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,is study employs geostatistical and artificial intelligence (AI) methods to estimate the degree of ground improvement after
dynamic compaction. We implement artificial neural network (ANN) and random forest (RF) for artificial intelligence spatial
interpolation to investigate the efficiency of dynamic compaction considering the spatial distribution of the geotechnical pa-
rameters. Data used in this study involve averaged SPT N value before dynamic compaction (Nbefore), averaged SPT N value after
dynamic compaction (Nafter), applied energy (AE), X- and Y-coordinates at each borehole location, and degree of ground
improvement (DI). ,is study uses the data obtained from a total of 42 borehole logs with an average depth of 17m and testing
depth intervals of 1.5m after dynamic compaction and 26 SPT-N log data before dynamic compaction. An optimal spatial
interpolation tool selected in this study develops a bearing capacity map after dynamic compaction. ,e model performance is
examined using the correlations between SPT-based and predicted bearing capacity in the context of mean absolute error (MAE),
coefficient of determination (r2), and root mean square error (RMSE).,emodel with the least MAE and RMSE and the highest r2

is selected as optimal. ,e optimal RF (RFVD) model has an RMSE of 15.83 while out of the two geostatistical models considered
OK recorded the lower RMSE of 22.62. Results show that RF spatial interpolation techniques outperform traditional geostatistical
methods.,e artificial neural networkmodel shows good compatibility with physical and intuitive processes pertinent to dynamic
compaction. ,e ANN resulted in a prediction RMSE of 0.11 for DI and an r2 of 0.97. ,is unique approach for evaluating the
efficiency of dynamic compaction will be useful to geotechnical engineers when designing site improvement projects, especially
dynamic compaction by employing easily obtainable field data for coarse-grained soils.

1. Introduction

Ground improvement techniques are applied in geotech-
nical engineering to enhance the engineering properties of
loose, soft, or weak soils. In particular, dynamic compaction
uses the impact of a free-falling heavy tamper from a drop
height H onto the ground (usuallyH� 10 to 30m) to densify
in-situ coarse-grained soils and it is economical and yields
immediate enhancement of soil properties [1–4]. ,e factors
associated with dynamic compaction designs and the effi-
ciency of its implementation can be divided into two groups:

(1) the site conditions such as soil type, groundwater table,
bulk unit weight or in-situ density of soil, strata, and seams
of soft materials; and (2) the dynamic compaction method
with the hammer shape, weight, surface area, drop height,
the number of drops, grid spacing, the time interval between
phases, and the number of phases [5, 6]. Furthermore, soft
underlying compressible soils and/or oversaturated soils
often reduce the compaction efficiency [6].

In general, penetration resistances are used to conduct a
comprehensive analysis of dynamic compaction results.
,ese empirical correlations and charts assist engineers in
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overcoming the challenges faced with penetration resistance
tests [4, 7]. However, the empirical correlations and charts
cannot consider the spatial variability and covariance of
geotechnical properties and parameters in heterogeneous
soil deposits [8, 9]. Furthermore, compaction efficiency and
degree of ground improvements vary with high/low energy
compaction modes as well as hammer characteristics [6].
,e penetration test results analyzed using empirical charts
and equations may not properly reflect the attributes of the
hammer and spatial variability [6]. Clearly, soil improve-
ment assessments after dynamic compaction require reliable
data interpretation techniques where more complicated
spatial variability arises in each single compaction site.

Spatial interpolation methods successfully minimize the
uncertainty associated with the standardized use of em-
pirical correlations and charts [10]. ,e methods include
deterministic spatial interpolations (e.g., inverse distance
weighting), geostatistical interpolations (e.g., ordinary
kriging), and geostatistical simulations (e.g., sequential
Gaussian simulation) [8, 11]. ,e deterministic method is
distance-based and an exact estimator unable to consider
orientations, trends, and anisotropy in the dataset [12]. ,e
weights selected for the deterministic spatial interpolation
are local and arbitrary with the primary goal of interpolation
(i.e., error minimization). However, this method cannot
carry out a direction-dependent weighting, and often results
in unrealistic maps referred to as “bull’s-eyes” [13, 14]. By
contrast, geostatistics builds on semivariogram and can
account for anisotropy, trends, and orientations. In addition,
the geostatistical models result in the generation of realistic
maps [13, 15]. ,e geostatistical interpolation and simula-
tion models cannot account for errors in the estimation of
the semivariogram assuming the second-order stationarity
for data distribution and in some cases data transformation
and back transformation of interpolated data [16]. Geo-
statistical conditional simulations introduce a level of ran-
domness conditioned to the data [15] that overcomes the
smoothing effects in kriging. In comparing these three
models, the geostatistical methods (i.e., the latter two) are
relatively better estimators with lesser errors than the de-
terministic methods (Zou et al., 2017). Still, there exist
concerns related to geostatistical interpolations, but machine
learning ML algorithms appear to be a robust tool with a
broad range of applications to geotechnical engineering and
scientific problems [17–19].

