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Te main objective of the article is to fnd the optimal ranges of the cardinal topological, shape, and dimensional parameters that
fully describe the constructional scheme of pedestrian radial network arch bridges of moderate spans. Tis task is solved by
formulating the global optimization problem and seeking the minimum mass of the whole bridge structure. An optimal bridge
scheme was obtained by tuning a large set of interdependent design parameters of diverse character: the topological param-
eters–the type of hanger arrangement, and the number of hangers; the shape parameters–hanger spread and central section angles,
the alteration of these angles, and the arch rise; and the sizing parameters–all cross-sectional dimensions of structural members.
Mathematically, this is a constrained mixed-integer global optimization problem solved by a stochastic evolutionary algorithm.
Plane light-deck bridges of typical moderate 30, 45, 60, 75, and 90m spans were optimized. Decisive design parameters and their
rational ranges for all spans were revealed. In addition, the efects of some simplifcations of the general bridge scheme were
shown: using the constant spread and central section angles; imposing certain values on the ratio arch rise/bridge span; bounding
the hanger diameters to a given value; and so on. Obtained results clearly indicate that the design recommendations for the
lightweight network arch bridges should difer from the recommendations for similar automotive and railway bridges. Our
fndings are: the optimal ratio of arch rise to the bridge span is 0.20–0.30, the number of hangers is >40 even for the shortest spans,
the spread angle between hangers is 30°–40°, and the girder mass amounts to ∼30% of the total bridge mass, while the mass of
hangers amounts up to 20% and increases when imposing constraints on the minimal radius at the expense of diminishing
arch mass.

1. Introduction

Te original ideas of the radial network arch scheme for
bridges are found in the pioneering works of engineer
Octavius F. Nielsen, published in the early 20th century
[1, 2]. Te bridges of O. F. Nielsen’s scheme had inclined but
not crossing hangers. Later, in the 6th decade, Per Tveit and
his co-workers [3, 4] showed that a scheme with hangers
with multiple crossings lets avoid compression of hangers
and therefore is more efcient. Many railways and auto-
motive bridges based on this scheme were built in Norway,
Germany, the United States, and other countries.

Te behaviour of such bridges was analysed in several
scientifc papers [2, 5–9] where some optimal ranges of the
parameters on the constructional elements of the bridges
were suggested. Tus, Schanack [9–11] studied a bridge
scheme with a circular arch and obtained the rational range
of spread angles between neighbouring hangers. Next, Teich
[2, 7, 8] searched for the optimal shape of the arch and gave
recommendations for the optimal spread angle values for
four diferent hanger arrangement schemes and for the
optimal number of hangers. One of the most important
constructional parameters is the ratio between the rise of the
arch and the span of the bridge; some considerations on this
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are given in [4]. Several papers analysed the behaviour of
already built bridges [1, 2, 4, 9].

Generally, it is shown that the radial network arch
bridges with multiple crossing hangers are the most efective
among diferent network schemes of bridges if the bending
moments in the arch and the axial forces in the hangers are
considered [12] and also are less vulnerable to the accidental
cable loss events [13].

Usually, the cited works concentrate on fnding optimal
values for some constructional parameters of the bridge
scheme, taking as the objective function the minimum
bending moments or the minimum stresses in the elements
of the bridge. Tus, Ostrycharczyk and Malo [6, 14] per-
formed 19,200 variant calculations of a 2D network arch
scheme with diferent radial hanger arrangements, changing
the arch rise and the hanger spread angles α [Figure 1] in the
diapason from 0 to 70°. Tey obtained minimal bending
moments at the angle values α� 42–55°. Similar problems
were investigated by Islam Ahsan and Ahsan [15, 16], and
Pipinato [17, 18]. Islam Ahsan showed that circular arch
network bridges compared to parabolic arch bridges have a
lower arch rise and a lesser number of hangers. Also, they
obtained slightly diferent optimal spread angles: α� 32–40°.

Nowadays, several works investigate diferent behav-
ioural aspects of network arch bridges based on detailed
nonlinear analyses. Bruno et al. [13] identifed the main
factors reducing the risk of accidental cable loss for 2D
bridge frames. Ammendolea et al. [19] expanded the in-
vestigations to the 3D bridge scheme. Tetougueni et al.
[20, 21] explored the lateral response of the 3D bridge against
trafc loads, while the works of Greco et al. [22–24] are
dedicated to the investigation of out-of-plane instability
efects due to vertical loads and to the infuence of diferent
bracing systems between bridge arches on the instability
strength.

