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�e automatic detection of cracks in the road surface is of great signi�cance formaintaining the road surface to ensure the safety of
moving vehicles.�e Hokuyo UTM 30 LX 2D laser scanner in this study is used to observe the road surface containing two cracks
and distress areas. As a result, dense point clouds are created. �e road surface is automatically extracted from the point clouds
based on the geometry of the two curb lines. �e normal vector of the points is calculated based on the principal component
analysis method. Points belonging to cracks and zones of distress are extracted from the intensity gradient and the inclination
angle between the two normal vectors of the neighboring points and then converted to binary images. �e crack edges are
extracted based on the Sobel operator. Although salt-and-pepper spots due to crack points extraction using intensity gradient
a�ect the de�nition of crack edges, especially small cracks, large cracks and distress areas are extracted clearly. Research results
show that re�ectance intensity and elevation variation combination lead to the e�ciency of crack extraction and distress area.

1. Introduction

Pavement crack might damage vehicles and increase tra�c
accidents. Pavement crack detection is essential for main-
tenance. If cracks start to be generated by various physical
factors, they may be extended to severe damage by the
vehicle’s wheels.�erefore, cracks need to be recognized and
repaired at an early stage. Pavement cracking implies an
essential index for maintaining roads by the government, an
indicator of damage, and signi�cantly a�ects the durability
of construction.�e road will be degraded, and the cracks on
the road surface will appear along with the time. If these
cracks are not timely detected, they will expand and a�ect
driving conditions, safety, and the strength of the pavement
structure. �e crack is classi�ed into transverse, longitudi-
nal, and alligator cracks [1]. Most of the studies have focused
on only one or two distress types. �e detection of cracks is
essential for performing pavement rehabilitation and

maintenance. Currently, large-scale e�orts to identify
pavement cracks manually are of low e�ciency but high cost
and exposure to vehicle tra�c. �is technique is labor-
consuming but has low accuracy on a large scale. It is
necessary to �nd out crack by another quick and e�ective
method.

Image processing has been used as an e�ective method
for indirect inspection. Based on this method, automated
road surface monitoring systems have been developed.
�anks to automated monitoring solutions, the pavement is
maintained by reducing costs and increasing e�ciency. �e
monitoring system can be created with many sensors ac-
quiring the image and video data as the input data for crack
extraction [2–4]. From collected images, cracks can be de-
tected by applying various image processing methods often
a�ected by light, shadows, and noise; therefore, the actual
image processing of complex road cracks makes a technical
challenge for crack detection. Automated pavement crack
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detection based on image analysis includes image process-
ing, machine learning, and deep learning approaches [5–8].
In the case of image processing, methods are mainly based
on texture analysis, including image thresholding or edge
detection techniques. �e typical approach is based on
grayscale threshold segmentation because of the low gray-
scale value of pavement cracks. �e background and crack
regions are separated from the image based on a threshold
value of pixel greyscale. �e other image analyzing methods
are based on image edge detection, such as applying the
Sobel edge detector [9] and the CrackTree algorithm [10].
Moreover, there are various methods that have been used for
extracting pavement crack images, such as morphology
methods [11]; wavelet transforms [12]; and principal com-
ponent analysis [13]. In addition, many machine learning-
based algorithms have become famous for detecting cracks
from images, including Support Vector Machine [14, 15]
and Convolutional Neural Networks (CNN) [16–19].

�e two-dimensional (2D) crack detection method is
generally limited by visualizing the terrain and road damage,
affecting crack evaluation. Exploring the processes for de-
tection and quantification in 3 dimensions (3D) is better. A
3D point cloud can be created from photos or scanning data.
Laser scanning is an effective solution for collecting 3D point
cloud data quickly. UAV-based images have been captured
to generate 3D point clouds and orthoimages of road sur-
faces.�en, the cracks are obtained directly on the generated
DSM by setting the threshold [20]. However, this method
will not work for small or shallow cracks.

