
Research Article
Initial Elastic Stiffness of Bolted Shear Connectors in
Steel-Concrete Composite Structures

Chenggong Wang ,1 Diankai Cao,2 Xiaoyang Liu,1 Yucai Jing,3 Wenzhuo Liu,4

and Guotao Yang 1

1School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2Shandong Luqiao Group Co., Ltd., Jinan 250014, China
3Shandong Hi-Speed Road & Bridge Group Co., Ltd., Jinan 250014, China
4Zhongqing Jian’an Construction Group Co., Ltd., Qingdao 266000, China

Correspondence should be addressed to Guotao Yang; yangguotao@qut.edu.cn

Received 7 September 2021; Revised 22 November 2021; Accepted 15 December 2021; Published 6 January 2022

Academic Editor: Chao Hou

Copyright © 2022 Chenggong Wang et al. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Bolted shear connectors have the advantages of being easily fitted and dismantled during construction, the initial elastic stiffness of
which has a great influence on the structural performance of the connected composite structures. In this paper, the initial elastic
behaviors of three types of bolted shear connectors used in steel-concrete composite structures (i.e., the bolt with nonembedded
nut, the bolt with single-embedded nut, and the bolt with double-embedded nuts) are investigated using finite element analysis
(FEA). After the FEmodels are verified against the experimental results in other literature, an extensive parametric study is carried
out to investigate the effects of eight parameters of the composite structures on the initial shear stiffness and tension stiffness as
well as coupling stiffness. Empirical formulas are subsequently developed for obtaining the initial elastic stiffness of the bolted
shear connectors, based on which further FEA is performed.*e FEA results are in good agreement with the experimental results,
illustrating the effectiveness of the empirical formulas.

1. Introduction

Steel-concrete composite structures have been widely used
in civil engineering for decades because of their outstanding
mechanical performances such as high strength and stiff-
ness, strong resistance to impact and seismic loading, and
ease of construction, combing the advantages of both
component materials. As an essential part of the composite
structures, the connector is utilized to connect the steel
component and the concrete component, thus enabling the
components to work together effectively. Various types of
connectors that can enhance the composite action in the
composite structures have been proposed, such as stud
connectors, rebar connectors, and profiled connectors [1–5].
Due to the good structural performance and freedom of
welding procedure, studs are the most popular connectors
used in composite structures nowadays [6–9]. However, the

methods currently used for constructing steel-concrete
composite structures are usually time-consuming and costly,
as the methods require the structures to be accomplished on
site by welding studs and casting concrete in situ. Fur-
thermore, since the studs are welded to the upper flange of
the steel girders, the dismantlement of the concrete slabs is
difficult to implement, leading to the crumbling of concrete,
causing the waste of resources and environmental pollution.
*erefore, the deconstructable bolted shear connectors (see
Figure 1) are proposed, by which dry and wet assembling
and high efficient installation can be achieved and the
concrete slabs can be easily removed at the end of the
structure’s service life.

