e evaluation of the impact of carbon
emission trading policy on the economy and the environ-
ment is one of the main research topics, which is highly
relevant to this study. Dong et al. proved that the carbon
emission trading policy had a significant impact on the joint
benefits of total carbon reduction and air quality im-
provement [20]. ,e empirical work of Chen and Lin
identified the role of carbon emission trading policy in
promoting energy conservation and emission reduction as
an effective policy tool to promote carbon neutrality [21].
Wu et al. confirmed that the carbon emission trading policy
had a significant impact on agricultural ecological efficiency
[22]. Chai et al. called carbon emission trading policy an
effective market-driven environmental regulation policy and
demonstrated it from the perspective of carbon emission
efficiency [11]. ,e fact that China’s coal emissions trading
policy improves regional energy efficiency was demonstrated
in the article of Zhang et al. [5]. More interestingly, the
research results of Yu et al. show that carbon emission
trading policy may significantly reduce urban-rural income
inequality [3], and there are more studies on the evaluation
of carbon emission trading policy.

As mentioned above, the economic and environmental
impact of carbon emission trading policy involves various
aspects. However, there is a gap in the assessment of carbon
emission trading policies involving the construction in-
dustry. As suggested by Zhang et al. [23], future research can
be carried out in sectors and industries most responsive to
carbon emission trading. ,is article focuses on the impact
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of the carbon emission trading policy on EECI, which fills
this research gap. Furthermore, recent articles on the
evaluation of carbon emission trading policy make extensive
use of DID approach [1, 3, 4, 11, 20, 22]. ,ese articles
provide a practical research method for this article. DID
removes the effects of individual heterogeneity and time-
varying factors [24]. Using the DID approach, the net impact
of policy implementation is estimated by comparing the
intervention and control groups before and after the event
[24]. PSM-DID has been also adopted by many researchers
[3, 4, 11, 23], and it can select more suitable samples to
reduce the deviation caused by sample selection [25]. In this
article, DID is used for benchmark estimation, and PSM-
DID is used to further test the estimation results.

In addition, evaluating energy efficiency is of great
significance to energy conservation and improving the level
of energy utilization. Research on EECI focuses on the
measurement of energy efficiency and its influencing factors.
EECI is measured mainly in terms of two methods, Single
Factor Energy Efficiency (SFEE) and Total Factor Energy
Efficiency (TFEE). SFEEmeasurement indicators include the
thermodynamic index, physical-thermal index, economic-
thermal index, and economic index [26, 27]. ,e most
popular SFEE indicator is the economic-thermal index [27],
which is the ratio of economic output to energy con-
sumption and the reciprocal of energy intensity. Hu is the
first to propose TFEE [28, 29]. TFEE considers a variety of
inputs and outputs and uses stochastic frontier analysis
(SFA) and data envelope analysis (DEA) methods to com-
prehensively evaluate energy efficiency. For example, Gao
et al. [30] evaluated embodied energy efficiency and direct
energy efficiency of the construction industry in China by
DEA‒SBM. ,e inputs are energy, capital, and technology,
the outputs are the value added to the construction industry
and the completed area of construction. Wang et al. [31]
estimated the energy efficiency of the Chinese building
industry based on the game cross-efficiency DEA model.
Unlike the study by Gao et al., in their study, energy, capital,
labor, and mechanical equipment are inputs, and gross
output, completed area, and CO2 emission are the outputs.
Even if the same object is being analyzed, the input and
output elements used by different scholars are different.,at
is to say, the research of TFEE without a unified standard is
still in the exploratory stage. Compared with the TFEE
method, the SFEE method is simple, straightforward, easy to
understand, and has a high degree of consensus. ,us, this
article adopts the economic-thermal index calculated by
SFEE method to measure EECI in China.

After the measurement of EECI, influencing factors
analysis is usually carried out, which is relevant to this
article. Liang et al. [6] took urbanization, the per capita GRP,
technical equipment ratio, energy consumption structure,
innovation support, environmental supervision, industry
contribution rate, and industry concentration as market-
ization as exogenous environmental variables, which can
affect EECI in China. Zhu et al. [32] assessed the effects of
technological progress on EECI. Chen et al. [27] listed a table
of the factors influencing energy efficiency from previous
literature, considering energy consumption structure,

industrial development level, industrial open degree, in-
dustrial scale structure, market ownership structure, market
industry structure, market specialization-division structure,
and technological innovation as environmental variables
influencing EECI. Li et al.’s article show that labor pro-
ductivity is considered as an important influencing factor for
the assessment of the carbon emissions peak in China’s
construction industry [33]. Du et al. [34] and Zhou et al. [35]
take the total power of mechanical equipment as an input
variable of carbon emission efficiency similar to TFEE in the
construction industry. Gao et al. adopt technical equipment
rate as an input of TFEE in the construction industry [30].
According to Gong and Song [36] and Liang et al. [6],
urbanization is an important factor of EECI. Chen et al. [27],
Liang et al. [6], and Gong et al. [36] regarded electric
consumption as a percentage of total energy consumption as
the energy consumption structure. In accordance with Chen
et al. [27] and Liang et al. [6], regional R&D expenditure
intensity which stands for technological level is positive to
EECI. Some variables are commonly considered to be related
to EECI.,e following research in this article draws on these
studies to select variables in the model.