All this research concerns the network arch bridges for
railway and automotive transport. Today, network arch
bridges are often used also for pedestrian trafc. Since these
bridges usually have smaller spans and lesser loadings, the
design recommendations for railway and automotive
bridges are not fully applicable to them. Some considerations
for the analysis of pedestrian network arch bridges can be
found in [25–28]. In Belevičius et al. [29, 30] the scheme of
the pedestrian network arch bridge was optimized changing
all main constructional parameters simultaneously: the arch
rise, the number of hangers, their inclination and spread
angles, and all cross-sectional dimensions of bridge elements
under diferent loading conditions. Te number of design
parameters is large; and therefore, the mathematical opti-
mization problem was formulated and solved using sto-
chastic global optimization algorithms. In [31] the
pedestrian bridge scheme of a 60m span was investigated in
detail, while [32] provides the optimal structural parameters
of this bridge at diferent optimization conditions and some
fxed values of structural parameters.

Tis paper attempts to generalize the fndings on optimal
diapasons of constructional parameters of pedestrian radial
network arch bridges for diferent spans of 30, 45, 60, 75, and
90m, which are typical for moderate pedestrian bridges. Te

arch in all cases is circular. Te bridge is investigated in two
dimensions, i.e., only one of the two parallel bridge frames is
optimized assuming that bracing between frames assures the
out-of-plane stability of the bridge. We try to fnd the op-
timal parameters of the bridge scheme by pursuing the
minimal bridge mass. Besides, the paper shows how the
additional constraints on the bridge parameters, such as the
fxed ratio of bridge rise to the span, fxed hangers’ spread
angles, fxed hanger diameters infuence the bridge mass.
Tis paper is organized as follows: Section 2 provides the
formulation of the optimization problem, Section 3 shortly
describes the optimization technique using stochastic evo-
lutionary algorithms, and the 4th Section discusses the results
of optimization. Some recommendations on the design of
pedestrian bridges of the studied type are given in the
conclusions.

2. Methodology

2.1. Optimization Problem. Figure 1 shows the general
scheme of the bridge frame under consideration along with
the main design parameters: the arch rise f, the number of
sections, the spread and central section angles α and β, and
the cross-section characteristics of the arch, girder, and
hangers. Te radius of an arch is determined by the arch rise
and span: R � L2 + 4∗f2/8∗f. All design parameters along
with their bounds and characteristics are listed in Table 1.
Figure2 explains the algorithm of scheme generation.

Te optimization problem is formulated in the following
equation:

F
∗

� f x∗( 􏼁 � min
x∈D

f(x), (1)

for all load cases subject to the following points:

(i) Structural equilibrium constraints.
(ii) Strength constraints on all structural elements.
(iii) In-plane stability constraints on the arch elements.
(iv) “Deadly penalty” for the occasion of compression in

any hanger.
(v) Vertical deck displacements’ constraints.

f (x) in equation (1) is a nonlinear objective function of
continuous and integer variables f: Rn⟶ R, where n is
the number of design parameters x, and D ⊂ Rn defnes the
feasible space of design parameters. Te global minimum F∗

and minimizer x∗: f(x∗) � F∗ should be found. It is as-
sumed that the problem may have several local minima; the
optimization results obtained clearly show the multiextrema
character of the problem.

Te total mass of the bridge is the objective function.Te
constrained optimization problem is transformed into an
unconstrained problem using static penalties proportional
to the extent of constraint violation.

Te structural equilibrium constraints are assured by
solving the static problem via the original fnite element
method (FEM) program written by the authors. All strength,
stability, and displacement constraints are formulated
according to Eurocodes.



Te following problem idealizations are taken as follows:

(i) Linear fnite element static analysis of the bridge
scheme is performed. Te linear solution is suf-
cient since the vertical displacements of the bridge
girder are limited via optimization constraints.

(ii) Te load-bearing structure of the bridge is com-
posed of two parallel plane frame systems. Only
one plane frame is analysed.

(iii) Te dimensions of cross-sections of the arch and
girder are constant along the whole length since

the bridges under consideration are of moderate
spans.