In recent years, mobile laser scanning (MLS) systems
have been applied for surveying roads and pavement with
fast and high precision. Many types of research have been
investigated to extract pavement cracks from point clouds
collected by MLS. Road surfaces can be manually extracted
from the available data set for preparing data.�e automated
road surface extraction can be done based on the third
component of the normal vector [20] or identify the buffer
zone of the trajectory line [21]. For further analysis of cracks,
the 3D point cloud can be projected to 2D images and
applied for crack extraction [22]. Another method is to
extract the crack directly from the point cloud using the
intensity-threshold segmentation method based on the low
intensity of the damage. However, in real situations, the
point cloud might also contain uneven intensity cracks, road
markings, stains, and sensor noise. �e intensity data highly
depends on the scanning range from the laser sensor to the
target, the laser beam’s incidence angle, and the target’s
material properties. As a result of divergent points, both
sides’ point intensities were low and high at the center. In
such a situation, intensity threshold does not give effective
results. It leads to the disadvantage of using an intensity
threshold to identify crack candidates.

On the other hand, elevation changes can be checked to
get the information on the crack. A novel algorithm has
been developed, combining intensity and elevation data
to extract crack edges [23]. However, some cracks are too
shallow to be detected by MLS data. Moreover, most
data collection systems are complex and expensive and
must be installed on special inspection vehicles. �erefore,

the pavement inspection of the laser scanning system is
limited.

Because of the importance of detecting cracks on
pavements and the advantages of the laser scanner method,
this study aims to detect pavement cracks using a low-cost
2D laser scanner. �e chosen laser scanner is Hokuyo 30LX,
a low-cost and lightweight laser scanner. �is study pro-
posed the method for automatedly extracting cracks and
their affected areas from the point cloud generated from the
raw file by combining the intensity and elevation data to
solve the problem of detecting cracks.

2. Data Acquisition

2.1. System Description. In this study, the Hokuyo UTM
30LX laser scanner is chosen to develop the mobile laser
scanning system (Figure 1). �e laser scanner selected is a
low-cost, compact, small, and lightweight device used for
many outdoor applications (Table 1). �e scanner is as-
sembled into a particular frame. �e chosen laser scanner is
mounted on a frame approximately 50 cm above the ground
surface at the installation height, resulting in a small scanning
footprint (approximate 1mm× 5mm). �e laser scanner can
move along the slide rail under the motor power to capture
the road surface image at a 25 msec/scan rate. �e velocity
controller can control the moving speed of the scanner. �e
system is a test for a future vehicle-mounted system. During
data acquisition, the scanner moves along the rail to simulate
the future system’s movement on the road. �e 2D scanners’
scan rays always belong to a fixed scanning plane. �e
scanning plane can be set perpendicular or at an oblique angle
to the horizontal plane. �is feature is entirely different from
terrestrial laser scanners (TLS). Specifically, the position of a
point received by TLS is determined through 3 components of
the spherical coordinates system, including observed distance,
horizontal sweep angle φ, and azimuth θ. However, for 2D
scanners, the azimuth value is permanently fixed at 0.

2.2. Data Collection. Most major pavement defects that can
be detected from images are potholes. �ese damage areas
are characterized by forming a significant depression on the
pavement surface. �ese types of damage can be easily
identified by establishing a local surface in that area and
performing elevation matching. However, in this study, we
focus on small cracks that are long and are the initial damage
stage before potholes are formed. �e road surface will be
raised at that time to create bumpy areas compared to the
original road surface. Moreover, these elevation differences
are not so significant as in the case of potholes that they are
difficult to detect through processing the point cloud gen-
erated from the image.