Compared with the existing literature, the main research
innovations of this article are as follows: (1) there have been
many evaluations of the impact of carbon emission trading
policy on the economy and the environment in recent years,
but there are few studies on the impact of carbon emission
trading policy on sectors and industries, especially the
impact of carbon emission trading policy on EECI. ,e
widely accepted DID approach taken by these studies
provides the research methodology used in this article.
,erefore, this article adopts DID to evaluate the impact of
carbon emission trading policy on EECI and tries to fill this
research gap; (2) the positive policy effect of implementing
carbon emission trading policy on EECI is confirmed by
DID and some ways to strengthen the effect of carbon
emission trading policy on EECI are explored by regression
and mechanism analysis. Practical policy implications of
carbon emission trading policy for improving EECI are
proposed, which is a contribution that provides a reference
for policymakers.

3. Methods and Data

3.1. DID Model. ,e difference-in-difference method is a
common method for evaluating policy effects. ,is article
uses the DID method to estimate the impact of the carbon
emission trading policy on EECI in China. First, the
implementation of the carbon emission trading policy is
viewed as a quasi-natural experiment in which subjects are
divided into an intervention group and a control group. ,e
intervention group is defined as the group intervened by the
policy, that is, the carbon emission trading policy pilot
regions. ,e control group is defined as the group that is not
intervened by the policy, that is, the non-pilot regions. By
observing the changes in the intervention group and the
control group before and after the implementation of the
policy, the influence of the time effect can be eliminated, and
the net effect of the policy is estimated. In this study, the first
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batch of carbon emission trading policy pilots approved by
NDRC in 2011 is selected as the intervention group. ,e
intervention group included six pilot regions in Beijing,
Tianjin, Shanghai, Chongqing, Hubei, and Guangdong
(including Shenzhen). ,ese six pilots actually launched the
carbon emissions trading market at the end of 2013 and early
2014, so 2014 is considered to be the time for policy
implementation [3, 16]; due to the launch of the carbon
emissions trading market in Fujian at the end of December
2016 and the introduction of carbon emission trading policy
into the national power sector in 2017, the data used are as of
2016 to avoid their interference with the experiment. Re-
ferring to previous researches [3, 4, 16], the DID model is
constructed as follows:

ln eeit � α0 + α1treatipostt + 􏽘 αjXit + μi + ct + εit, (1)

where ln eeit denotes the natural logarithm of EECI at
provincial region i in year t. α0 denotes the constant. α1 and
αj refer to the coefficient of the corresponding term. treati is
the carbon emission trading policy dummy variable, if the
region is the pilot of carbon emission trading, treati is equal
to 1, otherwise it is equal to 0. postt is the time dummy
variable, which equals 1 when t is greater than or equal to
2014, otherwise it equals 0. treatipostt is the interaction term,
which indicates whether region i has implemented the
carbon emission trading policy in year t.Xit indicates
control variables and may affect ln eeit. μi denotes the in-
dividual fixed effect for provincial region. ct represents the
time fixed effect for the year. εit means the random error
term. ,e coefficient α1 is the core coefficient to study
whether carbon emission trading policy can promote ln ee,
indicating the net effect of carbon emission trading policy on
ln ee.

3.2. Mechanism Analysis Model. ,e article takes two
methods to explore the mechanism. Referring to Xuan et al.
[16], the first group of models is constructed as follows:

ln eeit �β0+β1treatiperiodt +􏽘βjXit +μi +ct +εit,

Mit �β0+β2treatiperiodt +􏽘βjXit +μi +ct +εit,

ln eeit �β0+β3treatiperiodt +β4Mit +􏽘βjXit +μi +ct +εit,

(2)

where Mit is the intermediary variable and the other symbols
are consistent with those in model (1), and Mit should be
checked as follows. In the first step, if β1 is significant, it
means that the carbon emission trading policy has a sig-
nificant effect on ln eeit, then the second step of verification
will be performed, otherwise, the procedure will terminate;
the second step is to verify whether carbon emission trading
policy has an effect on Mit according to whether β2 is
significant; if β2 is significant, then go to the third step,
otherwise terminate; the third step is to judge whether Mit is
an intermediary variable according to whether β4 is sig-
nificant or not.