Artificial intelligence algorithms are efficient in solving
complex and nonlinear problems and detecting trends
present in very huge datasets [20, 21]. ,eir applications also
involve classification and image detection from motion and
still pictures. However, machine learning ML for spatial
interpolation remains a budding research area in artificial
intelligence AI that has been applied only a few times to
geotechnical engineering. ,is unique model could over-
come the key issues associated with geostatistical models.

,is study aims to establish a robust approach for
assessing dynamic compaction using geostatistics methods
such as ordinary kriging (OK) and sequential Gaussian
simulation (SGS), random forest (RF), and artificial neural
network (ANN). ,e geostatistics methods and random

forest method were applied to obtain spatial interpolation of
bearing capacity after the dynamic compaction. In addition,
the artificial neural network (ANN) was used to develop a
model to predict the spatial distribution of the degree of
ground improvement (DI) attained after dynamic com-
paction. ,e ANN model facilitates the assessment of the
spatial distribution of bearing capacity back-calculated from
the degree of ground improvement after dynamic com-
paction. ,is manuscript starts with a brief introduction to
the test site under consideration.

2. Study Area

Land reclamation was performed to create a construction site
for oil facilities at the shore off the southwest coast of Ulsan
Province in South Korea. As shown in Figure 1, the entire site
covers a total area of 675,400m2 with a perimeter of 5,350m
and it is divided into 9 sections for construction purposes. ,e
study site is the 9th section, which is the last area demarcated
with a red rectangular borderline in Figure 1. ,e reclamation
was processed in two steps: (1) a hydraulic filling was con-
ductedwith soils dredged from the ocean bed up to the sea level
by using a sand dredger vessel, and then (2) soils gathered from
the landwere dumped to complete the reclamationworks up to
a predetermined final elevation. ,e thickness of reclamation
fill ranged approximately between 3 and 27m with different
locations. Although the spatial thicknesses of reclamation fills
are different with locations, the fills are mainly composed of
gravels and sands.

A standard penetration test (SPT) was performed to
characterize the site before and after the reclamation work.
As shown in Figure 2(a), measured SPT-N values range from
2 to 32 with amean of 14, implying a loose soil condition and
a low strength immediately after reclamation. Although
some measured N values satisfy a predetermined design N
value for constructing tanks at a few locations, low N values
are dominant for most of the study area. ,erefore, dynamic
compaction was conducted to enhance the engineering
properties of the soil within the top of 15m depth from a
surface. ,e main tamper used in this study weighed 21.5
tons with a base area of 2.25m2 and the tamper fell from
20m. ,e ironing tamper weighed 10 tons and was also
dropped from a height of 20m. After the dynamic com-
paction, N values were significantly increased with all depth
and ranged from 30 to 43 with a mean of 37.

Figure 2(b) shows the coefficient of variation (COV) for
N values before and after dynamic compaction.,e COV for
N values before dynamic compaction shows relatively high
fluctuations within the range of COV ≈0.4 to 0.6 while the
COV after the dynamic compaction shows minimal varia-
tions with an approximate mean COV� 0.25 with depths.
Based on the measured N values, the variability in the N
values was significantly reduced after the dynamic com-
paction, implying consistency in the increase in the engi-
neering properties of the soils. Figure 2(c) shows the layout
of the average SPT N per each borehole location after DC.
,is figure shows that the geographical distribution of the
boreholes is adequate for spatial evaluation of DC gains in
terms of bearing capacity after DC.
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3. Methodology

,is section details the methodology used in this research
that involves two main sections: (1) spatial interpolation of
the bearing capacity conducted using geostatistics and
machine learning ML approaches and (2) estimation of
optimal spatial variability of the degree of ground im-
provement DI and the bearing capacity after the dynamic
compaction using a reliable spatial interpolation model.,is
study uses Quantum GIS QGIS to develop the location map
of the study area while RStudio is used to analyze data and
create models for both geostatistical and AI approaches
[22–24].