�e study area was chosen for convenient data collection
at the Ho Chi Minh City University of Technology-
VNUHCM. �e experiment was performed in two different
regions. �e first area contained a big crack with the lifted-
up road surface, and the second included a small gap with a
flat surface (Figure 2). �e developed system collected the
test dataset. �e scanner measured the surface with 180
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degrees field of view at 50 cm above the road surface and
oriented perpendicular to the moving direction. From this
observed distance, with a small scanning footprint (ap-
proximate 1mm× 5mm), the 2D scanning plane was per-
pendicular to the horizontal plane. �e scanner was
connected to the laptop. For starting a scan, the motor speed
was established at 50mm/s, and the angular resolution was
0.25 degrees (Figure 1). Observed data were collected by
using the UrgBenri Plus program. As a result, the raw data
with ∗.ubh file format was saved to the computer. �e ex-
periment showed a point cloud in the spacing between
adjacent scan lines of approximately 1.25mm and between
adjoining laser points of 2.2mm in the road. As a result of
divergent points, both sides’ point intensities were low and
high at the center. It leads to the disadvantage of using an
intensity threshold to identify crack candidates. In addition,
the road surface was lifted because of the tree root. �is
situation indicated the challenge of extracting cracks based
on the altitude changes in the background. Moreover, the
large crack could not be fully observed because of data
acquisition at a low height of 50 cm. �e large crack was
scanned twice at two locations to ensure sufficient data
extraction information.

3. Methodology and Results

3.1.PointCloudGeneration. Data processing includes many
steps. �e whole process is displayed in the following
flowchart (Figure 3). After finishing the experiment, the

raw file contains a range, intensity, scanning log time, and
timestamp. �e ∗ubh file has a complex structure with a
mix of numerical and alphabetical formats. �erefore,
range and intensity data are detached into a text file to
access data by each scanning point. �en, the range data is
used to generate the 3D coordinates of all scanning points
by considering the scanning angle and the movement speed
of the scanner. Based on the scanning plane, the laser
scanner coordinate system is assumed as a right-hand
coordinate system (Figure 1). In detail, the x-axis is parallel
to the slider and points to the movement direction; the z-
axis is perpendicular to the scanning plane. Its positive
direction coincides with gravity, and the right-hand rule
determines the y-axis [24].�erefore, the coordinates of the
points in the point cloud can be calculated using the fol-
lowing equation:

X � v · t

y � r · sin θ

z � r · cos θ,

(1)

where r is scan range (m), v is scan speed (mm/s), θ is scan
angle (degrees), and t is travel time of scanner (s).

In this way, the scan points do not overlap, and the
position of the scan points can be determined through the
row and column values where the row is the number of the
scan line, and the column is the number of the scan point.
�en, two point clouds are combined to make the whole
image of the large crack with dense density (Figure 4). In
general, point clouds are created with a very dense density.
Each experimental data sample has over 1 million scan
points. �e distance between the scanning points is 2.2mm
in the direction of the scanner movement and 1.25mm in
the direction perpendicular to them. �e density of gen-
erated point cloud is approximately 275,000 points per
square meter. �e high reflectance value implies the location
of reflectance markers. �e intensity data highly depends on
the scanning range from the laser sensor to the target. As a
result of divergent points, both sides’ point intensities were
low and high at the center.

X

Z

Y

Figure 1: Laser scanning system.�e Hokuyo UTM 30 LX is mounted on a frame and can move along the slide rail under the motor power.

Table 1: Hokuyo UTM 30LX specification.

Model no. UTM-30LX
Power source 12VDC± 10%
Light source Semiconductor laser diode (λ� 905 nm)
Detection range 0.1 to 30m (max 60m)
Accuracy 0.1 to 10m: ±30mm, 10 to 30m: ±50mm
Angular resolution 0.25° (360°/1,440 steps)
Field of view 270°
Scan time 25msec/scan
Weight Approx. 370 g (with cable attachment)
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Figure 2: �e target area including 2 cracks.
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Figure 3: �e flowchart of data processing.
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Figure 4: �e generated point cloud of the large crack. (a) �e visualization of the crack observed from the (a) left and (b) right side of the
crack and (c) the combined point cloud. �e displayed color shows the intensity value.
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3.2. Road Surface Points’ Extraction. �e scan field is set to a
value of 180 degrees during data acquisition, so the acquired
data will include an area larger than the target road surface.
Because of crowded people, the collected data might contain
noise information. Two curbs limit the road surface.
�erefore, based on the characteristics of the curb, the road
surface information is extracted based on its geometrical
features. �e data is divided into grid cells (cell
size� 0.25m). �e histogram of each grid cell is distributed
according to the elevation of the scan points. �e peak of the
histogram is a bin’s bar that is taller than the neighboring
bars. In detail, the bin’s bar is higher than the two previous
and following bin’s bars, which is the histogram’s peak

