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�e most crucial event in a mining project is the selection of an appropriate mining method (MMS). Consequently, determining
the optimal choice is critical because it impacts most of the other key decisions. �is study provides a concise overview of the
development of multiple selection methods using a cascade-forward backpropagation neural network (CFBPNN). Numerous
methods of multicriteria decision-making (MCDM) are discussed and compared herein. �e comparison includes several factors,
such as applicability, subjectivity, qualitative and quantitative data, sensitivity, and validity.�e application of arti�cial intelligence
is presented and discussed using CFBPNN. �e Chengchao iron mine was selected for this investigation to pick the optimum
mining method. �e results revealed that cut and �ll stoping is the most appropriate mining method, followed by sublevel and
shrinkage stoping methods. �e least appropriate method is open-pit mining, followed by room and pillar and longwall
mining methods.

1. Introduction

Mining methods are techniques for extracting mineral re-
sources from the Earth’s surface. Owing to the di�culties
associated with the lithological and mechanical properties of
mineral deposits, a unique exploitation technique cannot be
employed to extract all of them. When extracting ore de-
posit, it is critical to employ either technique that has the
greatest conceptual coherence with the geomechanical and
lithological conditions of that mineral deposit. For the
employed extraction method, it eventually has to be cost
e�ective compared with alternative methods [1]. �e

selection of the mining method (MMS) refers to the pro-
cedure for picking an ideal extraction technique for mineral
deposit. It is hard to switch the picked method, manipulate,
and/or swap it with another after the MMS process has been
�nalized, and the mining of ore deposit has begun using the
proposed approach [2]. Because this alternative is typically
expensive, the entire project may become uneconomical.
�erefore, the selection of the mining method, MMS, seems
to be an irrevocable step in mine planning [3]. However,
choosing an extraction method for ore deposit is entirely
reliant on the resource’s ambiguous lithological and geo-
mechanical properties. Due to such ambiguity, no positive
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value can be ascribed to any of these attributes. For example,
mineral resources might not be allocated a positive slope or
volume if precise numbers are used [4]. +e basic goal in
selecting how to mine ore deposits is to develop an ore
extraction technique that is fully appropriate within the
given conditions. Before deciding on an exploitation tech-
nique, it is crucial to know the important characteristics that
each mining method requires. MMS is primarily influenced
by several factors, including ore deposit geometry (e.g., size,
shape, and dip), subsurface properties (e.g., mineral com-
position, lithology, homogeneity, deformation, and ero-
sional), geomechanical characteristics of rocks and ore (e.g.,
elastic deformation, in situ stresses, consolidation, compe-
tency, and various physical properties), economical aspects
(e.g., stockpile weight, rate of production, and mine life) [5].

MMS requires the study, assessment, and evaluation of
selection factors, a duty which is frequently completed by
engineers according to their mining knowledge, expertise,
and intuition. Because of the complexity of the assignment, it
can be accomplished significantly more effectively by
someone who has a thorough understanding of the subject.
It is critical to imitate a human expert’s judgment and
comprehension. +e MMS problem is a comprehensive
system from the standpoint of system theory. +e charac-
teristics of this system are as follows [6]:

(1) +ere are multiple attributes to consider while
choosing a mining method.

(2) +e popularity of the orebody, product demand,
enterprise index, and other factors influences the
choice of the mining approach.

(3) Relationships between components are intricate.
+ese components are linked to excessive ambiguity,
both in structures and in content.

(4) +ere are multiple dimensions in choosing a mining
strategy. +e MMS system comprises subsystems,
each of which has its own set of subsystems. Mining
machines, ore-dressing machines, and processing
machines, for example, are all parts of the running
machine. Consequently, the MMS system is a
massive system with multiple dimensions.

(5) An open machine is the mining strategy of choice.
+is type of system communicates with external
systems regularly by exchanging materials, energy,
and statistics.

(6) Information is often ambiguous. Statistics in the
technology, economy, geology, and other fields are
usually unclear in the exploitation system.

(7) Environmental factors must be considered during
the manufacturing process. +e main factor is the
complex geology of the orebody; as a result, the
exploitation system is difficult to explain using a
mathematical model.

(8) +e machine is in a state of flux.+e specifications of
the machine, in terms of area and time, often change.

When deciding on an appropriate mining method for
ore deposits, various criteria must be considered. Numerous

techniques, such as the Nicholas, modified Nicholas, and
UBC methods, were designed to assess the appropriate
method for ore extraction. Unfortunately, none of such
methods consider the weight values for every factor that
influences the MMS. +us, this study aims to provide a
review of the development of MMS tools explaining the
advantages and disadvantages of each one and provides a
new technique based on the application of a cascade-forward
backpropagation neural network (CFBPNN), which is
adopted as a case study in the Chengchao iron mine.

+e rest of the paper is structured as follows. Section 2
focuses on the development of MMS tools. Multicriteria
decision-making (MCDM)methods are discussed in Section
3. In Section 4, the MMS employing soft computing and
artificial intelligence is discussed. Section 5 discusses the
MMS using the application of CFBPNN (Chengchao iron
mine case study). Finally, in Section 6, conclusions, rec-
ommendations, and suggestions for future work are pre-
sented, respectively.

2. Development of MMS Tools

Researchers have investigated the challenges of MMS. Nu-
merous techniques have been generated to evaluate the
appropriate extraction strategies for mineral deposits with
respect entirely to their natural and geomechanical char-
acteristics. +e first qualitative classification scheme for
underground method selection was developed by Boshkov
and Wright [4]. Consequently, their system assumes that
surface mining is no longer an option. Morrison proposed a
system based on the width of ore, guide type, and strain
energy accumulation [7]. Nicholas and Mark [1, 8] proposed
a quantitative device. +e device is based on a series of steps,
categorized as follows:

+e geometry and mineral composition of the ore
+e characteristics of the ore zone and host rocks (e.g.,
hanging wall (HW) and footwall (FW))
A numerical rating based entirely on the addition of
scores
Applying a weighting factor to the categories

Hartman and Mutmansky [6], Laubscher [9], Marano
and Everitt [10], Bandopadhyay and Venkatasubramanian
[11], Agoshkov et al. [12], Mutagwaba and Terezopoulos
[13], Miller-Tait et al. [14], Hamrin [15], Tatiya [16], Basu
[17], Kahriman and Karadogan et al. [18, 19], Kesimal and
Bascetin [20], Clayton et al. [21], Guray et al. [22], Wei et al.
[23], Shahriar et al. [24], Mihaylov [25], Miranda and
Almeida [26], and Bascetin [27] have written several papers
on MMS. MMS techniques are classified into three cate-
gories: qualitative techniques, numerical rating techniques
(scoring), and decision-making models. Table 1 provides a
brief history of proposed approaches toMMS and their main
issues.