3.1. BearingCapacity EstimationUsing Empirical Correlation.
Basic data used in this study are the bearing capacity cal-
culated using measured N values with depth before and after
the dynamic compaction and their corresponding geo-
graphic coordinates transformed to projected coordinates
system. ,e computation of bearing capacity (qa) for a raft
foundation uses an empirical equation [25]:

qa[kPa] � 8N · Fd

s

25.4mm
 , (1)

where N� uncorrected average SPT-N value from the depth
of footing to Df+B, Df � embedded depth of foundation
[m], B�width of the foundation where a width of oil tank in
this study� 20m, Fd � depth factor� 1 + 0.33(Df/B)≤ 1.33,
and s� tolerable settlement (s� 25.4mm in this study). ,e
bearing capacity empirically calculated using the averaged
SPT N value after dynamic compaction is used as the ob-
served and raw data for geostatistical and artificial intelli-
gence modeling.

3.2.GeostatisticalApproaches. Geostatistical approaches can
be categorized as linear or nonlinear [15, 26]. Kriging is a
linear weighted estimation algorithm and computes the best
linear unbiased estimator based on a spatial stochastic model
[9, 27, 28]. Linear methods are simple and derive estimations
using observed values assuming a normal distribution of
samples. Different kriging types are applied depending on
the stochastic properties of a random field. Nonlinear
methods are also linear; however, they utilize nonlinearly
transformed values of the measured data to estimate spatial
parameters [15]. Nonlinear methods give an estimate of its
probability distribution conditioned to the original dataset
[29]. Note that their predictions are generally more accurate
and reliable where a Gaussian random process is unsuitable

4200010N

4000010N

3800010N

4200010N

4000010N

3800010N

200010E 400010E 600010E

200010E 400010E 600010E

3924010N

3921010N

3918010N

3924010N

3921010N

3918010N

528010E 531010E 534010E

528010E 531010E 534010E

SPT N ADC
Others sections
Section 9

Figure 1: ,e study area (QGIS integrated with a historical map from Google Earth): site location map for the dynamic compaction (DC)
project. X and Y indicate the coordinates for the study area where SPT-N ADC is the borehole location after dynamic compaction (ADC).
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for generating predictive models [26, 29]. Two geostatistical
methods (i.e., one linear and the other nonlinear) were
utilized to assess the spatial distribution of the bearing ca-
pacity after dynamic compaction in this study: ordinary
kriging (OK) is the linear model, while sequential Gaussian

simulation (SGS) is the nonlinear model. Both OK and SGS
rely on a measure of spatial autocorrelation to derive in-
terpolation weights to make predictions at unsampled lo-
cations.,e spatial autocorrelation can be determined with a
semivariogram.
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Figure 2: Depth profile of statistical characteristics of SPTN value: (a) mean and standard deviation forN-values measured before and after
dynamic compaction (DC); (b) coefficient of variation COV of SPTN-values before and after dynamic compaction; and (c) the location map
of average SPT N after DC.
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3.2.1. Semivariogram. Half the sum of the squared difference
of geographical variables pairs separated by a given lag
defines the measure of dissimilarity or semivariance at the
lag under consideration [15]. An experimental semivario-
gram is developed by plotting semivariance versus separa-
tion distance or Euclidean distance between the gathered
data points. Semivariogram modeling is required at all
distances to estimate values at unsampled locations within
the entire study area. ,erefore, theoretical semivariograms
are utilized as fitting models for experimental semivario-
grams [30] and the semivariogram is a fundamental step in
geostatistical interpolations and simulations. Following the
equation below, the semivariogram c(h) can be calculated
for a lag h:

c(h) �
1
2n



n

i�1
z xi(  − z xi + h(  

2
, (2)

where c(h) is the semivariogram value at a lag of h, n is the
number of data pairs separated by a lag h, z(xi) is the field
data value at location xi, and z(xi+ h) is the field data value at
location xi+ h.