Referring to Qiu et al. [37], the second group of models is
constructed as follows:

ln eeit � λ0 + λ1treatiperiodtNit + λ3treatiperiodt × Nit

+ 􏽘 λjXit + μi + ct + εit,
(3)

where Nit is the moderator variable, treatiperiodt × Nit

represents the interaction term between the moderator
variable Nit and the implementation of carbon emission
trading policy treatipostt. ,e other symbols are defined as
the same as those in model (1). ,e article mainly focuses on
the sign and significance of λ1 and λ3. If both of them are
significant, it means that Nit has a moderating effect on the
impact of treatipostt on ln eeit. ,ese analysis results can
provide valuable policy implications.

3.3. Variables and Data

3.3.1. Explained Variable. ,e explained variable is the
natural logarithm of EECI at provincial region (ln ee) [1],
calculated by the natural logarithm of the ratio of the gross
output value to the energy consumption in the construction
industry.,e gross output value of the construction industry
in regions is from the China Statistics Yearbook of Con-
struction (CSYC). ,e energy consumption of the con-
struction industry in various regions is from the row for
construction of Energy Balance Sheet by Region in China
Energy Statistics Yearbook (CESY). Energy consumption
refers to energy consumption in the construction stage and
demolition stage [32, 36, 38]. ,e article uses the method of
conversion of various energy sources in the sheet into a
standard coal equivalent. Coefficients of conversion of
various energy sources into standard coal are from the
General Rules for Calculation of the Comprehensive Energy
Consumption (GRCCEC, GB/T 2589–2020).

3.3.2. Core Explanatory Variable. ,e core explanatory
variable is treatiperiodt. treatiperiodt � 1 means carbon
emission trading policy is implemented in provincial region
i in year t. treatiperiodt � 0 indicates that region i is not a
carbon emission trading policy pilot or year t is not after the
implementation of the policy, or neither. If the coefficient of
treatiperiodt is positive and significant, it indicates that
carbon emission trading policy can promote EECI.

3.3.3. Control Variables and Others. ,e principle of vari-
able selection is to consider the previous research and its
correlation with dependent variables. Labor productivity,
mechanical power equipment, urbanization, energy struc-
ture, and regional R&D expenditure intensity are the control
variables. Labor productivity (proctivity) of construction
enterprises in this article refers to the labor productivity
calculated by gross output value from raw data of CSYC [33].
,e mechanical power equipment rate (machinery) of
construction enterprises from raw data of CSYC is designed
to measure the mechanical equipment in the article
[30, 34, 35]. It means mechanical resource allocation. ,e
urban population as a percentage of total population
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(urbanratio) which is raw data that comes from the China
Statistical Yearbook (CSY) is the measurement of urbani-
zation [6, 36]. ,e article defines the natural logarithm of
electric consumption as a percentage of total energy con-
sumption in the construction industry as an energy con-
sumption structure (lnesratio) [6, 27, 36]. It is calculated by
converting them into standard coal equivalent with data
from Energy Balance Sheet by Region in CESY. Regional
R&D expenditure intensity (rdratio) is derived from raw
data of the China Statistical Yearbook of Science and
Technology (CSYST) [6, 27]. It is the ratio of R&D ex-
penditure to GDP in a region and represents regional
technological innovation. ,e R&D expenditure is invested
by the whole society in a region.

In addition, mechanical power equipment (machinery),
regional R&D expenditure intensity (rdratio), and envi-
ronmental regulation level (lneninratio) are used for
mechanism analysis. Environmental regulation level of the
government (lneninratio) which is the natural logarithm of
the ratio of environmental protection expenditure to total
government expenditure is adopted as a moderator variable
for mechanism analysis, calculated by data from CSY. Per
capita GDP (pg dp) raw data that comes from CSY is a
covariate of PSM-DID estimation. Both of them are relevant
to EECI [6]. Table 1 shows a description of the variables.

,e research data of this article are panel data of 30
provincial regions (excluding Tibet, Taiwan, Hong Kong,
and Macau, which have incomplete data) in China with a
time span of 9 years from 2008 to 2016. ,e 30 provincial
regions are divided into an intervention group with 6
regions and a control group with 24 regions. ,e year of
carbon emission trading policy implementation is defined
as 2014. Table 2 shows descriptive statistics of the
variables.

4. Empirical Analysis

4.1. Benchmark Regression Results. ,e policy effect of carbon
emission trading policy on EECI is estimated by model (1).
Table 3 shows the estimation result, in which the province and
year are fixed, that is, two-way fixed effect, and standard errors
are clustered at the provincial level. ,e rest of the regressions
below follow this standard. According to column (1) to column
(5), the coefficient of treatiperiodt is always positive and passes
the significance test all the time. It demonstrates that the carbon
emission trading policy pilot policy has significantly improved
EECI and the result is robust. Compared with column (1)
without control variables, the coefficient of column (5) with
control variables increased from 0.210 of significance at 10% to
0.226 of significance at 1%. ,e estimated coefficient of 0.226
indicates a 22.6% increase in ln ee in the carbon emission trading
policy regions relative to the non-pilot regions. Consistent with
the conclusion proved by Gu et al. that the energy consumption
per unit of GDP in the carbon emission trading policy pilot
regions is significantly reduced [1], the conclusions of this study
are highly similar to those of Zhang et al. [5]. Taking the natural
logarithm of regional energy efficiency as the explanatory var-
iable, the coefficients estimated by Zhang et al. range from 0.149
to 0.262 above 5% significance [5].