Despite the perceived advantages of these approaches, a
scientific method for MMS that links subjective and ob-
jective decision-making is still lacking. Hence, a few MMS
choices are primarily based entirely on experience, wherein
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the outcome of the technique used is the only much like the
deposit without absolutely catering to the distinctiveness of
the deposit in question. Consequently, the mining industry
cannot gain sufficient confidence in the previously imple-
mented approaches. Most of the choices cannot be quan-
tified; consequently, there is a need for a scientific method to
select the mining technique. Table 1 lists the existing MMS
methods and their main drawbacks.

3. Methods of Multicriteria Decision-
Making (MCDM)

Amodern method for MMS uses MCDM tools for resources
within the process [29]. MCDM is efficient at enabling se-
lection; nevertheless, its use really has not gained widespread
acceptance in the mining industry, primarily in MMS [30].
MCDM methods are widely used in a wide range of in-
dustries, including manufacturing, management of water
resources, quality assurance, mass transit, and product in-
novation, and they provide a platform for further MMS
research [31].

+e following decision-making strategies have been used
within the MMS process: AHP, PROMETHEE, TOPSIS,
TODIM, VIKOR, ELECTRE, and GRA. However, they are
no longer widely used within the mining industry, and
recent work extends on available research of MCDM
methods because they allow for similar exploration in MMS
[32]. Furthermore, OCRA, ARAS, COPRAS, CP, and SAW
are supplemental decision-making techniques, since no
recent evidence could encounter their application within the
mining industry [32, 33]. MCDM methods have been used
to entail final choice. To acknowledge importance of MCDM
methods, their contributions to various decision-making
processes must be emphasized. +e availability of a tech-
nique allows for the use of a variety of MCDM approaches.
+ese tools, regrettably, can be unaffordable and are not

always tailored to certain situations. Furthermore, acquiring
a tool is only cost effective if it will be used multiple times.
Furthermore, no unique strategy is appropriate for all sit-
uations, and each approach has benefits and drawbacks that
vary depending on the context. Table 2 lists the various
MCDM approaches.

4. MMS Using Soft Computing (SC) and
Artificial Intelligence

Several studies on MMS have been conducted using MCDM
methods. However, some of these studies failed to account
for parameter uncertainty. Fuzzy logic could be employed to
counteract this uncertainty [31, 96, 97]. Yun andHuang have
integrated a fuzzy scheme into the MMS [98, 99]. +is
technique is broken down into three steps. During the first
phase, fuzzy relation equations are derived to calculate
Hamming intervals between both the lithological design for
the proposed mining method and the geotechnical qualities
of the mine that had been built. +e technical and economic
values of each suggested mining methods are approximated
in the second phase employing statistical data from mines
with similar circumstances. In the last phase, several goal
decisions will be determined based entirely on the outcomes
of the first and second stages [100].

Bitarafan and Ataei proposed a method for assigning
weights to distinguishing criteria [101]. In the proposed
method [102], Yager’s technique is used wholly in a fuzzy
various ruling method [103] and a fuzzy primacy technique
introduced by Hipel has been used. One unique aspect is that
the technique adopted accelerating primitives to reflect the
relevance of the criteria provided, that can substantially raise
the quality of the metrics having equivalent requirements to
the ore deposit. Alternatively, it may be decreased drastically
[104]. Such technique has been effectively implemented in
MMS in one of the anomalies in Iran’s GoleGohar ironmine,

Table 1: Summary of the existing mining method selection (MMS) techniques and main issues associated with them.

Author(s) Year Characteristics Drawbacks

Peele, Church 1941 Uses broad descriptions of thickness, dip, and strength of ore
and strength of rock

Only used when there are similar situations in
popular methods

Morrison 1976
+e criteria for selecting a mining method are overall

descriptors of ore size, type of rock support, and buildup of
strain energy

+e preference for one method over another is
determined by various combinations of ground

conditions

Nicholas 1981
Numerically rates the characteristics of ore deposit based on
lithological and geomechanical properties of ore and host

rocks

+e chosen mining method is the result of
combining evaluation and high ranking

Laubscher 1981 Based on a rock mass classification system that takes into
account expected mining effects on rock mass strength

+e preferred method is solely determined by the
rock mass classification system

Hartman 1987 +e decision is made based on the lithological and
geomechanical characteristics of ore deposits

A flow chart must be created to define the mining
method

Loubscher 1990
If the area available for undercutting is large enough, this
method can be modified to include the hydraulic radius,

making it feasible for more competent rock

+e classification must be altered in order to link
rock mass rating to hydraulic radius

Nicholas 1993 Altering the selection procedure by incorporating a weighting
factor [28]

Miller, Pakalnis,
and Poulin 1995

+e Nicholas approach has been modified to demonstrate
more emphasis on stoping methods, better portraying typical

Canadian mining design practices

Insufficient and inadequate for conducting
accurate and robust MMS process

Advances in Civil Engineering 3



Table 2: Summary of the various MCDM methods.

MCDM method Description Advantages Disadvantages

AHP

Saaty created it to enable the decision-
makers make more organized
decisions [34, 35]. A multilevel

hierarchical structure of objectives,
criteria and alternatives is used [36].