∀Hbar
i

if (Hbar
i >Hbar

i−1 & Hbar
i >Hbar

i−2

&Hbar
i >Hbar

i+1 & Hbar
i >Hbar

i+2


otherwise, non peak

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, peak,

(2)

where Hbari is the height of the bar at bin i
�e flat and noise cells are classified based on the cell’s

histogram. Because of the flat road surface, the cells with
single peak histograms are classified as flat cells (Figure 5(a)).
�en, the remaining cells are classified again. Because of the
curb’s sharpness, the cells with bimodal histograms are
classified to curb cells candidate (Figure 5(b)), and those with
multipeak histograms are classified as noisy cells (equation
(3)). After this step, the curb cells are separated. �en, curb
cells are grouped based on their continuous characteristics.
Adjacent cells will be grouped into a group (Figure 5(c)). �e
consideration of neighboring cells is established based on
detecting the neighborhood of the cells’ center points. �en,
the curbs are determined as the set of the most cells based on
the continuous characteristic of the curbs. Finally, the
boundary around the pavement is established, and the
pavement data is automatically clipped from the point cloud
based on the identified border (Figure 5(d)).

∀numberofpeakofcelli

if 1 : Flat cell

if 2: Curb′scell candidate.

otherwise, noisy cell

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

3.3. Point Cloud Noise Removal. Many objects appear inside
the data collection area during the data collection process, so
the noise points appear within the limited range of the road
surface. �e noisy issues must be eliminated to ensure the
correct crack detection process. Based on the characteristics
of the road surface as a flat horizontal surface, noisy points
above the road surface can be aggregated into any character
that matches an oblique angle to the horizontal plane. �e
normal vector analysis method is proposed to eliminate the
noise points. �e normal vector of all points is determined
through principal component analysis of a group of adjacent
points to the considered point for future analysis. �e

smallest eigenvalue is the normal vector of the target point. It
is necessary to estimate the local plane represented by the
target point and its neighbors. �e k-nearest points are
identified for each point in the cloud. In this study, the
normal vector is computed from 7 points and is oriented
using the Minimum Spanning Tree method. �is method
attempts to reorient all the normal vectors of a cloud. It starts
from a random point and then propagates the normal
orientation from one neighbor point to another. If the points
on the road surface belong to the flat or near horizontal
plane, the normal vector is approximately parallel to the z-
axis. When the normal vector is analyzed into components
in 3 directions, the Nz perpendicular to the horizontal plane
will prevail if a point belongs to the road surface. �erefore,
the excluded noise points are those whose Nz-component of
the normal vector is less than the threshold value. In this
case, the threshold value is determined at 0.75 to ensure the
predominance of Nz over the other two components
(Figure 6).

3.4. Crack Candidates’ Extraction. As mentioned in many
other studies, the scan points located in the crack have a
different contrast value than the rest. �is contrast can be
caused by the difference in height and angle of incidence of
the scan ray. In most studies, the reflected intensity values at
the crack are usually smaller than those in the remaining
areas. However, in this study, the opposite is true. Cloud data
acquired by the Hokuyo UTM 30LX scanner results in a
higher reflectance intensity at the cracks than in other areas.
Several reflective stickers are arranged to create noise areas
with high reflectance values during data acquisition to en-
sure the correctness of the proposed solution. In addition,
the reflected intensity value decreases gradually due to the
influence of the inclined scanning angle in the far area
compared to the frontal scanning position. �erefore, the
author proposes to use both reflected intensity and the
height of scan points to determine the points belonging to
the crack.

