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Water level (WL) forecasting has become a difficult undertaking due to spatiotemporal fluctuations in climatic factors and
complex physical processes. This paper proposes a novel hybrid machine learning model based on an artificial neural network
(ANN) and the Marine Predators algorithm (MPA) for modeling monthly water levels of the Tigris River in Al-Kut, Iraq. Data
preprocessing techniques are employed to enhance data quality and determine the optimal input model. Historical data for water
level and climatic factors data are utilized from 2011 to 2020 to build and assess the model. MPA-ANN algorithm’s performance is
compared with recent constriction coefficient-based particle swarm optimization and chaotic gravitational search algorithm
(CPSOCGSA-ANN) and slime mold algorithm (SMA-ANN) to reduce uncertainty and raise the prediction range. The finding
demonstrated that singular spectrum analysis is a highly effective method to denoise time series. MPA-ANN outperformed
CPSOCGSA-ANN and SMA-ANN algorithms based on different statistical criteria.The suggested novel methodology offers good
results with scatter index (SI)� 0.0009 and coefficient of determination (R2 � 0.98).

1. Introduction

Providing municipal water is essential for achieving a sus-
tainable environment in modern cities, especially under the
effect of global warming and socioeconomic factors. For the
reasons stated, freshwater scarcity is a typical challenge for
policymakers [1]. According to theWorld Economic Forum,
water scarcity is one of the most important international
problems due to limited freshwater availability (approxi-
mately 0.014 percent of Earth’s total amount of water).
Climate change, water pollution, and ineffective manage-
ment of freshwater resources are also vital contributors to
water scarcity [2]. There are various methods for measuring
water depth in rivers and lakes. These methods can

simultaneously record depth at several hundred points along
the bottom, such as sonar and echo sounder [3, 4]. Thus,
water level prediction accuracy is a critical requirement for
scientific decision-making and planning. Water level pre-
diction aims to develop a reliable prediction model and
uncover the changing laws of rivers and lakes [5, 6].

Iraq is an Arab Country in the Middle East that is one of
the most sensitive to climate change due to its location in an
arid to semiarid region. This area is generally experiencing a
water shortage, which is expected to worsen due to various
factors such as climate change, the oil industry, urbaniza-
tion, and rapid population growth [7]. The Euphrates and
Tigris rivers are Iraq’s principal freshwater supplies. Between
2009 and 2014, these rivers had substantial water shortages,
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which are predicted to worsen due to climate change and the
policy of water source countries (i.e., Turkey and Iran) that
were constructing and running new dams on the route Tigris
and Euphrates Rivers [8].

In the past decade, various data-drivenmodels have been
developed and implemented for water level prediction in
watersheds, such as adaptive neurofuzzy inference systems
(ANFIS) [9, 10], support vector regression (SVR) [11], ar-
tificial neural networks (ANN) [11–13], random forest [14].
From a theoretical standpoint, one single forecasting
method is inappropriate for modeling complicated and
unknown latent patterns in world time series. As a result,
how to accurately estimate time series remains a difficult
subject on which many scholars have focused. Significant
efforts have been made to solve these difficulties and achieve
a high level of accuracy, resulting in remarkable advance-
ments in forecasting methods. Hybridization has emerged as
a promising technique for overcoming the obvious draw-
backs of standalone methods while also improving pre-
dicting accuracy [15] and the hybrid techniques’
performance better than single models, such as

(1) Azad et al. [16] employ a hybrid technique that
includes the Box–Jenkins autoregressive seasonal
autoregressive integratedmoving average (SARIMA)
and ANN to forecast reservoir water level (RWL) in
the Red Hills Reservoir, Tamil Nadu, India. A new
SARIMA–ANN model was created to solve this
limitation of the SARIMAmodel and compared with
ANN and SARIMAmodels. The results revealed that
the SARIMA–ANN model outperformed the other
models.