Evaluate the significance of key
measurements before correlating

possible options with regard to each
factor. Eventually, calculate the

utmost preference of each decision
option and also the overall score of the

decision options [37]

Simple to be adopted, and its scale can
be adapted to meet the needs of
various decision-making situations
[38]. Its popularity arises from the
belief that it requires less data than
other MCDM methods and can

manage evaluation criteria [39]. When
data are measured on different scales,
it can be normalized and aggregated
later [40]. It is accurate in taking
decisions because of its potential to

prove the consistency of the
independent expert assessment [41]

As the list of considerations to be
matched grows, calculations can
become challenging. +e ultimate
determination (overall score of
options) may be impacted by
increasing the scale of relative

importance [38]. As stated earlier in
the section, AHP is only valid with
positive reciprocal matrices [40]

PROMETHEE

In 1982, it was firstly created by Brans
and Vincke [42]. +e PROMETHEE,
for each alternative, calculates both
positive and negative flows (V+, V−),
respectively, based on the weight
assigned to each criterion [43].
PROMETHEE I through VI was
created to serve as outranking
methods. In each criterion,

alternatives are compared in pairs [44]

Can compare a finite set of alternatives
to competing criteria [45]. Pair-wise
comparison is no longer necessary

once options are removed or provided
during the assessment. It is employed
to select the optimal underground ore
transportation and mining method

[46]. Calculations are very
complicated; therefore, the method is

only suitable for experts

Because of the scarcity of selection
guidelines, decision-makers find it
hard to set up preference limits and
thresholds [47]. +e uncertainty of
the set up limits is also not wholly
responsible for, despite the fact that a
parametric analysis is then conducted

[48]. +e subjective input of
preferences adds to the uncertainty

[49]

TOPSIS

In 1981, Hwang and Yoon addressed
TOPSIS, which stands for order
preferences by similarity to ideal

solution [50]. Ranks the alternatives
according to the distance between the
ideal positive and negative solutions
[51, 52]. +e TOPSIS method’s best
alternative is the one that comes

closest to the positive ideal solution
[53, 54]

TOPSIS allows to reach the right
solution faster than most MCDM

methods. Its logic is sound and easy to
grasp. Furthermore, the significance of
weight vectors could be incorporated
into the comparative process [55]. A
polyhedron could be used to depict the
effectiveness of options and metrics,
and the estimation process is then
straightforward [56]. +e method is
suitable when the indicators of

alternatives do not vary very strongly

TOPSIS lacks a component that
checks for inconsistency between

judgment and expressed preferences
[57]. Because TOPSIS cannot elicit
weights, it must focus solely on

alternative measuring strategies such
as AHP [58]. TOPSIS application

might be invalid if the weights are not
accurate [59]. Simple computational

steps, solid mathematical
foundations, and a method that is

simple to understand [60]

TODIM

Tomada de Decisao interactive
multicriteria have been developed in
the early 1990s by Gomes and Lima to
assist throughout the list of options in

which the selection should
successfully maintain a choice in the
event of a crisis [61]. Main idea has to
use the overall value to determine

each alternative’s dominance over the
others and then evaluate and rank the

alternatives [62]

In terms of behavioral decision-
making, it is effective since it considers
the decision-psychological maker’s
virtues and therefore can catch

damage and lack of certainty [63]. +e
attenuation parameter, that would be
adjusted, will portray the decision-
maker’s risk tolerance [64]. Even

professionals with no prior knowledge
of MCDM describe the method as an

easy-to-implement tool [65, 66]

Inability to acknowledge the
uncertainty associated and

imprecision in decision-making [67].
In the TODIM method, any two

alternatives must be compared, which
results in high computational

complexity [68]. Interactive attributes
can be used with positive or negative
criteria interactions and crisp values

[69]

VIKOR

Opricovic [70] proposed this method
to solve situations with contradictory

and quasi requirements [71].
Presuming that agreement is

reasonable for dealing with conflict,
the selection seeks the fairly close

answer to the perfect, and all defined
requirements are used to take active

steps [72, 73]

It is very simple because it has the
fewest steps for calculating the ranking

order [74]. Could go with the
expansion functionality of the “most
of” and the least specific remorse of
the “competitor” [75, 76]. A helpful
aid, especially once the choice has not
yet addressed his or her priorities at
the outset of the method [77]. Enables
to calculate the distance between the

second-best option and the first

Looking for a compromise ranking
order, i.e., a compromise between
pessimistic and expected solutions.
Another flaw is the use of complex-

linear normalization in the
calculation formula [78]. +e use of
complex normalization is required
for all of the matrix’s elements, which
typically have different metrics, to be
obtained as dimensionless units [79]
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and the block-caving technique has been selected as the
optimal mining technique. Ataei et al. adopted the analytic
hierarchy process (AHP) to resolve MMS issue in Golbini
No. 8 deposit in Jajarm, Iran [39]. +ey developed an AHP
structure of 13 metrics and six alternatives, and 17 pro-
fessionals from different tasks were selected to create pairs
contrast matrices. According to the findings, the reduce-
and-fill mining approach has been opted as the most ap-
propriate approach out of six alternatives [105].

One disadvantage of the AHP is that the decision-
making instinct may be expressed as a genuine value. Yet
another flaw of the AHP is the incorrect treatment of in-
herent ambiguity within the pair-wise contrast procedure, as
well as judgment size prejudices [106]. To eliminate such
disadvantages, Naghadehi et al. [106] employed the fuzzy
analytical hierarchy process (FAHP) to MMS [107, 108].
Weights of primary criteria in the FAHP system were de-
termined using a fuzzy set of rules, and six suggested mining
techniques have been listed using the AHP [33]. +e sug-
gested technique has been adopted in Jajarm Bauxite mine in
Iran, and the traditional reduce-and-fill method was chosen
as the most suitable extraction technique [109, 110]. Azadeh
et al. [28] developed Nicholas’ [111] quantitative rating
approach, and the ambiguity of the decision-makers’
judgments was expressed using trapezoidal fuzzy numbers.
+e method comprised AHP models labeled as “technical”
and “economic” operation. A case study has been adopted at

the northern anomaly of the Choghart iron mine in Iran to
confirm the advanced method and compare it with the
Nicholas method [112].

Namin et al. [113] proposed a fuzzy mining approach
with interrelation criteria (FMMSIC), which is a hybrid
decision-support system that combines the fuzzy analytic
network process (FANP) [114] and fuzzy entropy (FE) [115].
+e FANP and FE were used for preliminary weighting [50],
and a revised fuzzy method for ordering priorities matching
to the optimal situation (TOPSIS) [116] has been employed
for the MMS ranking procedure. A case study of the Gole
Gohar deposit in southern Iran was conducted to confirm
the validity of the FMMSIC [117]. 11 underground mining
strategies and 16 MMS-related conditions have been taken
into account as proposed strategies and requirements for the
choice process [118]. Finally, the block-caving method has
been selected as the best suitable mining technique for this
mine, which has been supported by numerous expert
opinions. Table 3 summarizes relevant studies on MMS
using SC technologies and MCDM methods and includes
some guiding references for using SC in MMS.