�e intensity data is highly dependent on the scanning
range from the laser sensor to the target, the laser beam’s
incidence angle, and the target’s material properties. After
removing the noise, the intensity gradients are computed
(equation (4)). �e points are cracked if they satisfy the
conditions of intensity variation set by the threshold. For
this, the eight neighbor points surrounding the considered
point are selected. �en, the difference in intensity between
the target and neighbor points is computed. �e input in-
tensity is original. �ere is no intensity correction algorithm
applied. �e intensity gradient is considered as the maxi-
mum value of eight computed gradients from eight neighbor
points.

I.grad �
max I

i
− I

0
 

��������������������

X
i
− X

0
 

2
+ Y

i
− Y

0
 

2
 , (4)

where I.grad is intensity gradient, I0 is the intensity of the
considered point, Ii is the intensity of neighbor point i, Xi
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and Yi are horizontal coordinates of neighbor points i, and
X0 and Y0 are horizontal coordinates of the target point.

�e intensity gradient cannot detect all crack points,
especially those with low intensity (Figures 7(a) and 7(b)).
�erefore, other conditions are set up with elevation values
(Z-values) for extracting crack points. In this study, root
heave is triggered by tree roots that do not have sufficient
growing space underground. �e rise of the tree roots
created a crack in the pavement. �at crack emerges from
the surface and creates distress areas. In general conditions,
the normal vector of a point is perpendicular to its local
plane. If the road surface is smooth, the normal angle of
these points is similar. At the crack position and its neighbor
area, inclined planes are created. So, the direction of normal
vectors on these planes is different from the others (Fig-
ure 8). It leads to the shape of the crack on a pavement that
can be recognized based on differing normal vectors relative
to the neighbor plane. �e inclination angle is calculated as

the maximum angle of the normal vector of the target point
to its neighbor point (see equation (5)). Based on the value of
the inclination angle, the crack points close to the crack edge
are extracted (Figures 7(c) and 7(d)).

θ �
N

0
xN

i
x + N

0
yN

i
y + N

0
ZN

i
Z

����������������
N

0
x
2

+ N
0
y
2

+ N
0
Z
2

 ����������������
N

i
x
2

+ N
i
y
2

+ N
i
Z
2

 , (5)

where θ is the inclination angle between two normal vectors,
N0

x, N0
y, and N0

z are three components of the normal vector
of the target point, and Ni

x, Ni
y, and Ni

z are three com-
ponents of the normal vector of the horizontal plane.

3.5. Distress Area Extraction. Because of the lift-up area
surrounding the crack caused by three roots, the normal
vectors differ from nearby points on a horizontal plane to
inclined planes. �erefore, the value of the inclination angle

(a)

(b)

(c)

(d)

Figure 5: �e results of classifying cells. (a) Flat cell, (b) noisy cells including curb cells and outlier cells, (c) curb cell, and (d) road surface.
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(a)

(b)

Figure 6: An example of removing noisy point. (a) Origin point cloud with noisy point inside the red rectangle and (b) point cloud after
removing noisy points.

(a) (b)

(c) (d)

(e) (f )

Figure 7: �e results of data processing. �e columns show the results of large crack (a, c, e) and small crack (b, d, f ). �e rows show the
results of crack points extraction using intensity gradient (a, b), inclined angle (c, d), and dip angle (e, f ).
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of the normal vector relative to the horizontal plane, named
dip angle, is computed. In other words, the dip angle is
treated as the angle between the normal vector of point and
the vector associated with the z-axis. �e dip angle is
computed by applying (5) with the horizontal plane’s normal
vector (see equation (6)). A threshold value is determined to
extract the points that belong to the distress area
(Figures 7(e) and 7(f )).

dip �
N

0
Z����������������

N
0
x
2

+ N
0
y
2

+ N
0
Z
2

 , (6)

where dip is dip angle and N0
x, N0

y, and N0
z are three

components of the normal vector of the target point.