*e bolted shear connector is an emerging connection
type, rarely used in steel-concrete composite structures in
the past. *ere are fewer studies on bolted shear connectors
than those on studs, although they can be easily dismantled
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in the steel-concrete composite structures. With the de-
velopment of constructionmethods, bolted shear connectors
are increasingly used to replace studs and other connectors,
making the dismantling work easier. Most of the existing
references [10–13] concentrated on the fundamental
structural behaviors of different types of bolts, such as ul-
timate capacity, load-slip behavior, and failure mode. Dal-
lam [14] conducted studies on the slip and shear resistance of
bolted shear connectors. In order to achieve deconstruction,
Kwon et al. [15, 16] studied three types of shear connectors,
namely, Double-Nut Bolt, High-Tension Friction-Grip Bolt,
and Adhesive Anchor connectors, to investigate their static
and fatigue strength for application in strengthening non-
composite floor systems. It was concluded that these post-
installed shear connectors showed higher fatigue strength
than those of stud shear connectors. In the works of Pavlović
et al. [17, 18], comparisons between the bolts with single-
embedded nut [Figure 1(b)] and headed studs were analyzed
to better understand the failure mode of these connectors,
the results showed that the bolted shear connectors were
similar to headed studs in terms of shear resistance but the
bolts are prone to brittle failure. Subsequently, the effects of
bolt diameter and concrete strength on the shear behavior of
single-embedded-nut bolts were studied by Su et al. [19].
Unlike the previous prefabrication method, single-nut bolts
installed in the precast concrete slab and then assembly were
studied by Ataei et al. [20] and analyzed the effects of bolt
size and strength on the ductility, strength degradation, and
absorbed energy. Recently, Liu et al. [21] and Chen et al. [22]
examined the structural behaviors of double-nut bolts
[Figure 1(a)] in the prefabricated steel-concrete composite
beams, considering the effects of bolt diameters and con-
straint conditions of the reserved holes. Ataei et al. [23–26]
investigated the use of tensional high-strength friction-grip
bolts [Figure 1(c)] in steel-concrete composite structures
with geopolymer precast concrete slabs for better perfor-
mance in environmental protection and sustainability. *is
kind of bolt was also studied by Chen et al. [27], Liu et al.
[28], Marshall et al. [29], and Zhang et al. [30], and the effects
of bolt diameter, concrete strength, and bolt pretension on
the failure mode, the load-ship characteristics, and the ul-
timate capacity of the bolts were further analyzed. In ad-
dition to the studies where the connectors are subjected to
single-axis monotonic loading, the behaviors of connectors

under biaxial loading were also studied [31–35]. Tan et al.
[34] obtained the properties of three types of demountable
connectors under combined shear force and tension force. It
was found that the shear capacity was reduced significantly
when the combined loading is applied. Apart from these
bolted shear connectors, many other novel demountable
connectors have also been proposed and utilized in steel-
concrete beams [36–41].

In addition to the experimental studies discussed above,
efforts have also been made to investigate the mechanical
behaviors of bolted shear connectors using FEA [42–46].
Pavlović et al. [17] developed an accurate FE model of steel-
concrete composite structures to analyze the structural
behaviors such as shear resistance, stiffness, ductility, and
failure modes in detail. In order to reduce the solution time,
a simplified model in which the bolt and nut were merged
into a whole instance without considering the thread was
developed by Chen et al. [47]. It was concluded that the shear
resistance was positively correlated to concrete strength, bolt
diameter, and yield strength. Recently, Zhang et al. [30]
conducted a series of parametric studies to further inves-
tigate the shear capacity and load-slip behavior of high-
strength friction-grip bolts. In the work of Liu et al. [48], the
behaviors of high-strength friction-grip bolts in steel-con-
crete composite beams were studied using a three-dimen-
sional FE model. *e results showed that the bolt spacing,
degree of shear connection, and diameter of the hole in
concrete slabs have significant influences on the ultimate
strength of the composite beam. Kwon et al. [49] simulated
the behaviors of bolted shear connectors by connector el-
ements to verify the feasibility of postinstalled bolted shear
connectors on the noncomposite bridge girders. Subse-
quently, Chen et al. [27] carried out an FEA of through-bolt
shear connectors in a full-scale bridge girder, in which the
connectors were modeled with connecting elements to
simulate the shear stiffness of shear connectors.

*e initial elastic behavior of the bolted shear has a great
influence on the stiffness of the entire composite structure,
determining the natural frequency of the structure. *e
literature discussed above mainly focused on the strength
and stiffness of the bolts; however, the initial elastic stiffness
which is crucial to the joint rigidity is not considered. In the
present work, FEA is carried out to investigate the structural
behavior of bolted shear connectors in the initial elastic
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Figure 1: Bolted shear connectors: (a) double-embedded nuts; (b) single-embedded nut; (c) without embedded nut; (d) friction-grip bolt.
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stage. Parametric analyses on three types of connectors, i.e.,
the bolt with nonembedded nut, the bolt with single-em-
bedded nut, and the bolt with double-embedded nuts, are
reported. *e comparisons between the results of FEA and
those of experimental tests show good agreement. Finally,
empirical formulas are obtained and further applied to the
analysis of steel-concrete composite structures.