(iv) Te arch and the girder are made of rectangular
hollow tubes.Te thickness of the tube wall depends
on the height and width of the profle and is chosen
to ensure the local stability of the cross-section.

(v) All hangers are made of round solid profle. Te
diameter of all hangers in the scheme is the same.

(vi) Te dimensions of cross-sections of the arch,
girder, and hangers are taken as continuous
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Figure 1: Bridge scheme with the main design parameters.

Table 1: Set of design parameters.

No. of a
parameter Parameters Types

Lower bounds Upper bounds
For varying

angles
For constant

angles For varying angles For constant
angles

1 Arch rise f (m) Continuous L/10 L/2
2 Number of sections (n) Integer 5 40
3 Spread angle α (°) Continuous 5 5 35 45
4 Central section angle β (°) Continuous 1.1 54
5 Augment Δα (°) Continuous 0. 0. 2.5 0.
6 βini Continuous 0.5 1.0 1.5 1.0

7 Height of girder cross-section,
hb (m) Continuous 0.1 1.0

8 Width of girder cross-section,
wb, (m) Continuous 0.08 0.4

9 Height of arch cross-section, ha
(m) Continuous 0.1 1.0

10 Width of arch cross-section, wa,
(m) Continuous 0.08 0.4

11 Radius of hanger, R, (m) Continuous 0.005 0.05
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variables since the use of assortment table profles
considerably constricts optimization [28].

(vii) Te material of all structural elements is steel
S355.

(viii) All structural elements including hangers and
slightly distorted arch elements are idealized as 2-
node beam fnite elements with 12 degrees of
freedom.

(ix) Te connections between structural elements are
perfectly rigid.

Te optimization problem was solved for four load cases.
Each load case includes the self-weight of the bridge
structure itself, permanent (dead) loading evenly distributed
along the span on the girder of the bridge, and variable
(trafc) loading.Te permanent loading depends on the type
of bridge deck and is taken from 7.5 to 10 kN/m. Te in-
tensity of variable loading is from 2.5 to 5 kN/m2 according
to Eurocodes EN 1991-2 which is equivalent under con-
sideration from 7.5 to 15 kN/m for the bridge scheme. Te
frst loading case consists of the permanent loading plus
trafc loading applied on the whole span [Figure 3(a)]. Te
next three load cases (Figure 3(b)) include permanent
loading plus variable loading on half of the span since this is
usually the critical case for buckling [33]. To keep the thrust
force in the arch more or less constant thus assuring the

correct analysis results [31], the following relation is
employed:

H � g∙(1 + 0.5∙c)∙L2/8∙f, whereH is the thrust force in
the arch, g is the permanent load, c is the ratio between
variable load v and permanent load g. Tus, for all asym-
metric loading cases and taking the ratio c= 1.0, 1.50, and
2.0, the loads’ intensities as shown in Figure 3 were obtained.

2.2. Optimization Technique. After the global optimization
stochastic evolutionary algorithm (EA) from MathWorks
[34] randomly creates the initial population of design pa-
rameters sets, the optimization problem is solved in four
steps:

(i) Original meshing program written by authors based
on the values of design parameters prepares the
whole fnite element mesh of the bridge frame
herewith calculating the loadings on the mesh nodes
and imposing the boundary conditions.

(ii) Original fnite element program solves the linear
static problem. Te computation time is a bottle-
neck in global optimization problems; therefore, we
cannot rely on the more detailed nonlinear analysis
or use the commercially available fnite element
packages; instead the fast problem-oriented Fortran
program written by the authors is employed.
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Figure 2: Algorithm of the bridge scheme generation: (a) Initial scheme of hangers at constant angles α and β, (b) Final scheme–obtained by
the mirror image; (c) and (d) the same schemes at varying angles.
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(iii) Original program obtains the objective function
value, verifes the constraints, and penalizes the
objective function in case of a constraint violation.

(iv) Based on the results obtained, EA generates the new
improved population of design parameter sets.

Exhaustive details on the optimization technique can be
found in [31].