Despite significant efforts by researchers, no MMS
system can address the entire scope of the MMS issues.
Latest MMS research has typically concentrated on allo-
cating weight elements to standards and attempting to
model the precise notion techniques of decision-makers
[106]. To cut a size of the MMS, proposed mining strategies

Table 2: Continued.

MCDM method Description Advantages Disadvantages

ELECTRE

Roy invented it in 1968. Various
ELECTRE methods have since been
developed [80] used to classify a

number of options by analyzing data
in a decision matrix [81]. In the pair-

wise correlation of alternatives,
consistency and disharmony are used

[82]

Capable of dealing with both
qualitative and quantitative criteria
[83]. ELECTRE was employed in civil
and environmental engineering [84].
Examples of these applications include
power efficiency, sustainable use of
natural resources, environment
protection, nutrition, security,

healthcare, design, and mechatronics.
To select the best surface mining

technology [85]

ELECTRE occasionally fails to sort
the alternatives into different ranks
[86]. +e weakness of ELECTRE’s

normal ranking arises from the need
of supplemental limit, and the
ranking of the alternative is

dependent on the size of this limit, so
there is no “correct value” [87]

GRA

Deng proposed it in 1982 to find
solutions involving uncertainty and
missing information [88]. Grey
prediction model, grey relational
analysis (GRA), grey decision, grey
programming, and grey control are
the five components of the grey

prediction model [89]. +is method
treats each alternative as a data

sequence. It then looks at how similar
each alternative is to the reference

sequence [90]

+e analyzed results are reliant on the
raw data, and the calculation

procedure is simple and
straightforward [91, 92]. +ere are no
restrictions on sample size or normally

distributed data, and the
computational method is simple [93].

Ability to provide methods for
ranking alternatives that do not

necessitate a large sample size or any
sample distribution. Very popular and
useful tools for analyzing various
relationships among discrete

information and making decisions in
various situations

+ere is a lack of mathematical
principles to discuss its history, rules,

and restrictions [94]. +e most
relative relational degree from the
probabilistic linguistic positive ideal

solution is used to select an
alternative [95]

OCRA, ARAS,
COPRAS, SAW,
CP

Rapid development of methods for
dealing with real-world problems [32]

+e method has seen limited
application in mining engineering

[32]
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might be suggested prior to executing the MMS system.
However, this results in the software of a completely sub-
jective technique. In addition, because many mines are
transitioning from surface to underground mining after
completing surface exploitation, neither of the evolvedMMS
structures can manage more than one sequential transition
from open pit to underground mining.

Artificial intelligence (AI) or computing intelligence
(CI), which has been used in the discovery of minerals
recently, has improved over the years. Moreover, the use of
statistics is also becoming popular. +e importance of rel-
evant information retrieval through massive data collection
was emphasized [123]. As the demand for extensive data
grows, so does the recognition of statistical processing fields
such as statistics mining, massive statistics, machine
learning, and synthetic intelligence [124].

Artificial neural networks (ANNs) are a class of mas-
sively parallel architectures that can be used to study and
generalize from experience in order to provide significant
solutions to problems, even if the input data contain mis-
takes and are imperfect. As a result, the use of ANNs is an
effective approach for solving a variety of technically chal-
lenging issues. Primarily, the processing elements of a neural
network are similar to the neurons within the brain, which
include many simple computational elements organized in
layers. A neural network has to be trained on the experi-
mental results associated with material in order to predict its
behavior. +erefore, if these findings have adequate infor-
mation relevant to that material behavior, then the trained
neural network will not only replicate these results but also
approximate the results of different material.

An ANN is a technique that mimics the human mind’s
analyzing and problem-solving abilities. It is adaptable,
highly parallel, reliable, and tolerant to fix faults [125]. In the
implementation of synthetic neural networks, expertise is
addressed as numeric weights that can be employed to
extract correlations within data that are hard to express
analytically. +is iterative manner adapts the network pa-
rameters to reduce the sum of squared approximation

errors. Neural networks could be applied to simulate so-
phisticated relationships rather than using simplified as-
sumptions, which are likely to be employed in linear
approaches.

+e specific benefits of ANNs are their capabilities to
address every linear and nonlinear relationship, their ap-
plicability to directly observe these relationships from the
data used, the fact that they no longer need to maintain an
in-depth record of structures and interactions within the
systems, and that they are regarded as final black-box
models. For prediction employing the trained network,
ANN systems can be used to repeat experiments several
times, which can be useful considering that experiments are
difficult and in some cases impossible [126, 127]. Since the
1980s, there was a remarkable rise in the use of neural
networks to solve a variety of problems [128, 129]. +e
multilayer perceptron (MLP), radial basis functions (RBFs),
recurrent neural networks (RNNs), and echo state networks
(ESNs) [130] are among the neural networks that can be used
[131, 132]. Lv and Zhang [133] established the TCSMMPM-
ANN to decide the suitable thick coal seam mining method
to overcome the problems of traditional MMS and address
economic and technical index predictions. Chen and
Shixiang [134] designed a genetic algorithm ANN to opti-
mize the connection weights and thresholds in the optimal
BP network and established a nonlinear relation between the
miningmethod and geological conditions in a thin coal seam
working face. However, due to the small sample size and
highly advanced background, the BP network built in this
study should be improved on a regular basis. Özyurt and
Karadogan [135] developed a model using ANN and game
theory, which provides solutions if ANNs are continuously
trained, benefiting from technological developments and
new findings without requiring expert opinion or detailed
research in the relevant publication.

ANN models can recognize patterns that link input
variables to their corresponding outputs in complex bio-
logical systems for prediction. Methods for improving the
network performance include determining the optimal

Table 3: Summary of first representative MMS studies using SC technologies and MCDM methods.

Author
Soft computing technologies MCDM methods

EXS FUA ANN YAM FUE AHP TOPSIS
Yun and Huang [98] ✓
Bandopadhyay and Venkatasubramanian [11] ✓
Gershon et al. [119] ✓
Xiaohua [120] ✓ ✓
Guray et al. [22] ✓
Bitarafan and Ataei [101] ✓
Ataei et al. [39] ✓ ✓
Yavuz [121] ✓
Naghadehi et al. [106] ✓ ✓
Azadeh et al. [28] ✓
Namin et al. [113] ✓ ✓ ✓ ✓
Gupta and Kumar [122] ✓
Yavuz [121] ✓ ✓
EXS, expert system; FUA, fuzzy algorithm; ANN, artificial neural network; YAM, Yagar’s method; FUE, fuzzy entropy; MCDM, multiple-criteria decision-
making; AHP, analytic hierarchy process; TOPSIS, technique for order performance by similarity to ideal solution.
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network architecture and suitable number of training cycles
using different input combinations. One of them is cascade-
forward backpropagation.