(2) Mohammadi et al. [10] enhanced the capacity of the
support vector regression (SVR) model by utilizing
the grey wolf algorithm (GWO) to predict the lake
water level. In addition, three data pretreatments
methods were used to pick the optimal scenario of
predictors: random forest, relief algorithm, and
principal component analysis. The results reveal that
the random forest method provides the optimum
model input scenario with four lags. The hybrid
model SVR-GWO simulates water levels better than
the standalone SVR based on different statistical
criteria.

(3) Lineros et al. [17] used a multiobjective genetic al-
gorithm (MOGA) framework to integrate the arti-
ficial neural network (ANN) technique for river
water level prediction. The design process is a
semiautomated method for splitting data into
datasets and finding a near-optimal model with a
suitable topology and inputs. The results show that
the suggested framework can create low-complex
models with great performance on unseen data, with
an RMSE of 2.5∗ 10−3, which compares favorably to
results obtained using an alternative design.

(4) Nguyen et al. [18] developed hybrid models (GA-
XGBoost and DE-XGBoost) for water level predic-
tion that combine two evolutionary models, a genetic

algorithm (GA) and a differential evolution (DE)
algorithm. The GA-AND DE-XGBoost models’ re-
sults were compared with classification and regis-
tration tree (CART) and random forest (RF) models.
The results indicated that two hybrid models, GA-
XGBoost and DE-XGBoost, outperformed RF and
CART in multistep-ahead water level prediction.
This research shows that hybrid XGBoost models for
hourly water level prediction may be superior to
many existing models despite some shortcomings in
terms of long-step-ahead prediction and model
complexity.

(5) Ehteram et al. [19] utilized a sunflower optimization
(SO) algorithm to improve the ability of the adaptive
neurofuzzy inference system (ANFIS) andmultilayer
perceptron (MLP) models to predict lake water
levels. The performance of the hybrid models was
also validated using the firefly algorithm (FFA) and
practical swarm optimization (PSO). The optimi-
zation algorithms were used to find the best tuning
hyperparameters for the ANFIS and MLP models.
The ANFIS-SOmodel was discovered to have a lower
level of uncertainty based on the percentage of more
responses in the confidence band and the model’s
smaller bandwidth.

(6) Tao et al. [20] applied the improved grasshopper
optimization algorithm (IGOA) to combine rele-
vance vector machine (RVM) and artificial neural
network (ANN) models to predict catchment water
levels in Malaysia. To validate the performance of the
IGOA, the classical GOA and particle swarm opti-
mization (PSO) algorithmwere used.When different
statistical criteria were considered, the IGOA en-
hanced the models’ performance, and the RVM-
IGOA was better.

(7) Ghorbani et al. [21] evaluated the prediction per-
formance of a combined model integrating the
multilayer perceptron (MLP) with the firefly algo-
rithm (FFA) in Lake Egirdir, Turkey. Monthly data
from 1961 to 2016 were utilized for training and
testing the proposed hybrid MLP-FFA model to
develop and investigate its veracity. The average
mutual information technique was used to predict
four lagged combinations of historical data. The
results indicate that the MLP-FFA model is superior
to the MLP model alone.

ANN is considered to be a robust method for predicting
water levels because of its capacity to handle vast volumes of
nonlinear data and its noise-handling capabilities [22].
Multiple researchers in the field of water level prediction
have recommended using the ANN model such as
[20, 23, 24].

Additionally, various metaheuristic optimization algo-
rithms could be used to solve multiple issues in various
application sectors. The capacity of optimization algorithms
to pick the ideal values of system parameters under different
conditions and their time-saving capabilities are their key
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advantages. The constriction coefficient-based particle
swarm optimization and chaotic gravitational search algo-
rithm (CPSOCGSA) was created by Rather and Bala [25], it
is one of the updated algorithms, and this algorithm is being
used for the first time in this study. In addition, The slime
mold algorithm (SMA) was proposed recently by Li et al.
[26]. SMA is employed in several optimization issues, such
as water demand prediction [2, 27], and optimal power flow
problems [28].