3.6. Crack Edge Detection. In the next step, crack points and
points belonging to the distress area are combined. �e
binary intensity point cloud is created. �e crack points are
set with 1 value, and non-crack points are set to 0. According
to the convention of setting up the hypothetical coordinate
system in Section 3.1, the xy-plane is defined parallel to the
road surface. �erefore, in this study, the 3D cloud data is
projected to the 2D plane containing the x- and y-axes by
applying orthogonal projection. �en, the crack edge points
are extracted by applying the Sobel operator. �e operator
uses two 3× 3 kernels convolved with the original image to
calculate approximations of the derivatives in horizontal and
vertical changes.�e input data is defined as matrix B, and Sx
and Sy are two images which at each point contain the
horizontal and vertical derivative approximations, respec-
tively (see equations (7) and (8)). �e resulting intensity
gradient can be computed from Sx and Sy (see equation (9)).
Finally, the crack edge points are extracted (Figure 9).

Sx �

1 0 1

−2 0 2

1 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.B, (7)

Sy �

1 2 1
0 0 0

−1 −2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.B, (8)

S �

������

S
2
x + S

2
y



. (9)

4. Discussion

In this study, the Hokuyo UTM 30LX laser scanner is used to
collect the information on the pavement surface to detect the
crack. Two cracks are observed with the scanner. �e large
and long crack with 4.0 cm width creates a lift-up distress
area, and the small crack has 1.0 cm width. As a result of data
acquisition at a low height of 50 cm, the large crack could not
be fully observed. It is scanned twice at two locations to
obtain the whole crack image. �e environment around the
chosen pavement is complicated because of the crowded
people. As a result, a dense density of point clouds generated
according to equation (1) contains noisy points. �e scan
points do not overlap. From the resulting point cloud
generation, the image of pavement is visualized.

�e 3D visualization of the crack from the point cloud is
quite evident based on the reflectance value of laser pulses
(Figure 4). Large cracks are clearly shown. �e intensity
decreases with the increase of the scanning angle. �e in-
tensity at the center is more significant than that on both
sides. �e intensity at the crack site and the reflective panels
is much higher than the rest of the area (Figures 4(a) and
4(b)). In the case of a large crack, the depth of the crack can
be measured. For smaller and shallower cracks, the crack
location can only be determined visually through a contrast
of intensity. In general, point clouds are created with a very
dense density. Each experimental data sample has over 1
million scan points.�e scanning point clouds also contain a
lot of roadside noise information and traces of pedestrians.
Due to the influence of inclination angle in the farther area,
the density of points gradually thins out (Figure 4(a) and
4(b)). Two point clouds of the large crack are combined to
ensure the point’s density for data analysis (Figure 4(c)).

�e target road surface is divided into many cells with
0.25m in both sizes for data processing. �e elevation
histogram of each cell is defined with a bin size of 2mm.�e
peak of the histogram is identified (see equation (2)). Cells
with more than one peak are classified as noisy cells. Noise
cells will include road cells with noisy points, outlier, and

θ
n0

ni

Figure 8: Normal vector at the crack and its neighbor area.

8 Advances in Civil Engineering



curb cells (Figure 5(b)). Among the noisy cells, bimodal
histogram cells are defined as curb cells used to determine
the road surface’s boundary (Figure 5(c)). According to the
results of pavement extraction from the available data scan,
the data processing speed and the results depend on the size
of the grid cells. �e curb cell cannot be identified if the
subdivision is too tiny because the histogram will not match
bimodal histograms. Several noisy cells with two peak dis-
tribution histograms will be misclassified into the curb cell.
Because of the continuous curb line, these misclassified cells
will be eliminated when the curb line is generated. �e road
surface is extracted based on the curb line (Figure 5(d)).