5. MMS Using CFBPNN (Case Study)

As illustrated in Figure 1 [136], the CFBP model is similar to
feedforward (FF) networks; nevertheless, two-layer FF
networks could be used to monitor any input-output rela-
tionship, whilst FF networks with more layers could be used
to visualize intricate interactions more quickly. In terms of
using the BP algorithm for the weight update, the CFBPNN
model is analogous to the FFBPNN model. However, a key
feature of this network is that each layer of neurons is linked
to the ones before it [137]. A CFBPNN, like other FF net-
works, contains a single or multiple interrelated hidden
layers and activation functions. Neurons have private biases,
and their connections have different weights. A set of
modified weights should be determined in ANN modelling
in such a way that the estimator error is kept to bare es-
sentials [138].

When using the BP algorithm to update weights, a
CFBPNN is similar to an FFBPNN.Most crucial component,
however, is each layer of neurons is linked to the layers
before it. To maximize the response of the CFBPNN, the
characteristics of tan-sigmoid transfer, log-sigmoid transfer,
and pure linear limit have all been determined. +e mean
squared error (MSE) in equation (1), the root mean squared
error (RMSE) in equation (2), and R2 in equation (3) were
calculated to demonstrate the effectiveness of the algorithms.

MSE � 
n

1
((Qexp − Qcal) | n)

2⎡⎣ ⎤⎦, (1)

RMSE �

����������������������

1
2



n

1
((Qexp − Qcal) | n)

2
 




, (2)

R
2

� 

n

1
((Qexp − Qcal) | n)

2
 , (3)

where Qexp represents the measured value, Qcal represents
the computed values, and n counts the set of observations.

CFBPNNmodels are like FFBPNNmodels in which they
incorporate a weighted link from an input to every layer as
well as from each layer to the subsequent layers. In some
circumstances, the CFBP approach outperforms the FFBP
method according to Mitra et al. [130].

f netj  �
1

1 + e−netj
  

n
1 ((Qexp − Qcal)|n)

2
 

,

f netj  � net.

(4)

+e yield of the chosen mining tactics was predicted
using a schematic of a trainable CFBP. As previously dis-
cussed, the training level is critical. Backpropagation and
quick-propagation training strategies are widely common

employed strategies. Consequently, the backpropagation
approach was adapted to be implemented at the training
level according to the method of Lashkarbolooki et al. [139]
and its benefits in the current study. Specifically, the Lev-
enberg–Marquardt backpropagation technique has been
utilized due to its speed and accuracy. As a result, the
proposed ANN model is transformed into one trained with
the Levenberg–Marquardt algorithm [140]. +e number of
concealed layers is reduced and improved at the next level.
As Cybenko [140] stated, a network with only a single
concealed layer may mimic nearly every nonlinear relation;
thus, for the proposed ANN model, just one concealed layer
is used. +e second essential criterion is the optimal number
of neurons in the hidden layer.+e number of neurons in the
hidden layer is difficult to determine due to a limited number
of neurons results in a network with low precision, whereas a
larger number results in overfitting and poor interpolation
quality because the risk of overtraining increases as the
number of neurons increases [141]. +ere are four steps in
the proposed technique for MMS using CFBPNN:

Step 1. +e ANN’s weight (W) and bias (b) values, as
illustrated in Figure 2, were calculated using the
MATLAB toolbox’s trainable cascade-forward back-
propagation and then entered in an Excel sheet.
Step 2. Equation (5) is used to calculate the output of the
first layer (K) in the Excel spreadsheet function, and the
results are shown in Section 5.2.

K1 �
2

(1 + EMP(−2 ×(SUM(O1))))
− 1. (5)

Step 3. Equation (6) is used to determine the output of
the second layer (rank of the selection technique) in the
Excel sheet.

Network Output

Output Layer

Hidden Layer

Input Layer

Network Inputs

Figure 1: Cascade correlation neural network.
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R � SUM(Column02) + K × W21W1 + b2. (6)

Step 4. +e approach is chosen, and its name is shown
in the Excel sheet by changing approximation rank
values to integer values using the V function.

5.1. Gathering Data and Site Investigation. Chengchao iron
mine is a major iron ore and pellet ore production base for
the Wuhan Iron and Steel Group Company and thus a
huge identified underground iron mine in China. Between
the Huaiyang Shield and Jiangnan Ancient Land, the
Chengchao mining area is situated west of the lower
Yangtze depression. It is a part of the western wing of the
frontal arc of the Huaiyang epsilon structure. As indicated
in Figure 2, the mining area is located near the East-West
structural belt, which includes Mufushan as the major
orebody in the south, the Liangzi Lake depression with a
Neocathaysian structure in the west, and the South
Huaiyang fault in the north.

+e mining industry has a complex structure. Sedi-
mentary, magmatic, and metamorphic rocks have been
found in the Chengchao mining area. Anhydrite deposits
were found in the contact zone between marble and granite,
iron ores are found near the contact zone between diorite
and granite, and skarns, which are in the shape of a pulse or
a lens, are found near the contact zone between hornfels
and granites. +e eastern and western mining zones of the
mine are separated by the geological exploration line 15.
+ere are numerous ore deposits in the mining areas.
Numbers I, II, III, IV, V, VI, VII, and others are the most
typical iron ore bodies. Numbers II, III, VI, and VII are
large-scale iron ores. +e orebodies are mainly irregular
lenticular in shape and slanted southward. Branching,
compounding, expansion, and contraction are common
occurrences in orebodies and ore sections. Table 4 sum-
marizes the main geomechanical properties of the rock and
ore in a mine case study.

5.2. Results. To maximize the CFBPNN response, the tan-
sigmoid transfer, log-sigmoid transfer, and pure linear
limit characteristics are first determined. +is is illustrated

in Figure 3. +e UBC criteria were converted to weights,
and the load was determined using mining techniques
(benefits are given the most weight, while risks are given
the least, as in the mining methods). Table 5 summarizes
the findings.