2. Numerical Analysis Model

*e FE software Abaqus is employed to simulate the initial
elastic stiffness behavior of the bolted shear connectors. A
three-dimensional FE model is created, based on which the
initial elastic stiffness of the three types of bolted shear
connectors is analyzed. *e part mesh, interaction,
boundary, and load conditions of the model are described in
detail in the following sections.

2.1. Finite Element Model. As can be seen in Figure 2, two
bolted shear connectors are installed on both sides of the
specimen to connect the steel beam and the concrete slab.
*e three types of bolted shear connectors are investigated,
respectively. Because of the symmetry of the structure, only
one-quarter of the specimen composed of the bolt, nut, steel
beam, base plate, concrete slab, and reinforcing bar is
modeled [see Figure 3(a)]. Except for the reinforcing bar and
base plate, all components of the specimen are modeled
using three-dimensional solid reduced integration elements
C3D8R which prevents shear locking and guarantees rea-
sonable computational cost [42, 50]. *e reinforcing bars
and base plate are modeled by two-node linear three-di-
mensional truss element T3D2 and rigid element R3D4,
respectively. As shown in Figures 3(b) and 3(c), the bolt and
nut are meshed with the size of 4mm× 4mm × 4mm,
around which the concrete and steel are meshed with the size
of 20mm× 20mm × 4mm while the size of the remaining
element is 20mm× 20mm × 20mm, ensuring the calcula-
tion effectiveness. Besides, the base plate is meshed with the
size of 20mm× 20mm.

Contact nonlinearity is one of the common reasons that
make the analysis difficult to converge. *erefore, further
simplification is applied to the thread of bolt shank, bolt
head, and nut in the FE model. General surface to surface
contact interaction is used for contacting the steel beam and
bolt as well as the steel beam and nut, and the friction
coefficient with the value of 0.4 is adopted [51]. *e HARD
options are applied for the contact modeling between two
surfaces in normal directions while the PENALTY options
are used for the tangential behavior. Zero friction is assumed
for the contact pair of concrete slab and steel beam. *e
concrete slab and the part of the bolt and nut embedded in
the concrete slab are tied together to eliminate relative slip.
Besides, the relative slip and cohesive action between the
concrete slabs and rebars are ignored. *e surrounding
surface of the local concrete part is fully constrained to the
reference point as shown in Figure 3(b), and then all di-
rections are constrained in the reference point.

For the one-quartermodel, symmetric boundary conditions
are defined. For the surface of the steel beam and concrete slab
(Y-Z plane), the displacement along X-axis and the rotations
about Y and Z axes (U1�UR2�UR3� 0) are constrained. For
the cross section of the steel beam flange (X–Y plane), the
displacement along Z-axis and the rotations aboutX and Y axes
(U3�UR1�UR2� 0) are constrained. To restrain the dis-
placements and rotations in all directions, the bottom of the
concrete slab is connected to the base plate through a referent
point. All the displacements and rotations related to the X-Z
plane are constrained (U1�U2�U3�UR1�UR2�UR3� 0).
*e boundary conditions of themodel are shown in Figure 3(b).

*e analysis is divided into two steps. In the first step, bolt
pretension is applied to the initial surface of the bolt, and the
load is then imposed on the whole structure in the second step.
For the case where only the shear force is considered, the
vertical load is applied to the top of the steel beam by applying
pressure. When both the shear and tension forces are con-
sidered, the shear force is applied to the top of the steel beam
and the transverse horizontal load is applied to the region of the
concrete slab.*e loading conditions are shown in Figure 3(b).