In addition to the carbon emission trading policy, we also
find some other factors that may affect EECI.,e coefficients of
labor productivity (productivity), urbanization (urbanratio),
energy consumption structure (lnesratio), and regional R&D
expenditure intensity (ratio) are positive and pass the signifi-
cance test. ,is indicates that they are positively correlated with
EECI. In contrast, the mechanical power equipment rate
(rdratio) of which coefficient is negative and passes the sig-
nificance test is negatively correlated with EECI.

China’s construction industry is shifting from extensive
development to intensive development. Labor productivity
under uneven technical levels of the labor force and irregular
labor management are obstacles to intensive development. Labor
productivity has a depressing effect on China’s construction
industry’s carbon emissions [33]. As for EECI, this article shows
that labor productivity promotes it. EECI can benefit from labor
productivity, which is caused by the improvement of labor quality
and the improvement of labor technology support.

,e SFA regression results of Liang et al. represent that
urbanization is negative to energy input in the analysis of
EECI [30]. Urbanization is now shown to be positively
correlated with EECI. With reference to Liang et al. [30], the
increasing urbanization may promote the inflow of high-
quality educational resources and talents, thus increasing the
labor value, accelerating the development of energy-saving
technologies, and improving energy efficiency.

,e SFA regression results of Chen et al. indicate that
energy consumption structure is negative to energy con-
sumption in the construction industry [27]. ,e SFA re-
gression results of Liang et al. represent that energy
consumption structure is negative to energy input in the
analysis of EECI [30]. ,e carbon emission trading policy
has an impact on reducing total energy consumption and
adjusting energy consumption structure, thus carbon
emissions intensity is decreased [4, 16]. Similar to these
results, the energy consumption structure of the construc-
tion industry in this article is positively correlated with
EECI. ,e emergence of this situation may be caused by the
gradual replacement of traditional coal energy with re-
newable energy, and this replacement also accelerates the
development of energy technology.

Regional R&D expenditure intensity is positively related
to technological innovation, and technological innovation
can improve the utilization efficiency of social energy. ,e
carbon emission trading policy can strengthen R&D in-
vestment [23]. Regional R&D expenditure intensity is
positively correlated with EECI in this article, which is
consistent with Chen et al. [27].

Unlike other variables, the mechanical power equipment
rate is negatively correlated with EECI. It indicates that
mechanical resource allocation is worth optimizing. ,e
result is similar to Hydes et al.’s views [39]. ,ey point out
that reducing the use of equipment or facilities should be
seen as one of the most effective ways to improve EECI [39].

4.2. Parallel Trend Test. One of the most important as-
sumptions in the empirical analysis is that the intervention
group and the control group obey a common trend prior to
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the intervention of the carbon emission trading policy.
Figure 1 shows that the average ln ee of the intervention
group and the control group kept almost the same increasing
trend excluding 2012 before the policy implementation in
2014, with no obvious deviations. However, after 2014, the
mean ln ee of the intervention group continued to increase,
and that of the control group almost stopped increasing in
2014 and began to decline since 2015, showing a significant
deviation. ,e intervention group and the control group are
preliminarily judged to satisfy the parallel trend test.

Referring to Liu [40], a regression model based onmodel
(1) is built for further parallel trend tests. Model (1) is ex-
tended to the following:

ln eeit �δ0+δt 􏽘

2016

2008,t≠2013
treatiperiodt +􏽘δjXit +μi +ct +εit

(4)

where periodt is the dummy variable of time year, if the year
is at t, the value is 1; otherwise, the value is 0. ,e series of
coefficients (δt) for the interaction term (treatiperiodt) is the
primary interest of this test. To satisfy the parallel trends, the
coefficients of the interaction terms before 2014 are expected
to be statistically insignificant and fluctuate within a certain
range, indicating that the trends in the control and inter-
vention groups are not statistically significantly biased.
However, the coefficients of those after the carbon emission
trading policy are expected to be significant, indicating a
statistically significant deviation from the trends in the
control and intervention groups. period2013 is dropped and it
is the base period. In addition, the model can examine the
dynamics of policy effects.

Table 1: Description of the variables.