3.2.2. Ordinary Kriging (OK). Ordinary kriging (OK) is a
commonly utilized kriging technique and provides an es-
timate of a value at any location for which a semivariogram is
known. OK assumes a constant and unknown mean and
adopts the stationarity of the autocorrelation of the spatial
values (i.e., second-order stationarity). An obvious limita-
tion of OK is the assumption of second-order stationarity
which might be inapplicable to some field data; nonetheless,
OK is an uncomplicated and versatile spatial prediction tool
[9, 31]. OK interpolation estimates the value under con-
sideration z∗OK at a target location and its mathematical
formula is as follows:

z
∗
OK � 

n

i�1
λizi, (3)

where λi stands for the kriging weight of data point at the i
th

location, zi denotes raw data at a known location (i.e.,
empirically calculated bearing capacity–Equation 1), and n
represents the number of data points in the search neigh-
borhood. ,e optimal kriging weight λi is obtained from the
covariance matrix structure which minimizes the prediction
variance.

3.2.3. Sequential Gaussian Simulation (SGS). Sequential
Gaussian simulation (SGS) is a method that makes use of
both the kriging variance and mean to establish a Gaussian
field. ,e Gaussian distribution is typically defined by
normal score transformation [9, 15]. SGS is intended for
continuous data and normal (Gaussian) distribution, ne-
cessitating the use of a normal score transformation. ,e
data is assumed to be stationary in SGS, which implies that
the mean, variance, and spatial structure (semivariogram)
do not change over the data’s spatial domain [9, 15]. SGS
gives a better representation of regional variance since it

incorporates local variability that is not captured by kriging.
Multiple, equally likely spatial distributional representations
of the variable under consideration can be generated
through geostatistical simulation making SGS the Monte
Carlo technique of geostatistics [32].

3.3. Artificial Intelligence AI

3.3.1. Random Forest (RF) Spatial Interpolation. Random
Forest (RF) model is an ensemble method that solves
problems by training many weak learners (i.e., decision
trees) via bagging [33–35]. Bagging is made up of two parts:
bootstrap and aggregation. Bootstrapping (sampling with
replacement) is performed repeatedly to sample the whole
dataset, resulting in a large number of weak learners. Ag-
gregation is used to integrate them for the final forecast,
which takes into account all probable outcomes. Decision
trees, also known as classification and regression trees
(CART), is a machine learning approach for forecasting that
uses a sequence of splitting rules. ,e splitting rules are
expressed by nodes, while decisions are portrayed by
branches, and predictions are presented by leaves [33, 36].
,e classification and regression trees (CART) is prone to
overfitting the training data and is not robust, resulting in
lower prediction accuracy.

,e poor performance of decision trees can be mitigated
by random forests. RF decreases variation in predicted
values by averaging several decision trees trained on various
portions of the same training set. ,e random forest tech-
nique has two essential hyperparameters: the number of
trees used in the forest and the number of random variables
used in each tree [37]. An optimal RF model can be de-
veloped by hyperparameter optimization which involves the
optimal selection of the number of features per tree and
number of trees through several iterations [38].

To determine the spatial interpolation for the bearing
capacity after the dynamic compaction, three cases of
random forest (RF) were applied in this study. Input vari-
ables are different for each method: the inputs for the first
case of the RF model are coordinates (i.e., RFC) while the
other two use colinear variables such as vector distance maps
(RFVD) and nearest observations of bearing capacity values
and their corresponding distances from the interpolation
points (RFNO). ,e introduction of these colinear variables
(i.e., RFVD and RFNO) based on the dataset allows the RF
algorithm to better learn the spatial autocorrelation of the
dataset [39, 40].

3.3.2. Artificial Neural Network (ANN). An artificial neural
network (ANN) is a computerized simulation that mimics
the format and functions of the human brain’s neural sys-
tems [20, 41]. ,e ANN is a kind of artificial intelligence
model trained based on the input and output data. ,e
learning process of this computational model acquires in-
formation about the complex and/or simple relationships
between the inputs and outputs [42]. ,e training considers
the errors from each prediction and adjusts the weights for
the next prediction until the variance between the predicted
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values and the target satisfies a preset error margin or
stopping criteria [21]. Training in ANN requires a selection
of activation and backpropagation functions from many
related algorithms [43].

,e selection and development of ANN architecture
incorporate the model geometry and how the information
flows through the network. Although there are numerous
architectures and models available, this study employs the
multilayer perceptron MLP feed-forward backpropagation
model for pattern identification and prediction applications
[19, 44]. ,e architecture of the network displays the se-
lection of the number of hidden layers and nodes that go
with each hidden layer. Nonlinear transfer activation
functions in the hidden layer enable the model to detect the
nonlinearity and complexity between the input and output
variables. ,e selection of the number of nodes is purely
based on an iterative process, affects the convergence, and
determines the performance of the ANN model. Predicted
results associated with the number of nodes include high
errors (i.e., compromised model) for fewer nodes and
overfitting with poor generalization capacity for too many
nodes [21].