�e principal component analysis method is applied to
determine the normal vector of the scan points. A neigh-
borhood detection algorithm selects 6 points near the con-
sidered point. A plane is created from a set of 7 points; the
normal vector is defined as the smallest eigenvalue vector
calculated from the set of points. As mentioned above, the
normal vector is analyzed into three main components in the
three directions x, y, and z. Based on the declared charac-
teristics of the coordinate system of the cloud, the z-direction
is determined to be the direction perpendicular to the road
surface. �e Nz-component of the road point will be more
significant than that of the noise points not on the road.
�erefore, to ensure the exclusion of noise points, points with
Nz values less than 0.75 will be classified as noise points and
discarded.�is way, the noise points have been filtered almost
entirely (Figure 6), and the data is ready for further analysis.

�e crack points might be separated based on the gra-
dient of normalized intensity and z-value. However, in this
study, the value of z variation is not enough to identify the
crack due to the shallow crack. Due to the high density of
points, the elevation variation is continuous, but the
elevation difference is negligible (Figure 10). �erefore, the
results of calculating the elevation gradient show no
efficiency. As a result, the elevation variation results do not
indicate crack locations or distress zones in this case.

For the intensity gradient method, the results are better
for both cracks. After computing the intensity gradient, a
threshold value is applied to extract crack points. �e po-
sition and shape of the cracks have been determined and
separated from the point cloud. In this way, points inside
cracks with higher intensity than the background are
extracted (Figure 7(a) and 7(b)). However, crack points close
to the road surface with low intensity cannot be recognized.
Moreover, many salt-and-pepper spots are also detected. It
leads to the difficulty of generating a crack skeleton.

In the next option, elevation data is used to determine
the point belonging to the crack edge. When a crack forms, it
creates an inclined surface relative to the neighbor plane of
the pavement. For this, the inclination angle is computed
from the normal direction of the considered point to its
neighbor (see equation (5)). �en, the crack edge point is
extracted (Figure 7(c)). Only points located at the boundary
of the suddenly changing elevation can be identified this
way. Specifically, we cannot detect cracks through the in-
clined angle value for small cracks due to the continuous
changing of elevation of the surface (Figure 7(d)).

�e crack distress area, which implies the lift-up area
surrounding the crack, can be extracted based on the geo-
metrical characteristics of the road surface. Dip angle can be
used to identify the crack points. By applying (6), the dip
angle is computed. A threshold value is determined to ex-
tract the crack points (Figures 9(a) and 9(b)). Finally, the
crack points are the combined points extracted from the
intensity gradient and dip angle (Figures 9(c) and 9(d)).

After extracting the crack point candidates, the crack
skeleton will be extracted. For this, a binary image is gen-
erated with crack points having a value of 1. �en, the Sobel
operator with a 3× 3 kernel is applied to extract the
boundary points of the crack and extracted area. Connecting
boundary points create the crack boundary (Figures 9(a) and
9(b)). �e value of intensity depends on many factors. From
the results of point extraction of the crack and the distress

(a) (b)

(c) (d)

Figure 9: Crack candidate extraction. �e binary image of crack points (a, b) and the crack edge (i, k).
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area, it can be seen that, for prominent distress locations,
forming regions with elevation variation, the interpretation
of the dip angle will give better results. �e reflectance
intensity value depends on too many factors, such as
scanning angle and external conditions, leading to the
misclassification of points. It leads to salt-and-pepper spots
and difficulty removing the noise points to create the crack
skeleton. In addition, the reflected intensity value sometimes
cannot detect the elevation variable regions, as with small
cracks. On the dense point cloud, only a small, long crack is
noticed. But in fact, next to the crack, there is an area
protruding, causing a high amplitude even though the
surface crack has not been created. �e road surface is not
smooth. �ere are many pits, so it is inevitable to classify
salt-and-pepper points due to the intensity of the reflection.
�e research shows that combining the reflected intensity
and elevation values by calculating inclination angles will
improve the target of crack and damaged area extraction. In
addition, we can predict the area of destruction in the future,
which cannot be detected by just looking at photos or video
recordings.