Variables Definition Description Source

Lnee Energy efficiency of the
construction industry

,e natural logarithm of the ratio of gross output value to energy
consumption in the construction industry

CSYC
CESY

Productivity Labor productivity ,e per capita labor productivity of construction enterprises from raw data CSYC

Machinery Mechanical power equipment ,e per capita mechanical power equipment of construction enterprises from
raw data CSYC

Urbanratio Urbanization ,e urban population as a percentage of the total population from raw data CSY

Lnesratio Energy structure ,e natural logarithm of electric consumption as a percentage of total energy
consumption in the construction industry CESY

Rdratio Technological innovation ,e ratio of R&D expenditure to GDP from raw data CSY

Lneninratio Environmental regulation level of
the government

,e natural logarithm of the ratio of environmental protection expenditure to
total government expenditure CSY

Pgdp Per capita GDP ,e per capita GDP from raw data CSY

Table 2: Descriptive statistics of the variables.

Variables Count Mean Std. Dev Min Median Max
Lnee 270 3.169 0.724 1.280 3.114 4.884
Productivity 270 27.170 10.345 10.378 26.763 90.304
Machinery 270 6.360 3.060 2.100 5.800 27.400
Urbanratio 270 0.547 0.131 0.291 0.526 0.896
Lnesratio 270 −1.754 0.624 −3.604 −1.676 1.000
Rdratio 270 0.015 0.011 0.002 0.012 0.061
Lneninratio 270 −3.561 0.338 −4.639 −3.571 −2.821
Pgdp 270 4.270 2.259 0.882 3.731 11.820

Table 3: Impact of the carbon emission trading policy on energy
efficiency of the construction industry.

(1) lnee (2) lnee (3) lnee (4) lnee (5) lnee

treatipostt
0.210∗ 0.334∗∗∗ 0.301∗∗ 0.294∗∗∗ 0.226∗∗∗

(1.84) (2.76) (2.70) (3.39) (2.92)

Productivity 0.008∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.007∗∗∗

(2.75) (2.79) (3.40) (3.11)

Urbanratio 5.798∗∗ 5.892∗∗∗ 3.307∗∗ 3.659∗∗

(2.66) (2.79) (2.13) (2.28)

Machinery −0.027∗∗∗ −0.014∗ −0.017∗∗

(−3.03) (−1.87) (−2.31)

Lnesratio 0.472∗∗∗ 0.467∗∗∗

(6.01) (5.50)

Rdratio 29.223∗∗

(2.16)

_Cons 3.155∗∗∗ −0.247 −0.134 2.033∗∗ 1.455
(413.69) (−0.20) (−0.11) (2.33) (1.45)

Province FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Adj. R2 0.891 0.901 0.906 0.938 0.941
N 270 270 270 270 270
Standard errors are clustered at the provincial level. t statistics in paren-
theses. ∗p< 0.10, ∗∗p< 0.05, ∗∗∗p< 0.01.
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Figure 1: Average trend of the natural logarithm of energy effi-
ciency of the construction industry in 2008–2016.
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Figure 2 shows the evaluation results of model (6). It can
be seen from Figure 2 that the coefficients from 2008 to 2012
are all statistically insignificant and fluctuate around 0, while
the coefficients from 2014 to 2016 are significantly at the 10%
significance level with the coefficients’ significance and value
increasing over time. Two important results are drawn from
the regression. First, the intervention group and the control
group before 2014 meet the parallel trend test; second, the
significance and value of the coefficients after 2014 continue
to increase, indicating that the implementation effect of the
policy has become more and more prominent and carbon
emission trading policy had an increasing effect on the EECI
of the intervention group. ,is may be related to the
expanding implementation scope of the carbon emission
trading policy. ,e more industries carbon emission trading
policy covers, the more relevant it is to the construction
industry, and the greater the impact of the policy on EECI.

5. Robustness Tests

5.1. Placebo Test. Referring to Yu et al. [41], the placebo test
is to eliminate the intervention of other unobserved missing
variables on the EECI evaluated in this study. ,e basic idea
is that 6 regions are first randomly selected from 30 regions
as fake carbon emission trading policy pilots and the DID
model (1) is used to estimate the coefficient of this core
explanatory variable, and then the experiment is repeated
500 times. According to the distribution and significance of
the coefficient values, if most of the coefficients are clustered
around 0, the deviation from the estimated coefficient of the
real quasi-natural experiment is large and not statistically
significant, then it means that the carbon emission trading
policy actually improves the EECI.

Figure 3 presents the results of the placebo test. ,e
vertical red dashed line represents the true coefficient of
0.226, the horizontal red dashed line represents the 10%
level of significance, the blue dashed line is the estimated
P value, and the curve is the density distribution of the
coefficients. Most of the coefficients deviate from the true
coefficients and are not statistically significant, concen-
trated around 0 in Figure 3. Only a few are larger than the
true coefficient and statistically significant. ,e policy ef-
fects of the carbon emission trading policy are not obtained
by chance. ,erefore, the placebo test shows that it is in-
deed a carbon emission trading policy that increases the
EECI.