Te design parameters set is chosen so that it could
determine the complete fnite element mesh of the bridge
frame together with all physical properties of structural
elements of the frame.Te most discussed topic in the radial
network arch bridge geometry is the hanger arrangement
scheme. We suggest the following algorithm, which allows
obtaining the arbitrary radial hanger arrangement scheme.
Two symmetrical sets of hangers are combined where two
independent angles–the hanger spread angle α and the
central section angle β determine the positions of the
hangers. Figures 2(a) and 2(b) show the initial set of hangers
and the fnal obtained scheme when the angles α and β are
constant. Figures 2(c) and 2(d) show the general scheme
when both angles change constantly. For the alternating
central section angle instead of the angle augment, it is
handier to formulate the ratio of the initial central section
angle βini to the average angle βavg. Denoting the total section
angle by c and the number of sections by n (the total number
of hangers then is 2n), the central section angle augment is
obtained via the following equation:

β � 2
c − n · βavg · βini

n · (n − 1)
. (2)

Table 1 provides a complete list of design parameters
along with their bounds for all bridge spans L.

3. Results and Discussion

Bridges of fve diferent spans were optimized: 30, 45, 60, 75,
and 90m. Te loading on each bridge consists of the same
four loading cases, and the loading intensities are also the
same.

Te results in Figures 4–6 show, frst of all, the quality of
the optimization procedure. Here, the best fve optimized
values of the main parameter of the bridge scheme–the ratio
of arch rise to the span are shown for all fve optimized

bridge schemes. Figure 4 compares the obtained ratio values
at the full set of optimization parameters vs. at the reduced
set of parameters excluding variation of spread and central
section angles. As expected, a wider set of optimization
parameters conditions a bigger scattering of results (denoted
in the legend as α, β var), however, at close values of the total
bridge mass. Figures 5 and 6 show the same dependencies at
fxed values of hanger radii: R≥ 10mm and R≥ 20mm,
correspondingly. Tese inequality constraints turn during
the optimization procedure indeed into equality constraints:
the optimization procedure always ends up with the lower
values of radii, i.e., 10 and 20mm.

When the variation of both angles is allowed, the optimal
values of the ratio f/L are always higher than at the constant
angles.Tis is seen from Figures 7(a) and 7(b): the frst fgure
shows the average optimized values at variable angles, while
the second–at constant angles. It is interesting that the
optimal ratio value at the full set of optimization parameters
is about 0.29 and slightly increases with the span. Imposing
additional constraints on the bridge scheme–limiting the
hanger radii to 10 and 20mm determines lower ratio values:
about 0.23 and 0.21, respectively (Figure 7(a)). Te de-
pendencies retain the same character at both constant spread
and central section angles, but at even lower values
(Figure 7(b)).

Figures 8(a)–8(c) show how the fxed values of ratio f/L
afect the total mass of the bridge scheme. We show only the
marginal cases of dependencies for the spans of 30, 60, 75,
and 90m at the full set of optimization parameters, and at
the constant angles α and β. All other remaining cases of
optimization parameters’ sets demonstrate the same char-
acter of dependencies. Te range of ratio values from 0.16 to
0.40 with an augment of 0.04 is explored (but in the case
when the total mass increase is evident, the optimization is
stopped at the margin of 0.32). Te dot with a black rim
shows the absolute minimum in the curve. Tus, at the full
set of optimization parameters (of course, excluding the arch
rise f) the curve is always fatter-adaptability of remaining
optimization parameters assures low losses in the objective
function. By reducing the set of optimization parameters, the
curves obtain a steeper profle. Longer and thicker hangers
obtained along with increasing ratio f/L and the constraint
on the radii of hanger results evidently in the increased total
mass of bridge (Figures 8(a)–8(d)).

v = 7.5 kN/m

g = 7.5 kN/m

L

Symmetric

(a)

v

g

Asymmetric, γ=1.0, 1.5, 2.0

L/2

L

(b)

Figure 3: Loading cases and intensities of variable and permanent loadings. (a) Symmetric loadings, (b) Asymmetric loadings: at c � 1.0
v � g � 10.0 kN/m; at c � 1.50 v �12.86 kN/m, g � 8.57 kN/m; at c � 2.0 v �15 kN/m, g � 7.5 kN/m.
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Now, let us explore the parameter, recommendations on
which in the literature are contradictory: the optimal
number of the hangers. Due to the logic of bridge scheme
generation, instead of hangers’ number, the number of
sections in the span will be shown; the number of hangers is
twice as much. Figure 9 illustrates that the optimization
algorithm ends up with rather scattered optimal values of
this parameter at close values of the objective function.