2.2. Validation of Test Results. *e stiffness formulas of the
two cases discussed above are derived as follows. In the first
case, only the shear force V is considered: N�ΔN� 0 and
V�ΔV. In the second case, because both the shear and
tension forces are considered, N�ΔN and V�ΔV. *e basic
matrix formula can be formulated as

ΔV

ΔN
  �

KV KC

KC KN

 
δ]

δu
 , (1)

where KN, KC, and KV represent the initial tension stiffness,
initial coupling stiffness, and initial shear stiffness, respec-
tively, as shown below:

KN �
ΔN2

δu2 − δ]2/δ]1δu1

KC � −
KNδu1

δ]1

KV �
ΔV1 − KCδu1

δ]1
.

(2)
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Figure 2: *e components of the specimen.
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It should be noted that the stiffnessmatrix is considered as a
symmetric matrix in this paper. In this study, the specimen of
the push-out test is investigated using FEA. *e dimension of
the concrete slab is 600mm× 600mm × 500mm.*e length of
the steel beam with section 350 mm× 350mm ×

12mm× 19mm is 600mm.*ediameter of the rebar is 20mm.
To validate the accuracy of the FE model, the FE results are
verified by existing experimental results. *e bolt with a single-
embedded nut (SENB) proposed in the work of Ataei et al. [20]
is selected for comparison. *e specimen consists of two
concrete slabs on each side of the steel flange, for which the
SENB is used to make these components into a whole. A
pretension load with the value of 50% of the ultimate load
capacity is applied to the bolt shank. *e bolts with double-
embedded nuts (DENB) used in the work of Chen et al. [22] are
selected for further validation for which the bolt and nut are
merged to form a single instance. In the work of Tan et al. [34],
the structural behaviors of three types of demountable con-
nectors (i.e., AJAX ONESIDE, threaded headed stud, and
Hollo-Bolt) under combined shear and tension forces were
investigated, and the threaded headed stud is treated as NENB.
Dimensions and material properties are shown in Tables 1 and
2, respectively. Comparisons between the numerical results and
the test results are shown in Table 3. It can be seen that the
obtained results of the experimental tests are slightly higher than
those of the FEA. For the same bolt size, the SENB and DENB
have similar values of shear stiffnesses which are higher than
those of the NENB. *erefore, the embedded nut in composite
structures indeed affects the stiffness of the bolts. It can be seen
from Table 3 that the FE results are in good agreement with the
experiment results; hence, this FE model is capable of simu-
lating the stiffness of the bolted shear connectors.

3. Parametric Study

A parametric study is performed in this section to investigate
the effects of eight proposed factors on the initial elastic
stiffness of the three types of bolted shear connectors. Firstly,
the initial elastic stiffness of the bolted shear connectors

subjected to shear loading is studied. After that, the initial
stiffness is further explored for the case where coupled
loading condition is applied.

3.1. Influence of Bolted Shear Connectors. *e initial elastic
stiffness of the bolted shear connectors reflects the
deformability of the bolt, which is regarded as an indicator to
evaluate the overall performance of the steel-concrete
composite structures. Based on the results of FEA, the in-
fluence of the bolt length, the bolt diameter, the elastic
modulus of the bolt, and the pretension force in the bolt are
presented in Figure 4 and Figures 5 in 6, respectively.

It can be seen from Figures 4(a) and 5(a) that the initial
shear stiffness and tension stiffness are positively correlated
to the bolt diameter; as can be seen from Figure 6(a), the
relationship between coupling stiffness and bolt diameter is
also positive. It should be noted that the DENB has the
highest coupling stiffness, shear stiffness, and tensile stiffness
than the others, reflecting the advantages of double-em-
bedded nuts. In addition, for these results, the effects of the
sizes of the bolt head and nut should be taken into account,
as they change with bolt diameter.