Another essential issue to consider is that most studies in
this field have not applied all the steps of the data pre-
processing techniques, where the data preprocessing is vital
to improving the quality of time series and determining the
best independent variables; for example, singular spectrum
analysis (SSA) [29] and wavelet transform (WT) [30] were
used to denoise raw time series. Principal component
analysis (PCA) [10], mutual information (MI) [21], and
tolerance technique [2] were employed to choose the most
appropriate independent variables.

Furthermore, several studies in water level forecasting
[21, 31–34] are advised to apply the climatic factors for
forecasting water levels to improve forecasting accuracy so
that climate variables will be included as input in this
research.

This paper aims to critically examine a novel hybrid
methodology that includes a combination of data pre-
processing techniques, a metaheuristic algorithm, and a
machine learning model to predict the Tigris River water
level, upstream of the Al-Kut barrage in Al-Kut City.

The principal objective of this project was to

(1) Investigate 12 climate variables over ten years to
determine the impact of climate change on water
levels

(2) Improve the quality of raw data and determine the
best scenario of predictors

(3) Integrate the ANN model by MPA algorithm by
selecting the best ANN hyperparameters

(4) Evaluate the updated MPA-ANN algorithm by
comparing it with recent SMA-ANN and
CPSOCGSA-ANN algorithms to increase the pre-
diction range and decrease the uncertainty

(5) Provide further insight into the application and
interpretation of the recent prediction model to the
stakeholders

To the best of the authors’ knowledge, this study is the first
to explore a novel methodology for predicting water levels
utilizing updated algorithms (MPA, CPSOCGSA, and SMA).

This paper is divided into four sections. The study area
and data set are described in Section 2. The proposed ap-
proach for estimating water level is described in Section 3.
Results and discussion of the data are presented in Section 4.
The conclusions are stated in Section 5.

2. Study Area and Data Collection

Iraq depends on Tigris and Euphrates Rivers as the primary
source of freshwater for agricultural, residential,

commercial, and industrial. Tigris River is one of the major
rivers in the Middle East, with a length of 1718 Kilometers,
which is shared by Turkey, Syria, and Iraq, and approxi-
mately 85% of the overall river basin lies in Iraq. The Tigris
basin’s climate ranges from semihumid in the headwaters to
semiarid around its confluence with the Euphrates River in
the south [35].

Al-Kut is the capital of the Wasit Governorate, Iraq,
which lies between two latitudes (32o 21/ and 32o 34/) north
and two longitudes (45° 54/ and 45o 45/) east, with an average
height of around 20 meters. The governorate’s area is 17,153
square kilometers. In comparison, the city of Kut’s built-up
area is about 40 square kilometers (4000 hectares) [36]. Al-
Kut barrage was established on the Tigris River. Its function
is to raise the water level upstream to provide the Dujaila and
al-Gharraf branches with water responsible for the pros-
perity of several cities that lie beside these branches (see
Figure 1).

Precipitation varies from less than 100mm/year in the
middle and southern deserts to over 1,000mm/year in
northern Iraq’s mountainous region. In the winter, the
average minimum temperature varies from near freezing in
the northern and northeastern foothills to 4–5°C in the
alluvial plains of southern Iraq. In the summer, the average
minimum temperature is around 27–31°C, with maximum
temperatures between 41 and 45°C (FAO, 2003). The
combination of a lack of rain and high heat has turned much
of Iraq into a desert [37].

Historical monthly water level data (upstream data of the
Kut barrage) was provided by the directorate of water re-
sources in the Wasit Governorate. Generally, data from
metrological stations in Iraq were lost due to abnormal
conditions (i.e., terrorism). Accordingly, to be with Ahmad
et al. [38] and Capt et al. [39], monthly weather variables
were collected from the National Oceanic and Atmospheric
Administration (NASA) [40].The data were collected for the
period 01vJanuary 2011 to 31vDecember 2020. It includes
Water level (WL) (m), maximum temperature (Tmax) (°c),
minimum temperature (Tmin) (°c), mean temperature
(Tmean) (°c), rainfall (rain) (mm/day), dew forest (DF) (°c),
relative humidity (RH) (percent), specific humidity (SH)
(percent), surface pressure (P) (kpa), wind speed (WS) (m/
s), maximum wind speed (WSmax) (m/s), minimum wind
speed (WSmin) (m/s), and range wind speed (WSrange) (m/
s). Figure 2 shows the monthly time series of water level and
the box plot in sections a and b, respectively.