5.2. Excluding Outliers and the Counterfactual Time.
According to the researches of Liu et al. [40] and Song et al.
[42], the outliers are excluded or the policy implementation
time is changed to test the robustness of the results. ,e
dataset in this article may contain outliers that substantially
affect the estimated results, and columns (1) and (2) in
Table 4 show the regression results with the outliers ex-
cluded. ,e winsor2 algorithm for excluding outliers is to
replace the values less than the 1% percentile and greater
than the 99% percentile with the 1% and 99th percentile
values, respectively. ,e results show that whether the

control variable is added to the regression or not, the co-
efficient of the core explanatory variable is around 0.2 and is
statistically significant. It indicates the benchmark results are
robust.

Another test is to change the “policy implementation
time,” known as the counterfactual test. ,is test is con-
ducted by changing the policy implementation time from
2014 to 2010, 2011, 2012, and 2013, respectively, and the
other settings of the test are consistent with the benchmark
regression [42]. ,e coefficients for the core explanatory
variables from 2010 to 2012 shown in columns (3) to (8) in
Table 4 are all statistically insignificant with and without
the control variable, consistent with the parallel trend test.
Column (9) and (10) shows that the coefficient of the core
explanatory variable without the control variable in 2013 is
not significant, while the coefficient of the core explanatory
variable with the control variable is 0.168 at 5% signifi-
cance, its value and significance are lower than the
benchmark results. ,is result in column (10) may be due
to the pre-policy effect of the carbon emission trading
policy launch and the policy effect of some policy pilots
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Figure 2: Coefficients of the interaction term and confidence
intervals in the parallel trend test.
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launched at the end of 2013, but it is not robust to the result
in column (9) and the benchmark result. ,e counter-
factual time test indicates that the benchmark results are
robust.

5.3. PSM-DID. Considering that the differences between
samples are obvious, to further select comparable samples,
this section adopts the PSM-DID for robustness testing.
Referring to Liu et al. [24], the variables highly related
to ln ee(such as pro du ctivity, machinery, urbanratio,
lnesratio, ratio, and pg dp) are selected as the covariates to
conduct the nearest neighbor 1:4 matching, which is
statistically significant in logit regression. ,ere should be
no difference between the matched intervention (treated)
group and the matched control group in terms of the
selected covariates. A balance test is conducted and Table 5
lists the results of the balance test. After PSMmatching, the
biases of the variables in the intervention group and the
control group are greatly reduced, and the biases are al-
most all within 10%. P-values are mostly statistically
significant before matching and mostly statistically in-
significant after matching which means that the PSM
obtains a smaller deviation between the variables in the
intervention group and the control group to obtain a better
estimation.

After matching, the PSM-DID regression is performed.
,e estimation results in Table 6 show that the coefficients of
the core explanatory variables are positive and statistically
significant at 5% whether there are control variables or not,
which indicates that the carbon emission trading policy does
improve ln ee. Additionally, the signs of control variables in
column (2) are consistent with those in the benchmark
results. ,e PSM-DID proves the robustness of the
benchmark results in this article.

6. Mechanism Analysis

,e benchmark regression and robustness tests aim to study
the policy effect of carbon emission trading policy on EECI
and the robustness of the results. ,en, what is the trans-
mission mechanism of the policy’s impact on EECI? Two
methods are adopted to answer this question [16, 37]. Based
on model (2), model (3), and model (4), the mechanical
power equipment rate (machinery) and regional R&D ex-
penditure intensity (rdratio) are tested as mediator variables.
,is article examines the environmental regulation level
(lneninratio) as a moderator variable by model (5).

Table 7 shows the estimation results of the mechanism
analysis. ,e coefficient of the core explanatory variable in
column (1) is negative and significant at the 1% level, in-
dicating that the carbon emission trading policy can reduce
the rate of mechanical power equipment. ,e coefficient of
machinery in column (2) is negative and significant at the
5% level, indicating that machinery is negatively correlated
with ln ee. Combining columns (1) and (2), it shows that the
carbon emission trading policy can improve EECI by re-
ducing the mechanical power equipment rate. In the con-
struction industry, construction machinery is common at
the construction site. Due to extensive construction man-
agement, many mechanical equipment resources are idle
and the operation efficiency is low, which leads to low EECI.
Updating equipment, eliminating high-power machinery,
using energy-saving and efficient machinery, and optimizing
resource allocation in construction organization can reduce
the rate of mechanical power equipment and improve EECI.
,is finding is similar to that of Qiu et al. [37] who proved that
the low-carbon city pilot policy can make resource allocation
more efficient, thus improving efficiency. A carbon emission
trading policy can also make the allocation of mechanical
equipment resources more effective, thus improving EECI.

Table 4: Excluding outliers and changes of time.