It can be seen from Figures 4(b), 5(b), and 6(b) that the
variation of bolt length has a slight influence on the initial
elastic stiffness of these connectors. *e NENB has the
lowest shear, tensile, and coupling stiffness, while DENB is
the opposite precisely. *e shear and tension stiffnesses of
the SENB andDENBwhich are embedded with nut are more
than 2.5 and 1.5 times higher than those of the NENB,
respectively. However, the coupling stiffness of the NENB is
3 times higher than that of the SENB and DENB.

*e change of elastic modulus of the bolt has a re-
markable influence on the initial elastic stiffness. As shown
in Figures 4(c) and 5(c), the shear and tension stiffnesses are
positively associated with the elastic modulus of the bolt.*e
SENB and DENB possess almost the same shear stiffness, but
the DENB has higher tension stiffness. It can be seen from
Figure 6(c) that the coupling stiffness is positively correlated
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Figure 3: *e FE model: (a) one-quarter of the model; (b) the boundary and loading conditions; (c) bolted shear connectors.
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to the elastic modulus of the bolt. *e NENB achieves the
lowest coupling, shear, and tension stiffnesses. Besides, for
tension and coupling stiffnesses, the SENB and DENB are
more sensitive to the change of elastic modulus than the
NENB.

To evaluate the effects of the pretension force on the
initial elastic stiffness, five degrees of pretension force are
applied to the bolt. *e shear and coupling stiffnesses of the
NENB are not sensitive to the pretension force and remain
unchanged as can be seen from Figures 4(d) and 6(d), while
the shear stiffnesses and coupling stiffnesses of the rest
connectors with embedded nut are positively correlated to
the pretension force. *e tension stiffness decreases sig-
nificantly when the bolt pretension is applied, as shown in
Figure 5(d); the tension stiffness of the SENB is slightly lower
than that of the DENB. *e NENB has the lowest shear
stiffness and tension stiffness, and its coupling stiffness is
more than 3.5 times lower than that of the other two
connectors as shown in Figure 6(d).

3.2. Influence of ElasticModulus of Concrete. In this part, the
effects of different elastic modulus of concrete, namely,
30000, 32500, 34500, 36000, and 37000N/mm2, on the initial
elastic stiffness are studied. Figures 4(e) and 5(e) show that,
with the increase of the elastic modulus of concrete, the
shear and tension stiffnesses increase slightly. *e shear
stiffnesses of the SENB and DENB are almost the same but
the DENB achieves higher tension stiffness. As can be seen
from Figure 6(e), the coupling stiffnesses of the SENB and
DENB increase slightly as the elastic modulus of concrete

increases; however, the coupling stiffness of the NENB is not
sensitive to the elastic modulus of concrete and the mag-
nitude of the change can be ignored.

3.3. Influence of ElasticModulus of Steel. *e effects of elastic
modulus of steel from 201GPa to 221GPa are investigated.
As can be seen from Figures 4(f), 5(f ), and 6(f), the elastic
modulus of steel almost does not affect the stiffness. *e
NENB has the lowest shear, tension, and coupling stiffnesses
in the comparisons. *e values of shear stiffnesses of the
SENB and DENB are close to each other and about 2.5 times
higher than those of NENB. Compared with the SENB, the
DENB achieves higher tension stiffness and coupling stiff-
ness. As can be seen from Figure 6(f), the coupling stiffness
of the NENB is more than 3.5 times lower than that of the
SENB and DENB.

3.4. Influence of Tension Force. *e degrees of the tension
force in the specimen are considered in this part. As can be
seen from Figures 4(g) and 5(g), with the tension force
increasing from 4.4 kN to 26.4 kN, the shear stiffness in-
creases slightly while the tension stiffness increases signif-
icantly. As shown in Figure 6(g), the coupling stiffness
increases with the tension force increases. *e coupling
stiffnesses of the SENB and DENB are higher than that of the
NENB. With the increase of tension force, the difference
between the coupling stiffness of the bolt with embedded nut
(SENB and DENB) and that of the bolt without embedded
nut (NENB) become larger.

Table 1: Dimensions of the specimens.