In this study, the training of the ANN algorithm in a
single hidden layer starts first with one node, and then,
extends sequentially up to thirteen nodes to select the op-
timal. ,e training avoids overfitting utilizing stopping
criteria based on a maximum number of one million steps,
and a low error of 0.001 [45]. When cross-validation of the
ANN model using the tested dataset begins to show over-
fitting, low error measurement, and a high coefficient of
determination between estimated and observed values, the
ANN model is considered to be optimal. After detection of
the optimal model, the extended training process confirms
the convergence at the global minimum rather than a local
minimum.With the aid of the backpropagation that is a very
common optimization algorithm in the feed-forward neural
network, optimal weights selection is ensured [46]. ,e
optimal ANN model used in this study has 4 nodes in the
input layer, 10 nodes in the hidden layer, and one node in the
output layer (Figure 3).

An input parameter used for the ANN model is the
applied energy AE normalized in terms of the cross-sectional
area of the tamper which can be calculated as:

AE �
Nd · Wt · Hd

Ae · At

, (4)

where Nd � number of drops of the tamper per phase,
Wt �weight of tamper, Hd � drop height, Ae � influence area
of each impact point, where Ae � s2, s� spacing between
tamper drops, and At � cross-sectional area of tamper.

Data were transformed for ANN modeling by scaling
(i.e., Iscaled) within a range of 0.1 and 0.9 using the following
equation:

Iscaled � 0.1 +
Iunscaled − Imin

Imax − Imin
×(0.9 − 0.1), (5)

where Imin and Imax are the minimum and maximum values
of the unscaled dataset (i.e., Iunscaled), respectively. ,is

particular range was selected because it is consistent with the
logistic function which was the activation function used in
this ANN model. Scaling also ensured early convergence as
well as the efficiency of the learning process but subse-
quently, the scaling process is reversed for the predicted
values after training and testing to derive their unscaled
values.

3.4. Validation of Models. For comparison of accuracies
between geostatistics and machine learning spatial inter-
polation models, this study employs leave-one-out cross-
validation (LOOCV). In LOOCV, just one sample of the
whole dataset is used for testing, while the rest of them is
used for training. ,is means that as the prediction based on
the testing set is done all the time, only one sample from the
dataset is used. LOOCV in actuality is a kind of k-fold cross-
validation where k� the total number of data. In the case of
the artificial neural network ANN, a 10-fold cross-validation
CV was applied, and the model with the smallest RMSE was
selected for further analyses as in this case it fully represents
the training and testing data characteristics [47]. To reduce
bias, the dataset was divided into 10 folds at random. For a
total of 10 training and testing iteration instances, a distinct
single fold or subset was used as the testing set while the
remaining folds were utilized as the training set. ,e metrics
of accuracy MOA used in this study for assessing the pre-
dictive accuracy of the models involve the mean absolute
error MAE, coefficient of determination r2, root mean
square error RMSE, and mean bias error MBE.

3.5. Degree of Ground Improvement. ,e assessment of the
degree of ground improvement DI before and after the
dynamic compactions uses average N values as follows:

DI �
Nafter − Nbefore

Nbefore
, (6)

where Nafter is the average N values after the dynamic
compaction; and Nbefore is the average N values before the
dynamic compaction. Further analyses use DI results in
ANN modeling to assess the site improvement in terms of
the bearing capacity.

4. Results and Discussion

4.1. Semivariogram Modeling. Figure 4 shows the experi-
mental semivariograms of raw and normal score trans-
formed bearing capacities after the dynamic compaction
fitted using three theoretical semivariograms: exponential,
Gaussian, and spherical. ,e normal score transformation
(NST) is a data transformation technique that converts data
into a normal distribution [15, 48]. ,is is achieved by
ranking the dataset’s values from lowest to highest and
comparing them to comparable normal distribution rank-
ings., ,e range of all theoretically-fitted semivariograms
was 45-to-100m, suggesting a reasonable spatial correlation
given the size of the area under consideration. Furthermore,
the low nugget values in this study imply that any pair of data
points separated by very small lags have minimal variation.
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Outside of the range, all semivariograms show both negative
and positive correlations as expected for the decline in
autocorrelation with distance.