In the case of the small crack, the elevation change
cannot be applied because of the shadow crack. �e crack
can only be extracted using the intensity gradient. As a
result, crack points with low intensity cannot be extracted.
Moreover, in sparse density areas, there are many mis-
classified points. �e input point cloud requires a dense and
continuous point cloud to get good results. By checking the
dip angle, the distress area can be extracted.

As a result, the crack edge and the boundary of the
distress area are extracted after applying the Sobel operator.
Based on the results, at the large crack location, the crack
shape is also clearly shown with two edges and a centerline
representing the bottom position of the crack. However,
there is too much disturbance for small cracks due to the
salt-and-pepper spots. �e boundary of the distress area is
visible, but the location of the small crack is indistin-
guishable. �e results show that it is possible to extract the
crack image seen on the point cloud due to the intensity
difference. �rough the elevation difference value, the dis-
tress area is also determined. It confirms the effectiveness of
combining intensity and elevation values.

5. Conclusion

�is study uses a laser scanner Hokuyo UTM 30 LX to
observe the road surface. Although the study area is small, it
has all the characteristics of a complex crack. �e experi-
mental region consists of 2 cracks: one large obvious crack
and one smaller crack with no observed crack depth. Around
the crack, many distress areas are raised higher than the
ground. As a result, a dense point cloud is generated. �e
crack shape can be visualized by displaying the laser pulse’s
reflectance value. Specifically, the large crack is made up of
two neighboring point clouds.�e crack image is evident due
to the high reflectivity at the location inside the crack.
However, the distress regions are not discernible from the
reflection intensity. �erefore, calculating the inclined and
dip angles will help detect the area with the variation in
elevation, specifically, elevated regions due to the influence of
tree roots. Because of the optical nature of laser scanning,
both 2D and 3D laser scanners cannot measure any surface
that is out of the scanner’s line of sight. �is means that
hidden or internal geometry not visible to the scanner cannot
be measured. Scans are taken from many angles to ensure a
complete model, but complex geometry may still be a
problem, as it commonly occurs with holes or threads.
However, the initial cost of using a 3D laser scanner can be
quite expensive. On average, industrial 3D laser scanners cost
anywhere from tens to several hundred thousand US dollars.
�e used scanners that cost several thousand US dollars are
many times cheaper than TLS scanners. In this study, a
scanning range of 30m is far enough for mobile device-
mounted applications to observe road surfaces. �e resulting
scan point density is thick and sufficient for further analysis.
�e results show that the road surface is automatically
separated through the continuous characteristic of the curb.
�e noise points are extracted based on the geometrical
features of the road surface. Specifically, the Nz-component
of the normal vector is used to remove noise points above the
road surface. Based on reflectance change at the crack, crack
points are separated based on the intensity gradient. �en,
points close to the crack edge with weak reflectivity are
extracted based on the value of the inclination angles. �e
surface raised or lowered than the horizontal surface is

(a)

(b)

Figure 10: Cross section of point cloud. �e cross section image of (a) large crack and (b) shallow small crack. �e continuous change of
elevation and high density point lead to the unsignificant of difference in elevation.
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detected through the value of the dip angle. �e resulting
crack points are used to generate binary images. �e crack
edge and distress region edge are extracted using the Sobel
operator from this binary image. Finally, the crack edges are
extracted. �e study results show the effectiveness of com-
bining elevation and strength data to extract crack infor-
mation. However, the use of intensity will encounter salt-and-
pepper spots.�ese areas significantly affect the generation of
crack edges. �erefore, it is necessary to have a method to
filter out salt-and-pepper spots more effectively shortly.
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