Steel beam (mm) Concrete slab (mm) Bar (mm)
Bolt (mm)

Type
Diameter Length

Ataei et al. [20] IPE270 (270×135× 6.6 × 10) 500× 500×120 12
12 100

SENB16 100
20 100

Chen et al. [22] 250× 250×14 × 9 460× 460×150 10 12 100 DENB16 100
Tan et al. [34] 360UB56.7 600× 600×150 12 19 120 NENB

Table 2: Material properties.

Bolt Steel Concrete Bar Author

Elastic modulus (GPa)
201 201 34.5 198 Ataei et al. [20]
208 203 31 176 Chen et al. [22]
206 226 34.667 200 Tan et al. [34]

Table 3: Comparisons between FE results and experimental results.

Bolt diameter (mm) Push-out test (kN/mm) FE model (kN/mm) FE model/push-out test Remark

Ataei et al. [20]
12 1118.229 1057.439 0.946

SENB16 1298.809 1258.878 0.969
20 2157.561 2049.534 0.950

Chen et al. [22] 12 1097.426 996.507 0.908 DENB16 1579.977 1357.673 0.859
Tan et al. [34] 19 815.233 793.033 0.973 NENB
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3.5. Influence of the 9ickness of the Steel Beam Flange.
*e effects of the flange thickness on the initial elastic stiffness
are also studied. As the flange thickness increases, the contact
surface between the preformed hole of the steel beam and the
bolt shank becomes larger, which further increases the friction
between the steel beam and the bolt. As shown in Figure 4(h),
with the thickness increase, there is a slight increase in the
shear stiffnesses of the DENB and SENB but a slight decrease
in that of the NENB. *e reason for this could be that the
specimen with an embedded nut provides a higher pretension
force than that with a nonembedded nut. As can be seen in
Figure 5(h), with the increase of the flange thickness, the
tension stiffness decreases slightly, and the tension stiffnesses

of the embedded-nut bolts are about 1.5 times higher than
those of the NENB. In Figure 6(h), the coupling stiffness
decreases slightly with the increase of the flange thickness, and
the NENB achieves the lowest coupling stiffness which is
about 3.5 times lower than that of the DENB and SENB.

4. Empirical Equations

In this section, empirical formulas in terms of bolt diameter
(D), the elastic modulus of concrete (Ec), and the elastic
modulus of bolt (Eb) for obtaining the initial elastic stiffness
are developed based on the FEA. *e basic form of the
formula can be expressed as

 E
la

sti
c s

tif
fn

es
s (

kN
/m

m
)

600

1200

1800

2400

3000

3600

18 20 22 24 26 2816
Diameter of Bolt (mm)

Non-embedded Nut
Single-embedded Nut
Double-embedded Nut

(a)
 E

la
sti

c S
tif

fn
es

s (
kN

/m
m

)

800

1200

1600

2000

2400

2800

100 150 200 250 30050
Length of Bolt (mm)

Non-embedded Nut
Single-embedded Nut
Double-embedded Nut

(b)

 E
la

sti
c S

tif
fn

es
s (

kN
/m

m
)

800

1200

1600

2000

2400

2800

160 180 200 220 240 260 280140
 Elastic Modulus of Bolt (kN/mm2)

Non-embedded Nut
Single-embedded Nut
Double-embedded Nut

(c)

 E
la

sti
c s

tif
fn

es
s (

kN
/m

m
)

Non-embedded Nut
Single-embedded Nut
Double-embedded Nut

800

1200

1600

2000

2400

2800

80 100 120 14060
 Pretension Force in Bolt (kN)

(d)

 E
la

sti
c s

tif
fn

es
s (

kN
/m

m
)

Non-embedded Nut
Single-embedded Nut
Double-embedded Nut

800

1200

1600

2000

2400

2800

32 34 36 3830
 Elastic Modulus of Concrete (kN/mm2)

(e)
 E

la
sti

c S
tif

fn
es

s (
kN

/m
m

)