3. Methodology

The suggested methodology consists of four parts: data
preprocessing, artificial neural networks, MPA algorithm,
and model evaluation. The structure of the proposed
methodology for predicting monthly data of water level
based on meteorological parameters is shown in Figure 3.

3.1. Data Preprocessing. The three strategies used in this
study as data preprocessing techniques are normalization,
cleaning, and determination of the best model input:
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3.1.1. Normalization. The goal of this method is to smooth
out the answer space and reduce outliers effects in order to
make the time series normally or nearly normally distributed
[41, 42]. The natural logarithm approach was employed to
normalize the time series because it makes data more static
and reduces collinearity across predictors [43].

3.1.2. Cleaning. Noise and outliers cause a negative impact
on the performance of the suggested model. As a result, data
cleaning is necessary to detect and treat noisy data [44].
Accordingly, the box and whisker approach was utilized via
the SPSS version (24) statistics package to clean data from
outliers. This step has a significant favorable impact on the
precision of the suggested prediction model. Singular

spectrum analysis (SSA) was also employed to denoise raw
data.

SSA is a strong tool for analyzing time series in order to
identify relevant predictive properties. It applies to both
linear and nonlinear time series and tiny sample sizes. It does
not rely on any statistical assumptions based on the series’
stationarity and linearity or the residuals’ normality [45]. It
detects and removes noise from time series in order to
improve the regression coefficient and reduce the scale of
error. All time series have many noise components, and the
SSA is one of the pretreatment signal techniques for
denoising the raw time series by decomposing them into
separate components [46]. This strategy has proven to be
effective in a variety of fields, including drought forecasting
[47], industry [46], economics [48], streamflow prediction

Figure 1: Location of case study, AL-Kut City, Tigris River, Iraq.
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Figure 2: (a) Monthly time series and (b) box plot for water level.
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[49], and water demand prediction [41, 42]. More infor-
mation on SSA can be found in [50].

3.2. Selection of Best Model Input. Determining the ex-
planatory variables that influence water level as model input
data is crucial in creating any successful prediction model,
not only for the ANN prediction model [51]. Cross-corre-
lation and tolerance techniques were used to pick the best
model input scenario. Pallant [52] V advised utilizing the
tolerance approach to select independent variables with a
tolerance coefficient equal to and more than 0.2.

3.3. Marine Predators Algorithm (MPA). MPA is one of the
newest nature-inspired optimization algorithms proposed
by Faramarzi et al. [53].The concept of theMPA algorithm is

taken from the forging movement of marine predators such
as sharks and sunfish (Figure S1).

3.3.1. Step 1: Prey’s Population Initialization. The MPA
begins with setting an initial random solution set X0 as
defined by (1). This random set is made within the search
space:

X0 � Xlb + r∗ Xub − Xlb( , (1)

where Xlb an dXub are the lower and upper bond of vari-
ables, respectively, and r is a random vector in a range of
zero to one.

3.3.2. Step 2: Creation of the Predator Matrix. In the MPA,
both the predators and the prey are considered search agents
because they look for their own food. The top predator,
which is naturally more talented than other search agents, in
the search agents is termed as Elite. Mathematically, the Elite
matrix is updated based on information on the prey’s lo-
cations. The formulation of the Elite and prey matrix is
shown as follows:
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(2)

3.3.3. Step 3: MPA Optimization Process. After constructing
the Elite and prey matrices, the positions of the predators
and preys are updated according to three phases. These
phases are related to the velocity ratio between the predator
and the prey. The three phases are the high-velocity ratio,
unit velocity ratio, and low-velocity ratio.