Table 6 summarizes the output of the first CFBPNN
stage, which involves utilizing the MATLAB toolbox to
compute the ANN weight (W) and bias (b) values using
trainable CFBP. Table 7 presents the MMS results and
findings based on the CFBPNN application. Ten mining
methods were used to select the best method based on the
assigned weights (w) and bias (b), as listed in Table 7. +ese
parameters were calculated using a number of input pa-
rameters, including ore shape, thickness, dip angle, depth
below surface, rock mass classification systems (such as
RQD), and rock structure rating (RSR). CFBPNN was used
to estimate the rank of each parameter in relation to the
mining method. According to the findings, the cut and fill
stopping method is the most effective.

5.3. Discussion. +e following layer properties have been
employed based on the findings, which represent the in-
tegration of the method specifications and the real layer
set: a dip of 70°, underground depth of 210m, and RQD of
60 (moderate) and 45 (very weak) in the hanging wall. +e
cut and fill stoping method was superior to the other
methods due to its suitability for all previous layer spec-
ifications. Figure 4 depicts the main design of the cut and
fill stoping mining technique, which is the ideal mining
method.

+e Chengchao iron mine has been extracted using a
sublevel caving method that eliminated the need for sill
pillars. +is is a type of bulk mining technique in which the

Figure 2: Subsidence features at China’s Chengchao iron ore mine.
Image courtesy of Google Earth, taken in 2018.

Table 4: Characteristic of underground mining rock.

Characteristics of ore
Geometry/form T, tabular

Width of ore, m N, thin Characterization
17.5 Amplitude

Dip angle of ore, degrees 70°

Allocation of grade levels G, gradational Characterization
G, gradational Amplitude

Depth below surface, m SH, shallow Characterization
210, m Amplitude

Ore M, medium Characterization
60 Amplitude

Hanging wall VW, very weak Characterization
45 Amplitude

Footwall VW, very weak Characterization
45 Amplitude

Ore VW, very weak
40

Hanging wall W, weak
35

Footwall W, weak
40
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movement of blasted ore and caved waste rock is controlled
by gravity. To relieve ground pressure, backed down rock
masses from overlying country rock have been used to replace
mined-out regions caused by ore extraction [142]. +e caved
zone, which is composed of caved rock masses, can come as a
result above the mined-out area, inferring vertical caving. In
addition, above the fallen rock mass, a joint may be devel-
oped. Consequently, this type of mass underground mining
can cause severe ground surface disruption. As the excavation
of the subterranean orebody continues, the caving of the
overlying country rock caves ultimately propagates to the

ground surface, causing it to collapse [143]. According to
Zhang et al. [144], the movement of strata at the Chengchao
iron mine can be classified into six categories: vertical sub-
sidence, toppling slip, toppling, deformation, deformation
accumulation, and undisturbed areas. As a result, when a
large-scale orebody is mined, large-scale collapse at the
ground surface is common. According to the CFBPNN rank
presented in Table 8, sublevel caving is ranked No. 4.
According to the overall score assigned to all ore attributes,
the findings reveal metrics for selection to use when deciding
between different mining processes.

General shape
Ore thickness, m

Grade distribution
Depth below surface,

Plunge

RQD

RSS

1st sigmoid layer 2nd linear layer

W1

W2

b1
b2

+ +
Rank of
Mining
Method

Outputs

Inputs

Figure 3: Trainable cascade-forward backpropagation ANN adopted to decide the suitable mining method.

Table 5: Weights of the various parameter assignments based on the mining methods.

Parameter/mining
methods

Open
pit

Block
caving

Sublevel
stoping

Sublevel
caving Longwall Room

and pillar
Shrinkage
stoping

Cut and
fill stoping

Top
slicing

Square set
stoping

1 General shape 0.8 0.8 0.6 0.6 0 0 0 0.2 0.2 0
2 Ore thickness, m 0.8 0.8 0.6 0.8 0 0 0 0 0.2 0

3 Grade
distribution 0.6 0.6 0.8 0.6 0.8 0.8 0.6 0.4 0.4 0

4 Depth, m 0.8 0.4 0.6 0.6 0.4 0.6 0.6 0.4 0.4 0.2
5 Plunge 0.2 0.8 0.8 0.8 0 0 0.8 0.8 0 0.4
6

RQD

Ore zone 0.6 0 0.8 0 0.4 0.9 0.6 0.6 0 0

7 Hanging
wall 0.8 0.4 0.8 0.4 0.6 0.9 0.8 0.6 0.6 0

8 Foot wall 0.8 0.4 0.6 0.6 0 0 0.6 0.4 0.4 0
9

RSS

Ore zone 0.6 0 0.8 0.4 0.2 0.9 0.8 0.6 0 0

10 Hanging
wall 0.8 0 0.6 0.25 0.4 0.9 0.8 0.4 0.4 0

11 Foot wall 0.8 0.2 0.6 0.4 0 0 0.6 0.4 0.25 0

Table 6: Values for weight (W) and bias (b) derived from the MATLAB toolbox.

Property/input w1 w21 w2 b1 b2
General shape 5.4438 3.4113 8.803278 6.128579
+ickness of ore 12.4184 0.0339
Distribution of grade levels −12.5975 −5.4184
Subsurface depth −0.1821 −1.4329
Dip angle 11.1132 0.301
Rock quality designation (RQD) index 6.8993 2.6115
Rockmass Structure Rate (RSR) −22.7358 0.7069

−2.78847
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Table 7: Results of using CFBPNN for MMS with the given parameters.

Mining method No. O2 O1 b2 b1 w21 w2 w1 Properties/
input

Rank 2.72904 4.35504 6.128579 8.803278 3.4113 5.4438 0.8
Open-pit mining 1 7.933731 0.01356 4.96736 0.0339 12.4184 0.4
Block caving 2 Method 8 −3.25104 −7.5585 −5.4184 −12.5975 0.6

Sublevel stoping 3 Cut and fill
stoping −0.85974 −0.10926 −1.4329 −0.1821 0.6

Sublevel caving 4 0.0301 1.11132 0.301 11.1132 0.1
Longwall mining 5 0.26115 0.68993 2.6115 6.8993 0.1
Room and pillar 6 0.42414 −13.6415 0.7069 −22.7358 0.6
Shrinkage stoping 7 7.933731 −1.38231 −2.78847
Cut and fill
stoping 8 −0.88147

Top slicing 9
Square set stoping 10
+e bold value means the optimal selected mining method.