Non-embedded Nut
Single-embedded Nut
Double-embedded Nut

900

1200

1500

1800

2100

2400

2700

205 210 215 220200
 Elastic Modulus of Steel (kN/mm2)

(f )

 E
la

sti
c S

tif
fn

es
s (

kN
/m

m
)

Non-embedded Nut
Single-embedded Nut
Double-embedded Nut

900

1350

1800

2250

2700

10 15 20 255
 Tension Force in Specimen (kN)

(g)

 E
la

sti
c S

tif
fn

es
s (

kN
/m

m
)

Non-embedded Nut
Single-embedded Nut
Double-embedded Nut

800

1200

1600

2000

2400

2800

16 18 20 2214
Thickness of Steel Beam Flange (mm)

(h)

Figure 4: Initial shear stiffness.
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K � α DE
β
c E

λ
b, (3)

where α, β, and λ are coefficients obtained from fitting
results.*e formulas fitted for the three types of bolted shear
connectors are shown in Table 4. As Figure 7 shown Fig-
ures 8 in 9, the fitting results are in good agreement with the
FEA results.

5. Applications

As discussed above, the bolts with embedded nuts (SENB
and DENB) achieve better initial elastic stiffness than the
bolts with nonembedded nut (NENB). Two examples

proposed by Kwon et al. [52] and Du et al. [53] are used
herein to further illustrate the applications of the proposed
formulas to the DENB and SENB.

5.1. Bolted Shear Connectors with Double-Embedded Nuts.
*e initial elastic stiffness obtained from the proposed
formulas is applied to the example of Kwon et al.’s work [52],
in which a simply supported steel-concrete composite beam
with double-nut bolts is studied. *e details of the beam are
shown in Figure 10. *e composite beams are designed with
a 30% shear connection ratio, which requires a total of 32
shear connectors in a beam.
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Figure 5: Initial tension stiffness.
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*e stiffness of the bolted shear connector calculated
from Table 4 is employed in the finite element analysis. As
shown in Figure 11, the 4-node shell element S4R and the
8-node solid element C3D8R are used for the steel beam
and concrete slab, respectively. *e connectors are
employed to connect the concrete slab and steel girder in

the FE models. Element connectors are used to measure
the deformation capacity by defining a local Cartesian
coordinate system [49]. Because this study focuses on the
elastic stage, the bracing at the end of the beam is ignored
in the model. Besides, the reinforcing bar is embedded in
the concrete slab.
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Figure 6: Initial coupling stiffness.

Table 4: *e empirical formulas.

Name KV (kN/mm) KN (kN/mm) KC (kN/mm)
NENB 0.000849 DE0.748

c E0.252
b 0.0004986 DE0.313

c E0.687
b −3.721 DE−0.094

c E1.094
b

SENB 0.00212 DE0.756
c E0.244

b 0.000509 DE0.086
c E0.914

b −0.000149 DE0.0227
c E0.9773

b

DENB 0.00198 DE0.713
c E0.287

b 0.0004959 DE0.033
c E0.967

b −0.000141 DE−0.047
c E1.047

b
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When the pressure load is applied to the beam, shear
stress and tensile stress are generated on the connectors.
*erefore, the tensile stiffness in one direction and the shear
stiffness in the other two directions should be studied.
According to the calculation formulas, the stiffnesses of the
DENB including the shear stiffness (KV) and the tension
stiffness (KN) are obtained: KV � 2170.520 (kN/mm);
KN � 2143.487 (kN/mm).

*e specimen is in the elastic stage if the value of load is
below 22 kN [52]. Hence, a pressure load of 20 kN is applied
in the middle of the composite beam. *e material linear
elasticity is taken into account during the analysis. As shown
in Figure 12, the load-deflection curve obtained by FEA
indicates that the result is in good agreement with the test
result in the elastic stage, and the correlation coefficient is
0.909. *e FE result is about 10.65% higher than the test
result. *e displacements of the 32 connectors under a
pressure load of 22 kN are illustrated in Figure 13. Sixteen

pairs of connectors are symmetrically distributed in the
composite beam, with 16 connectors assigned in each col-
umn. *ese two symmetrical connectors in each pair have
similar displacements. *e results in Figure 13 represent the
average value of each pair of connectors. As the load is
applied to the midspan, the displacement in the middle of
the span is the largest, and the displacements at the two
supports are the smallest. *e displacement increases from
the two supports to the middle of the span.