3.3.4. Phase 1: High-Velocity Ratio. In this phase, the
movement of the predator is faster than the prey. The step
size of prey movement is updated as in the following
equation:

Si � RB ⊗ Elitei − RB ⊗Xi( , i � 1, 2, . . . , n,

Xi � Xi + P.R⊗ Si.
(3)

where R is a random vector where the values of its elements
are in a range of zero to one value. P is a constant number. RB
is a random vector refereeing to Brownian motion.

The ⊗ symbol refers to the element-wise multiplication
process.

Metaheuristic algorithms

Natural Logarithm
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Figure 3: The suggested methodology for predicting water level.
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This phase occurs in one-third of the total number of
iterations (i.e., 1/3tmax).

3.3.5. Phase 2: Unit Velocity Ratio. In this phase, the process
of searching for prey/food is simulated. The prey movement
is represented by Levy flight while the predator is repre-
sented by Brownian motion.This phase occurs in the second
third of the total iterations (i.e., 1/3tmax < t< 2/3tmax. The
following equations are applied to the first half of the
population.

Si � RL ⊗ Elitei − RL ⊗Xi( , i � 1, 2, . . . , n,

Xi � Xi + P.R⊗ Si,
(4)

where RL represents numbers following Levey distribution.
The second half of the population is subjected to the fol-
lowing equations:

Si � RB ⊗ RB ⊗Elitei − Xi( , i � 1, 2, . . . , n,

Xi � Xi + P.CF⊗ Si , CF � 1 −
t

tmax
 

2 t/tmax( )

.

(5)

CF represents a parameter that controls the movement
step size of the predator.

3.3.6. Phase 3: Low-Velocity Ratio. This phase is considered
the last part of the optimization, and it simulates predator
movements when it is faster than the prey. It occurs in the
last third of the total iterations (i.e., 2/3tmax):

Si � RL ⊗ RL ⊗Elitei − Xi( , i � 1, 2, . . . , n,

Xi � Xi + P.CF⊗ Si , CF � 1 −
t

tmax
 

2 t/tmax( )

.

(6)

3.3.7. Step 4: Eddy Formation and FADs. The environment
parameters can also be taken in the simulation, such as the
eddy formation and the fish aggregating device. The FAD’s
effect is

Xi �
Xi + CF Xmin + R⊗ Xmax − Xmin(  ⊗U, if r< FAD,

Xi +[FADS(1 − r) + r] Xr1 − Xr2( , if r> FAD,

⎧⎨

⎩

(7)

where r is a random value in a range of zero to 1. R1 and r2
refer to the random indices from prematrix. FADS refers to
the FAD’s probability. The U is a binary vector.

3.3.8. Step 5: Marine Memory. The marine predators have
good memory for successful locations for foraging. In the
MPa, this was simulated by enabling the MPA to save the
solution fitness values in each iteration and comparing it to
other fitness values in successive iterations.

3.4. Artificial Neural Network (ANN). An artificial neural
network defined is a set of simple processing units acting as a
parallel distributed processor. Neurons are the units in
charge of storing experimental knowledge for subsequent
disposal. The ANNs, like the brain, replicate the biological
nervous system; they learn by examples and have knowledge
stored in the connection weights between neurons [54].
When analytically demonstrating the relationship between
the dependent and independent variables for any physical
occurrence is difficult, the ANN tool could be particularly
useful. ANN can use previous data to make a reasonably
accurate prediction of the modeled parameters. It may be
used to simulate any physical occurrence [55], making it
suitable for a wide range of hydrological applications, in-
cluding water demand forecasting [29, 44], streamflow
forecasting [56, 57], drought prediction [58, 59], and water
quality predictions [60, 61].

This research applied the multilayer perceptron (MLP)
network (a feed-forward, backpropagation network) to
simulate water level. It has been used to anticipate water
resources and highly effective hydrology applications.
Learning method Levenberg–Marquardt (LM) is used to
train data. The MLP comprises four layers; the first is the
input layer, which contains the model inputs, after which
there are two hidden layers and one output layer, which
includes the water level [2]. Different researchers have
successfully used ANN with two hidden layers in different
contexts, and the findings showed that these models accu-
rately captured the nonlinear pattern between predictors and
targets [23, 41, 62] (Figure S2). The trial-and-error proce-
dure does not always provide the best solution [41]. As a
result, the learning rate (Lr) and the number of neurons in
the first (N1) and second (N2) hidden layers are determined
using metaheuristic algorithms. The hybrid techniques
improved the performance of the ANN model and were
time-saving.