Figures 10(a) and 10(b) show the average values of the
number of sections n in the fve best solutions at diferent
sets of optimization parameters. Naturally, n increases with
the bridge span and diminishes with increasing hanger
radius.What is interesting, the n at constant angles α and β is
always higher in all optimization cases.

Our bridge scheme generation algorithm allows
obtaining schemes with constantly changing spread and
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Figure 4: Five best values of ratio f/L at variable and constant angles α and β for all spans.
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Figure 8: Continued.
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central section angles α and β. It was shown in [29] that a
variable angle β has a slight impact on the mass of the
bridge: excluding variation of the angle for a 60m bridge,
the mass increases up to 4%. Terefore, the main attention
is given to the dependencies relative to the spread angle.
Figure 11 provides the average optimal values of α and β in
the fve best solutions for all spans when both α and β are
constant.

Figure 12 illustrates the infuence of the spread angle on
the total mass of the bridge scheme for two marginal cases of
hanger radii: unbounded radius, and R≥ 20mm, and three
spans. If the angle has a low impact on the mass for a short
span, with increasing span the infuence becomes substan-
tial. For comparison, the dots with black rims denote op-
timal values of the angle obtained optimizing the scheme
with variable α.

As to the distribution of mass between structural ele-
ments in the optimal bridge schemes, despite the diferent
hanger numbers, the total hanger mass is surprisingly stable
for all spans [Figure 13]. However, taking thicker than
needed hangers, i.e., R≥ 10 or 20mm, the hanger mass’ part
increases–simultaneously with increasing total mass of the

whole bridge. Tis clearly indicates that an optimal bridge
scheme should have a larger number of thinner hangers. It is
also evident, the largest part of the material should be
amassed in the arch of the bridge.

Te results and discussion may be presented separately
or in one combined section, and they may optionally be
divided into headed subsections.

4. Conclusions

Based on the results of mass optimization of pedestrian steel
network arch bridges with radial hanger arrangements of
moderate spans of 30, 45, 60, 75, and 90m, we can conclude
that the published design recommendations for corre-
sponding automotive and railway bridges are not fully
suitable for pedestrian bridges with lower loadings. Our
fndings are as follows:

(i) Te optimal ratio of arch rise to bridge span for
pedestrian bridges is approximately 0.20–0.30. In
this range the sensitivity of the total bridge mass to
the ratio is low.
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Figure 13: Distribution of mass between arch, girder, and hangersMa, Mg,Mh and the number of sections n: (a), (c), (e)—at variable angles
α and β; (b), (d), (f )—at constant angles α and β.
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(ii) Te optimization always ends up with a large
number of slender hangers (>40) even for the
shortest spans.

(iii) Te optimal range of spread angle between hangers
is 30°–40°. Smaller spread angles, especially for the
wider bridge spans, determine a substantial increase
in bridge mass.

(iv) ∼30% of the bridge mass should be amassed in the
girder.

(v) ∼20% of the bridge mass should be amassed in the
hangers; imposing a constraint on the minimal
hangers’ radius increases the hangers’ mass at the
expense of diminishing arch mass.
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All data on optimized parameters’ values of all analysed
bridge schemes as well as fnite element solution results in a
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konzeptes,” Diplomarbeit, Technische Universität Dresden,
vol. 38, 2001.

[8] S. Teich, “Entwicklung allgemeiner Entwurfsgrundsätze für
Hängernetze von Netzwerkbogenbrücken,” Stahlbau, vol. 80,
no. 2, pp. 100–111, 2011.

[9] F. Schanack, “Berechnung der Knicklast in bogenebene von
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“Optimal schemes of radial network arch pedestrian bridges:
an extensive dataset of solutions under diferent conditions,”
Data in Brief, vol. 36, pp. 107149–107218, 2021.

[33] C. Menn, Prestressed Concrete Bridges, Birkhauser Verlag,
Vienna, Austria, 1989.

[34] MathWorks, “MathWorks,” 2022, https://uk.mathworks.
com/help/gads/genetic-algorithm.html.

12 Advances in Civil Engineering

http://home.uia.no/pert
http://home.uia.no/pert
http://home.uia.no/pert
http://home.uia.no/pert/index.php/Home
https://uk.mathworks.com/help/gads/genetic-algorithm.html
https://uk.mathworks.com/help/gads/genetic-algorithm.html