Ventilation tube

Hydraulic
sandfill

Hydraulic
sandfill

Ramp

Ramp

Figure 4: Cut and fill stoping.
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6. Conclusions

Various criteria must be considered when deciding on an
appropriate mining method for ore deposits. Several tech-
niques, including the Nicholas, modified Nicholas, and UBC
methods, were created to investigate the appropriate mining
methods for mineral deposits. Unfortunately, none of these
methods consider the weight values for every factor that
influences the MMS. As a result, this study takes into ac-
count the weight values for each parameter that influences
the mining method selection. In comparison to other
studies, this is the first to try a new technique called
CFBPNN, which was implemented in the Chengchao iron
ore mine to select the most appropriate (safe) mining
method. +e findings of this study can be summarized as
follows:

(1) +e primary goal of this review is to study in detail
the development of different tools that are earlier
used in decision-making for MMS and their appli-
cation, functionality, advantages, and disadvantages.

(2) A newly proposed technique for MMS based on the
application of CFBPNN was presented and illus-
trated, which is easier to apply and more accurate
than traditional tools.

(3) +e CFBPNN method is used in this paper to de-
termine appropriate mining methods for the
Chengchao iron mine under various conditions. +e
most effective mining method is cut and fill stoping.

(4) Based on the total score assigned to all ore properties,
the results offer metrics that could be used to select
among various mining methods.

Users should understand the MMS tools described and
recognize that the suggested method is a simplified approach
and will only be helpful if the theoretical background behind
ANN is understood. If the factors and methods in the results
section are not sufficient, an appropriate criteria and al-
ternatives could be included to the database for the inves-
tigated problem. For effective and reliable results, changes in
the final rank have to be monitored and recorded using at
least two MMS tools in the suggested way.

+e suggested model was introduced without correlation
to other MMS methods, which is a limitation. As a result,
future research could look into other MMS tools and their

impact on final rankings. +e second limitation is that some
of the publications have been translated into English. As a
result, in the future, more publications will need to be
reviewed to learn more about MMS tools. CFBPNN algo-
rithms for selecting a proper MMS can be developed in
future research once the problem has been described and
organized, so determining the optimal method will be
convenient.
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(elimination and choice translating reality)
GRA: Grey relational analysis
MCDM: Multicriteria decision-making
MMS: Mining method selection
OCRA: Operational competitiveness rating analysis
PROMETHEE: Preference ranking organization method

for enrichment evaluation
SAW: Simple additive weighting
TODIM: Portuguese acronym for interactive

multicriteria decision-making
TOPSIS: Technique for order of preference by the

similarity to ideal solution
VIKOR: Vlsekriterijumska Optimizacija I

Kompromisno Resenje (multicriteria
optimization and compromise solution).

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

References

[1] D. E. Nicholas, “Selection procedure,” inMining Engineering
Handbook, H. Hartman, Ed., pp. 2090–2105, SME, New
York, NY, USA, 1993.

[2] Z. Li, Y. Zhao, and H. Zhao, “Assessment indicators and
methods for developing the sustainability of mining com-
munities,” =e International Journal of Sustainable Devel-
opment and World Ecology, vol. 15, no. 1, p. 35, 2008.

[3] M. Straka and D. Malindzak, “Algorithms of capacity bal-
ancing of printing machineries for Alfa Foils, as planning
system,” Acta Montanistica Slovaca, vol. 14, no. 1, pp. 98–
102, 2009.

[4] S. Boshkov and F. Wright, “Basic and parametric criteria in
the selection, design and development of underground
mining systems,” SME Mining Engineering Handbook, SME-
AIME, vol. 1, p. 12, New York, NY, USA, 1973.

[5] F. Samimi Namin, K. Shahriar, and S. Karimi Nasab, “Fuzzy
decision making for mining method selection in third

Table 8: Ranking of all mining methods using CFBPNN.

Mining method Final Rank
Open pit 10
Block caving 5
Sublevel stoping 2
Sublevel caving 4
Longwall mining 8
Room and pillar 9
Shrinkage stoping 3
Cut and fill stoping 1
Top slicing 6
Square set stoping 7
+e bold means the best mining method based on the results.

Advances in Civil Engineering 11



anomaly gol-E-gohar deposit,” in Proceedings of the 18th
International Mining Congress and Exhibition of Turkey (I
MCET), Ankara, Turkey, June 2003.

[6] H. L. Hartman and J. M. Mutmansky, Introductory Mining
Engineering, John Wiley & Sons, Hoboken, NJ, USA, 2002.

[7] R. G. K. Morrison, A Philosophy of Ground Control: A Bridge
Between =eory and Practice, Department of Mining and
Metallurgical Engineering, McGill University, Montreal,
Canada, 1976.

[8] D. Nicholas and J. Mark, “Feasibility study–selection of a
mining method integrating rock mechanics and mine
planning,” in Proceedings of the 5th Rapid Excavation and
Tunneling Conference, San Francisco, CA, USA, May 1981.

[9] D. H. Laubscher, “Selection of mass underground mining
methods,” Design and Operation of Caving and Sublevel
Stoping Mines, pp. 23–38, 1981.

[10] G. Marano and A. Everitt, “Selection of mining method and
equipment for Block 58, Shabanie Mine, Zimbabwe,” in
Proceedings of the African Mining Conference, Harare,
Zimbabwe, August 1987.

[11] S. Bandopadhyay and P. Venkatasubramanian, “Rule-based
expert system for mining method selection,” CIM (Canadian
Institute Mining and Metallurgy) Bulletin;(Canada), vol. 81,
no. 919, 1988.

[12] M. Agoshkov, S. Borisov, and V. Boyarsky, “Classification of
ore deposit mining systems,” Mining of Ores and Non-
Metalic Minerals, pp. 59–62, 1988.

[13] W. Mutagwaba and N. Terezopoulos, “Knowledge-based
system for mine method selection,” Transactions of the In-
stitution of Mining and Metallurgy. Section A. Mining In-
dustry, vol. 103, 1994.

[14] L. Miller-Tait, R. Panalkis, and R. Poulin, “UBC mining
method selection,” in Proceedings of the Mine Planning and
Equipment Selection Symposium, Calgary, Canada, Novem-
ber 1995.