5.2. Bolted Shear Connectors with Single-Embedded Nut.
*ree precast full-scale steel-concrete composite beams
(PCB1, PCB2, and PCB3) with SENB proposed by Du et al.
[53] are studied herein. *e details of the composite beams
are shown in Figure 14. *ree different shear connection
ratios are applied to the composite beams. A total of forty
high-strength bolted shear connectors with full shear con-
nections are used in PCB1. *irty bolted shear connectors
with 68% shear connection and twenty-two bolted shear
connectors with 46% shear connection are used in PCB2 and
PCB3, respectively. As shown in Figure 11, the bolted shear
connectors are modeled by element connectors in the FE
model where the steel beam and the concrete slab are
modeled by the 4-node shell element S4R and the 8-node

1200 1600 2000 2400 2800800
FE result (kN/mm)

800

1200

1600

2000

2400

2800

Fi
tti

ng
 re

su
lt 

(k
N

/m
m

)

Non-embedded Nut
Single-embedded Nut
Double-embedded Nut

Figure 7: Comparisons of shear stiffness between the FE results
and fitting results.
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Figure 10: *e cross section of the composite beams tested by
Kwon et al. [52].
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solid element C3D8R, respectively. *e shear stiffness of
2009879.079N/mm and the tension stiffness of
1804816.555N/mm obtained by the proposed formulas are
applied to element connectors. Two-point symmetric
loading (20 kN) is adopted in the FE model.

*e stiffness of the composite beams is significantly
influenced by the degree of shear connection. As shown in
Figure 15, the full shear connection of PCB1 achieves the
highest stiffness compared with the other two shear con-
nections. In general, the test results of PCB1, PCB2, and
PCB3 are in good agreement with the FE results, and the
correlation coefficients are 0.908, 0.969, and 0.993, respec-
tively. In Figure 16, the displacements of connectors in the
composite beams are presented, which are the average value
of the two bolts at symmetrical positions along with the

width of the beam. It can be seen that the displacement
decreases as the degree of shear connection increases, and
the maximum displacement occurs in the midspan of each
composite beam.
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Figure 11: FE model of composite beam.
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6. Conclusions

*e initial elastic behaviors of three types of bolted shear
connectors under pure shear loading and combined loading
of shear and tension are studied. *e effects of eight pa-
rameters on the initial elastic stiffness of the bolted shear
connectors are investigated. *e bolts with embedded nuts
have a significant impact on the stiffness compared to the
bolts with nonembedded nut. Inmost cases, whether the bolt
embedded a single nut or double nuts is irrelevant to initial
elastic stiffness, it has a great impact on the stiffness if there is
no embedded nut. Because of the existence of the embedded
nut, the SENB and DENB have higher shear stiffness and
tension stiffness than the NENB, the shear stiffnesses of the
three types of bolted shear connectors are positively asso-
ciated with the bolt diameter, the elastic modulus of the bolt

and concrete, and the pretension force in the bolt. Compared
with the shear stiffness, the effects of the bolt diameter, the
elastic modulus of the bolt, and the degree of tension force
on tension stiffness are more significant, and the tension
stiffness decreases as the pretension force in the bolt in-
creases. As for the coupling stiffness, the bolt diameter, the
elastic modulus of the bolt, the degree of the tension force,
and the pretension force in the bolt are the main deter-
mining factors. Empirical formulas for obtaining the initial
elastic stiffness are also developed, based on which further
FEA is performed for the composite beams proposed in
[52, 53], and the results of the FEA are in good agreement
with those of the experimental tests.
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