(1) lnee
Winsor

(2) lnee
Winsor

(3) lnee
2010

(4) lnee
2010

(5) lnee
2011

(6) lnee
2011

(7) lnee
2012

(8) lnee
2012

(9) lnee
2013

(10) lnee
2013

Treatipostt
0.210∗ 0.189∗∗ 0.010 0.031 0.094 0.102 0.135 0.124 0.175 0.168∗∗

(1.85) (2.69) (0.05) (0.24) (0.59) (1.11) (0.99) (1.45) (1.40) (2.14)

Productivity 0.012∗ 0.007∗∗ 0.006∗∗ 0.005∗ 0.006∗∗

(2.03) (2.57) (2.25) (1.82) (2.34)

Machinery −0.018∗ −0.019∗∗ −0.019∗∗ −0.019∗∗ −0.018∗∗

(−1.97) (−2.49) (−2.45) (−2.45) (−2.39)

Urbanratio 3.582∗∗ 2.529 2.730 2.961 3.294∗

(2.14) (1.31) (1.50) (1.68) (1.97)

Lnesratio 0.525∗∗∗ 0.470∗∗∗ 0.476∗∗∗ 0.472∗∗∗ 0.470∗∗∗

(6.74) (6.01) (5.83) (5.74) (5.59)

Rdratio 33.329∗∗ 36.771∗∗ 32.578∗∗ 31.589∗∗ 29.904∗∗

(2.36) (2.52) (2.29) (2.26) (2.14)

_Cons 3.155∗∗∗ 1.416 3.168∗∗∗ 1.998 3.157∗∗∗ 1.968∗ 3.154∗∗∗ 1.871 3.154∗∗∗ 1.689
(415.36) (1.44) (94.12) (1.65) (147.88) (1.70) (208.44) (1.68) (284.18) (1.60)

Province FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R2 0.892 0.944 0.888 0.938 0.888 0.939 0.889 0.939 0.890 0.940
N 270 270 270 270 270 270 270 270 270 270
Standard errors are clustered at the provincial level.t statistics in parentheses. ∗p< 0.10, ∗∗p< 0.05, ∗∗∗p< 0.01.
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,e coefficient of the core explanatory variable in col-
umn (3) is negative and significant at the 1% level, indicating
that the carbon emission trading policy is positive to regional
R&D expenditure intensity (rdratio). ,e coefficient of
r dr atio in column (4) is positive and significant at the 5%
level, indicating that r dr atio is positively correlated with
ln ee. Combining columns (3) and (4), it shows that carbon
emission trading policy can improve EECI by increasing
regional R&D expenditure intensity. Regional technological
innovation is positively correlated with regional R&D ex-
penditure intensity, improving technological innovation can
accelerate the development of energy-saving technologies,
thereby elevating EECI. ,is finding is consistent with that
of Zhang et al. [5] who proved that green technological
innovation plays a positive intermediary role in carbon
emission trading policies that affect energy efficiency.

Columns (5) and (6) in Table 7 show that the coefficients
for the core explanatory variable and the interaction term
(treatiperiodt × lneninratio) are both positive and both pass
the significance test. Combined with the benchmark re-
sults, this shows that the environmental regulation level has
a positive moderating effect on the policy effect of the
carbon emission trading policy on EECI, which indicates
that strengthening environmental regulation in the carbon
emission trading policy pilot can improve the promotion of
carbon emission trading policy on EECI. ,is result is
consistent with the well-known Poynter hypothesis that
appropriate environmental regulation by the government
can motivate firms to innovate more, while technological
innovation can improve energy efficiency. Similarly, Boyd
et al. [43] confirmed that environmental regulation is
positive to “emission reduction” and “growth.” With the

Table 6: ,e estimation results of PSM-DID.

(1) lnee (2) lnee

treatipostt
0.957∗∗ 0.371∗∗

(2.95) (2.58)

Productivity 0.005
(0.42)

Machinery −0.061
(−1.37)

Urbanratio 5.814∗∗

(2.36)

Lnesratio 0.691∗∗∗

(3.45)

Rdratio 35.738
(1.60)

_Cons 3.212∗∗∗ 0.889
(132.68) (0.57)

Province FE Yes Yes
Year FE Yes Yes
Adj. R2 0.843 0.945
N 45 45
Standard errors are clustered at the provincial level. t statistics in parentheses.∗p< 0.10, ∗∗p< 0.05, ∗∗∗p< 0.01.

Table 5: Balance test for PSM.