[15] H. Hamrin, “Choosing underground mining method tech-
niques in underground mining,” Mining Engineering
Handbook, pp. 45–85, SME, Canonsburg, PA, USA, 1988.

[16] R. Tatiya, “Computer assisted economic analysis to select a
stoping method,” CIM Bulletin, vol. 91, no. 1023, pp. 82–86,
1998.

[17] A. Basu, “A mining method selection expert system with
prototype with an Australian case study,” in Proceedings of
the Mine Planning and Equipment Selection, pp. 73–78,
Dnipropetrovsk, Ukraine, June 1999.

[18] A. Kahriman, Selection of Optimum Underground Mining
Method for Kayseri Pynarbapy-Pulpynar Chrome Ore,
Middle East Technical University, Ankara, Turkey, 2000.

[19] A. Karadogan, A. Bascetin, and A. Kahriman, “A new ap-
proach in selection of underground mining method,” in
Proceedings of the International Conference Modern Man-
agement of Mine Producing, Varna, Bulgaria, June 2001.

[20] A. Kesimal and A. Bascetin, “Application of fuzzy multiple
attribute decision making in mining operations,” Mineral
Resources Engineering, vol. 11, no. 1, pp. 59–72, 2002.

[21] C. Clayton, R. Pakalnis, and J. Meech, “A knowledge-based
system for selecting a mining method,” in Proceedings of the
IPPM Conference, Calgary, Canada, July 2002.

[22] C. Guray, N. Celebi, V. Atalay, and A. Pasamehmetoglu,
“Ore-age: a hybrid system for assisting and teaching mining
method selection,” Expert Systems with Applications, vol. 24,
no. 3, pp. 261–271, 2003.

[23] Y. Wei, Y. Fan, and W. Xu, “An integrated methodology for
decision making of mining method selection,” International

Journal of Manufacturing Technology and Management,
vol. 5, no. 1/2, p. 10, 2003.

[24] K. Shahriar, V. Shariati, and F. S. Namin, “Geomechanical
characteristics study of deposit in underground mining
method selection process,” in Proceedings of the 11th ISRM
Congress, OnePetro, Lisbon, Portugal, July 2007.

[25] G. Mihaylov, A Model and Procedure for Selecting Under-
ground Mining Methods, World Mining Congress, Tehran.
Iran, 2005.

[26] C. Miranda and C. Almeida, “Mining methods selection
based on multi criteria models,” Application of computes and
operation research in the mineral industry, CRC Press,
London, UK, 2005.

[27] A. Bascetin, “A decision support system using analytical
hierarchy process (AHP) for the optimal environmental
reclamation of an open-pit mine,” Environmental Geology,
vol. 52, no. 4, pp. 663–672, 2007.

[28] A. Azadeh, M. Osanloo, and M. Ataei, “A new approach to
mining method selection based on modifying the Nicholas
technique,” Applied Soft Computing, vol. 10, no. 4,
pp. 1040–1061, 2010.

[29] R. Chaudhari, J. Vora, D. M. Parikh, V. Wankhede, and
S. Khanna, “Multi-response optimization of WEDM pa-
rameters using an integrated approach of RSM–GRA anal-
ysis for pure titanium,” Journal of the Institution of Engineers:
Series D, vol. 101, no. 1, pp. 117–126, 2020.

[30] K. Yoon, Systems Selection by Multiple Attribute Decision
Making, Kansas State University, Manhattan, Kansas, 1980.

[31] F. S. Namin, K. Shahriar, A. Bascetin, and S. H. Ghodsypour,
“Practical applications from decision-making techniques for
selection of suitable mining method in Iran,” Gospodarka
Surowcami Mineralnymi, vol. 25, pp. 57–77, 2009.

[32] V. D. Baloyi and L. Meyer, “+e development of a mining
method selection model through a detailed assessment of
multi-criteria decision methods,” Results in Engineering,
vol. 8, Article ID 100172, 2020.

[33] W. Banda, “A fuzzy techno-financial methodology for
selecting an optimal mining method,” Natural Resources
Research, vol. 29, no. 5, pp. 3047–3067, 2020.

[34] T. Saaty, =e Analytic Hierarchy Process, Vol. 70, Mcgraw
Hill, New York, NY, USA, 1980.

[35] P. Kluge and D. F. Malan, “+e application of the analytical
hierarchical process in complex mining engineering design
problems,” 2011.

[36] Q. Guo, H. Yu, Z. Dan, and S. Li, “Mining method opti-
mization of gently inclined and soft broken complex ore
body based on AHP and TOPSIS: takingmiao-ling goldmine
of China as an example,” Sustainability, vol. 13, no. 22,
Article ID 12503, 2021.

[37] K. D. Balt, “A methodology for implementing the analytical
hierarchy process to decision-making in mining,” 2016.

[38] M. Velasquez and P. T. Hester, “An analysis of multi-criteria
decision making methods,” International Journal of Oper-
ational Research, vol. 10, no. 2, pp. 56–66, 2013.

[39] M. Ataei, M. Jamshidi, F. Sereshki, and S. M. E. Jalali,
“Mining method selection by AHP approach,” Journal of the
South African Institute of Mining and Metallurgy, vol. 108,
no. 12, pp. 741–749, 2008.

[40] C. Musingwini and R. Minnitt, “Ranking the efficiency of
selected platinum mining methods using the analytic hier-
archy process (AHP),” in Proceedings of the 3rd International
Platinum Conference ‘Platinum in Transformation’, +e
Southern African Institute of Mining and Metallurgy, Sun
City, South Africa, October 2008.

12 Advances in Civil Engineering



[41] E. Cheng and H. Li, “Utility of consistency measure in the
analytic hierarchy process,” Construction Innovation, vol. 3,
no. 4, pp. 231–247, 2003.

[42] J.-P. Brans and P. Vincke, “Note—a preference ranking
organisation method: (the PROMETHEE method for mul-
tiple criteria decision-making),” Management Science,
vol. 31, no. 6, pp. 647–656, 1985.

[43] J.-P. Brans and Y. De Smet, “PROMETHEE Methods,” in
Multiple Criteria Decision Analysis, pp. 187–219, Springer,
Berlin, Germany, 2016.

[44] G. Anand and R. Kodali, “Selection of lean manufacturing
systems using the PROMETHEE,” Journal of modelling in
management, vol. 3, 2008.
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