3.5. Model Performance Assessment. The forecast model’s
performance was evaluated in various statistical tests be-
cause no global performance test is suitable for specific usage
[63]. Therefore, mean absolute error (MAE, (9)), root mean
squared error (RMSE, (10)), coefficient of determination (R2,
Equation (11)), mean bias error (MBE, Equation (13)), mean
absolute relative error (MARE, Equation (12)), nash Sutcliffe
coefficient (NSC, Equation (14)), and scatter index (SI,
Equation (13)) are used to assess the model. The Taylor
diagram and residual analysis plot tests were also applied for
more confirmation.

MBE �
1
N



N

i�1
Oi − Fi( , (8)

MAE �


N
i�1 Oi − Fi




N
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2


N
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2 , (14)

where Oi and Fi were the observed and estimated data. The
length of the time series is N.Themean value of the observed
data was Oi. The average value of the predicted data was Fi .
The model’s performance is good when the value of R2 ≥0.85
[64]. The best model with values approaches zero for MBE,
MAE, and RMSE criteria [65, 66]. NSE can range between
-∞ and 1, NSE� 1 denotes a perfect match between the
predictions and the observations, NSE� 0 implies that the
predictions are as accurate as the mean of the observations,
and NSE <0 indicates that the predictions are less accurate
than the mean of the observations [67, 68]. When the value
of SI is less than 10%, the model accuracy is excellent, it is
good if the value is between 10% and 20%, fair when it is
between 20% and 30%, and poor when it is more than 30%
[69, 70].

 . Results and Discussion

4.1. Data Preprocessing Analysis. According to Tabachnick
and Fidell [71], all the time series were transformed to reduce
the impact of outliers and make the distribution of time
series normal or close to normal. Then, the remaining
outliers after the transformation (if found) were rescaled.
Figure 4 demonstrates the time series and box plot for
normalized and clean water level time series.

After that, the SSA technique was employed to denoise
the time series. The normalized and clean time series (top

row), the trend signal (second component), the seasonal
signal (third component), the stochastic signal (fourth
component), and the noise signal (fourth component), re-
spectively. Figure 5 shows the normalized and cleaned water
level data and its deconstructed components, such as trend,
seasonality, stochasticity, and noise.

In the final stage of data preprocessing, a tolerance
method was employed to find the optimal scenario of in-
dependent factors (i.e., climate factors) that could accurately
simulate water level data and avoid multicollinearity. After
performing different scenarios, the best scenario was se-
lected that offered tolerance coefficients of more than 0.2 for
all nominated predictors, as shown in Table 1. The table
reveals that WLt-1, DF, and WS were chosen as the best
model input.

Table 2 displays the correlation coefficients between
dependent and independent factors in both the raw and
preprocessed data stages. The table demonstrates that data
preprocessing techniques improved the data quality sig-
nificantly, such as raising the correlation coefficient between
water level and lag of water level time series (from 0.643 to
0.993) and dew forest time series (from 0.378 to 0.457). The
correlation coefficient values confirmed the link between
water level and climatic variables.

According to Tabachnick, B. G., and Fidell [71], the
connection between the size of the sample (N) and the
number of independent variables should follow the fol-
lowing equation:

N≥ 50 + 8m, (15)

where the number of predictor variables is given bym, andN
presents the size of simple, in this study, N� 119, which is
more than the 74 needed.