Variable Unmatched
Matched

Mean %Reduct t-test
Treated Control %Bias |bias| t p> t

Productivity U 36.775 24.769 105.7 8.6 0
M 28.553 27.423 9.9 90.6 0.36 0.72

Machinery U 6.5019 6.325 5.8 0.38 0.705
M 5.805 5.6612 4.7 18.7 0.16 0.877

Urbanratio U 0.72339 0.5033 188.9 14.84 0
M 0.58937 0.59442 −4.3 97.7 −0.19 0.848

Lnesratio U −1.8552 −1.7292 −20.3 −1.33 0.185
M −1.8887 −1.8012 −14.1 30.6 −0.54 0.594

Rdratio U 0.02823 0.01152 146.8 13.13 0
M 0.0165 0.01601 4.3 97.1 0.3 0.762

Pgdp U 6.6224 3.6821 128.3 10.01 0
M 4.3698 4.3081 2.7 97.9 0.1 0.92
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increase in environmental regulation, Qiu et al. [37]
pointed out that the rising environmental costs force en-
terprises to innovate and reduce their dependence on
energy.

7. Conclusions and Policy Implications

,is article aims to evaluate the performance of China’s
carbon emissions trading policy in terms of EECI. DID, the
parallel trend test, robust tests, and mechanism analysis are
used to explore the effect of carbon emission trading policy
on EECI. Based on the above research, the following
conclusions are drawn: (1) carbon emission trading policy
can improve the EECI in pilot regions relative to non-pilot
regions, and its policy effect gets better over time. ,e
robustness of the benchmark results is demonstrated by
several methods; (2) results of mechanism analysis show
that carbon emission trading policy can improve EECI by
reducing the mechanical power equipment rate or in-
creasing regional R&D expenditure intensity. Increasing
the environmental protection expenditure ratio in the
carbon emission trading policy pilot can improve the
promotion of carbon emission trading policy on EECI; (3)
labor productivity, urbanization, energy consumption
structure, and regional R&D expenditure intensity are
positive to EECI, while the mechanical power equipment
rate is negative to EECI.

,emain policy implications are as follows: (1) for EECI,
as the carbon emission trading policy is implemented longer
and more widely, the greater the relationship between the
policy effects and EECI. More specifically, the government

should increase the time, intensity, and scope of imple-
menting the carbon emissions trading policy; (2) the gov-
ernment can improve EECI by stimulating regional
technological innovation and appropriately strengthening
environmental regulations in the regions where the carbon
emission trading policy is implemented. In terms of me-
chanical resource allocation, the government can use the
carbon emission trading policy market effect to promote
construction enterprises to strengthen resource allocation
management and construction organization, eliminate high-
power and inefficient equipment, and use new energy-saving
equipment with the goal of increasing EECI. Construction
enterprises can also take the initiative to adopt the above
measures to reduce the rate of mechanical power equipment
for increasing EECI; (3) the government can take measures
to reduce the use of traditional energy such as coal to adjust
the energy structure for improving the EECI. Construction
enterprises can increase labor productivity by improving the
professional ability and technical level of workers, thus
increasing the EECI.

,e conclusions and policy implications are summarized
above, but this article has some defects. Short-term policy
effects are estimated while long-term policy effects are
omitted due to the selection of periods. Besides, policy effects
and mechanisms analysis cannot be fully explored. Further
research is expected to address these issues.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Table 7: ,e estimation results of mechanism analysis.

Explained variable (1) Machinery (2).Lnee (3).Rdratio (4).Lnee (5).Lnee (6).Lnee

treatipostt
−1.628∗∗∗ 0.226∗∗∗ 0.002∗∗∗ 0.226∗∗∗ 1.386∗∗∗ 1.542∗∗

(−2.91) (2.92) (3.22) (2.92) (3.55) (2.74)

Productivity 0.001 0.007∗∗∗ 0.000∗ 0.007∗∗∗ 0.007∗∗∗

(0.03) (3.11) (1.86) (3.11) (2.96)

Urbanratio 13.857∗ 3.659∗∗ −0.012 3.659∗∗ 3.676∗∗

(1.72) (2.28) (−0.72) (2.28) (2.45)

Lnesratio −1.488∗ 0.467∗∗∗ 0.000 0.467∗∗∗ 0.469∗∗∗

(−1.99) (5.50) (0.21) (5.50) (5.69)

Rdratio 215.803 29.223∗∗ 29.223∗∗ 31.863∗∗

(1.35) (2.16) (2.16) (2.48)

Machinery −0.017∗∗ 0.000∗∗ −0.017∗∗ −0.017∗∗

(−2.31) (2.29) (−2.31) (−2.24)

Lneninratio −0.065 0.021
(−0.36) (0.17)

treatipostt×lneninratio
0.320∗∗∗ 0.366∗∗

(2.95) (2.34)

_Cons −6.950 1.455 0.020∗ 1.455 2.922∗∗∗ 1.493∗

(−1.04) (1.45) (1.99) (1.45) (4.48) (1.72)
Province FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Adj. R2 0.571 0.941 0.984 0.941 0.892 0.943
N 270 270 270 270 270 270
Standard errors are clustered at the provincial level. t statistics in parentheses. ∗p< 0.10, ∗∗p< 0.05, ∗∗∗p< 0.01.
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