4.2. Application of the Hybrid MPA-ANN Algorithm. The
data was divided into three sets: training (70%), testing
(15%), and validation (15%) [29, 44]. The recent hybrid
algorithms MPA, CPSOCGSA, and SMA, were conducted
using the MATLAB toolbox to find optimum hyper-
parameters of the ANNmodel. Five population sizes, 10, 20,
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Figure 4: (a) Monthly time series and (b) box plot of normalized and cleaned water level data.
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30, 40, and 50, were used in all algorithms to evaluate the best
number of hidden neurons and the best learning rate co-
efficient of the ANN model. It is worth noting that these
population sizes refer to the size of the swarm, not the
sample size given earlier. Five swarm sizes (10, 20, 30, 40, and
50) were used to conduct the combined model for each
algorithm. Each swarm size was repeated five times to di-
minish the uncertainty and increase the predicting range
(e.g., see Figure 6 for MPA-ANN algorithm). For each
swarm size, the better one that offers the lowest error (e.g.,
the application second for the 10 swarm size ofMPA-ANN is
the best) was chosen and incorporated with the best
implementation for the rest swarm sizes.

Figure 7(a) displays that the (30–5) swarm size provides
the best solution for the MPA-ANN algorithm
(MSE� 0.0007427, after 193 iterations), while in Figure 7(b),
the (40–2) swarm size gives the best solution for the
CPSOCGSA -ANN algorithm (MSE� 0.0006644, after 74

iterations). Figure 7(c) presents the swarm size (50–3) and
offers the best solution for the SMA-ANN algorithm
(MSE� 0.0006644, after 42 iterations). The ANN models’
hyperparameters for the best swarm for each metaheuristic
algorithm were tabulated in Table 3.

4.3. Application of the ANNModel. To be with Tao et al. [20]
and Ghorbani et al. [21] techniques, three ANNmodels were
configured based on the hyperparameters in Table 3. Each
ANN model was performed multiple times to determine the
best network that offers an accurate solution. To evaluate the
performance of models, five statistical tests were used. The
results of the performance criteria indices (RMSE, MBE,
MAE, NSC, R2, andMARE) of the CPSOCGSA-ANN,MPA-
ANN, and SMA-ANN models in the validation stage are
displayed in Table 4. [64]. Across these indices in Table 4 and
according to the limitations in Section 3.4, it is clear to see
that the MPA-ANN technique outperforms other tech-
niques, confirmed by the higher R2 values and the lower
RMSE, MAE, MARE, andMBE values, as well as the value of
NSC >0 for the validation stage.

The Taylor diagram was also used to assess the perfor-
mance of various hybrid models in the validation stage.
Figure 8 depicts the obtained results. The observed WL is
represented by the red character (A) on the Taylor diagram’s
X-axis. A model is thought to be better if it is close to the
observed point. Taylor diagram graphically compares three
statistics (standard deviation (SD), correlation coefficient
(R), and root mean square error difference (RMSD)) [20, 21].
It thus provides a reliable assessment of the relative per-
formance of different models. According to the Taylor di-
agram, the performance of the MPA-ANN model (point B)
was found to be the closest to the observed point compared
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Table 1: Collinearity statistics to the nominated predictors.

Climatic factors Tolerance
Water _1 0.721
Dew 0.498
ws 0.420

Table 2: The correlation coefficients between independent and
dependent factors.

Data WLt-1 DF WS
Raw 0.643∗∗ 0.378∗∗ −0.026
Preprocessed 0.993∗∗ 0.457∗∗ −0.555∗∗
∗∗Correlation is significant at the 0.01 level (2-tailed).
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with the CPSOCGSA-ANNmodel (point C) and SMA-ANN
model (point D).

Also, Figure 9 depicts a residual comparison of the three
models in the validation phase. As shown in the figure, the
hybrid MPA-ANN model has a minimum error
(0.0012–0.0037) meter, while the error for CPSOCGSA-
ANN (0.0016–0.0127) and error is (-0.00009–0.0173) for

SMA-ANN model. All the above three techniques confirm
that the MPA-ANN model is the best.

Moreover, Figure 10 depicts the observed and forecasted
water level time series from all models in the validation stage.
The observed water level data are in blue, and the predicted
water level data by MPA-ANN, CPSOCGSA-ANN, and
SMA-ANN are in red, black, and pink, respectively. The
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Figure 6: Performance of MPA-ANN algorithm with five trials for each swarm size.
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figure shows an excellent fit between observed and fore-
casted water level time series, demonstrating the capacity of
the MPA-ANN technique to simulate observed time series.
This technique can precisely capture the pattern of water
level more than CPSOCGSA-ANN and SMA-ANN models,
a result which is in line with the scale of error for each series,
as detailed previously.

For extra validation for the MPA-ANN model, a scatter
index was employed. The value SI� 0.0009 means that the
MPA-ANN has an excellent performance according to the
limitations in Section 3.4. Furthermore, the Kolmogor-
ov–Smirnov and Shapiro–Wilk tests agree that the residual
data are normally distributed depending on the significant
values (p value) being more than 0.05 [72, 73].
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Figure 7: The best swarm for MPA, CPSOCGSA, and SMA algorithms.

Table 3: ANN hyperparameters of all algorithms.

Model Lr N1 N2
MPA-ANN 0.5758 1 2
CPSOCGSA-ANN 0.3350 2 4
SMA-ANN 0.1202 2 10
Lr� learning rate, and N1 and N2�number of nodes in the first and second hidden layers, respectively.

Table 4: Performance assessment for validation data stage.

Model MAE (m) RMSE (m) R2 MBE (m) MARE NSC
MPA-ANN 0.0025 0.0026 0.98 0.0025 0.00086 0.66
CPSOCGSA-ANN 0.0078 0.0085 0.94 0.0078 0.0027 −2.76
SMA-ANN 0.0088 0.0098 0.76 0.0088 0.0031 −3.97
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The study’s statistical testing findings show the follow-
ing: (1) Data preprocessing techniques play an essential role
in improving data quality, particularly the SSA method. (2)
The tolerance method successfully selected the optimal in-
dependent factor scenario. (3) MPA-ANN is an efficient and
reliable technique for monthly water level forecasting. (4)
Applying each swarm five times to each algorithm increased
the selection accuracy of the best ANN model parameters.
(5) The results confirm the relationship between climate
variables and water level. (6) Using different scenarios and
techniques increase the reliability and range of prediction,
decreases the uncertainty, and gives a scientific view to the
decision-maker.

Wolpert andMacready [74] declared that based on the No
Free Lunch (NFL) theorem, there is no specific method that
can bring the optimum result compared with other methods
for all the issues of optimization. According to NFL, Far-
amarzi et al. [53] evolved the combined MPA technique for
warranting the global solution, considering different tech-
niques and strategies throughout the process of optimization.
Various strategies of foraging have significantly inspiredMPA
in the biological interaction between predators and prey.
Accordingly, the Brownian and LF distributions were
designed not only to have a systematic explorer-exploiter
tendency professionally but also to significantly improve the
search ability in each performance. These allowed the MPA
technique to precisely detect the global optima of the issues of
optimization considered in this study.

5. Conclusion

This study used a novel methodology, including a combination
of preprocessing techniques and the hybrid updated MPA-
ANN algorithm to estimate the monthly water level. The
historical data for Tigris River water levels and climate variables
from 2011 to 2020 in Al-Kut City was considered to build and
assess the methodology. The updated MPA-ANN algorithm
has been compared with the recent two hybrid algorithms,
CPSOCGSA-ANN and SMA-ANN. The findings indicate that
data pretreatment techniques are powerful in improving data
quality. However, the MPA-ANN algorithm outperforms both
CPSOCGSA-ANN and SMA-ANN algorithms based on sev-
eral statistical criteria (e.g., R2� 0.98, MARE� 0.00086, and
SI� 0.0009), indicating that the performance of theMPA-ANN
algorithm is good to excellent. The present study draws the
following conclusions: a further investigation into data pre-
processing techniques is strongly recommended. More
broadly, research is also needed to investigate the MPA-ANN
performance in the other fields of hydrology or even in the
water level prediction in different regions.

Data Availability

Tigris water level data was provided by Water Resources
Department/Wasit Province. Additionally, climatic factors
data were collected from the National Oceanic and Atmo-
spheric Administration (NASA) (https://www.ncdc.noaa.
gov/cdo-web/datatools/findstation).
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