Based on the criteria of maximum coefficient of deter-
mination r2 and lowest MAE and RMSE (Table 1),
Figure 4(a) shows that the exponential model seems to be the
best match with the experimental semivariogram. For the
normal score-transformed bearing capacity, the same cri-
teria were applied to identify theoretical exponential sem-
ivariogram to be the best fit (Figure 4(b)). Table 1
summarizes the range, partial sill, and nugget values from
the optimized theoretical semivariogram models. ,ese
semivariogram parameters were used to determine spatial
estimation weights for geostatistical interpolations and
simulations for unsampled locations [15]. ,e bold text in
Table 1 highlights the optimal theoretical semivariogram
with their measures of accuracy and semivariogram pa-
rameters required for semivariogram-based spatial inter-
polations and simulations.

4.2. Geostatistical Interpolations and Simulations

4.2.1. Cross-Validation. Figure 5 presents the leave-one-out
cross-validation (LOOCV) plots for comparison between
the geostatistics predicted and empirical-based bearing ca-
pacities after dynamic compaction. ,e predicted bearing
capacity after dynamic compaction is obtained using the
ordinary kriging (OK) and sequential Gaussian simulation
(SGS) (note: empirical-based bearing capacity after dynamic
compaction is computed using (1)). ,e ordinary kriging
model provides a relatively higher forecast for the bearing

capacity, according to a general comparison of the two
LOOCV plots in terms of their measures of accuracy
(MOA). Further details, ordinary kriging has a higher value
for the coefficient of determination r2 value and lower error
values captured in MAE and RMSE in comparison to se-
quential Gaussian simulation (Table 1). Although ordinary
kriging shows a higher r2 value, both models do not show
significant differences in their estimation. Sequential
Gaussian simulation SGS is commonly used to address the
smoothing effect in the kriging. ,e two models are more
similar but SGS can forecast a dataset with a distribution
range closer to the original dataset. In particular, SGS rather
than kriging performs better to distinguish small charac-
teristics [49].

Table 2 presents the summary statistics for bearing ca-
pacities predicted using ordinary kriging OK and sequential
Gaussian simulation SGS and the empirical-based equation
after dynamic compaction together with the measure of
accuracy MOA obtained from LOOCV analyses. Note that
the RMSE and MAE describe the prediction accuracy of the
estimated values for OK and SGS while the mean bias error
MBE assesses the tendency to overestimate or underesti-
mate. SGS has the larger MBE in comparison to OK; yet,
both models have small positive mean bias error values near
zero, indicating a minor propensity to overestimate. ,ere
seems to be a negligible difference in mean values for both
models and the raw bearing capacity data after the dynamic
compaction. However, the standard deviations for both
models are less than that of the raw data. ,is observation
implies that estimated values have less variance relative to the
raw data. ,e narrow LOOCV range of predicted values
highlights the smoothing effect of ordinary kriging as shown
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Figure 3: Architecture of optimal ANN model for degree of improvement DI prediction.
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in Table 2 [50]. ,e LOOCV range is 248.03-to-351.98 kN/m2

for OK, 235.83-to-365.94 kN/m2 for SGS, and 237.74-to-
368.91 kN/m2 for empirical-based bearing capacity after the
dynamic compaction. When compared to OK, SGS predic-
tion is clearly closer to the empirically estimated bearing
capacity utilized as the raw data for spatial interpolation. ,is
shows that SGS, rather than OK, predicts values closer to the
raw data’s real range, as SGS accounts for the smoothing
effects common to kriging techniques such as OK [49, 51].

4.2.2. Spatial Distribution Maps. Figure 6 displays the
spatial distribution of estimated bearing capacity after the
dynamic compaction using the geostatistical interpolation
and simulation models. Each row in Figure 6 (i.e., a and (b)
has three plots describing the estimated bearing capacity
map, prediction error map (i.e., uncertainty estimated using
the standard deviation from the mean), and probability
distribution function PDF bar plots for raw data overlaid
with the spatial prediction of bearing capacity after dynamic
compaction. Both OK and SGS methods similarly demar-
cated that: (1) lower bearing capacities are anticipated on the
right side compared to the center and the left-hand side areas
and (2) higher bearing capacities appear in the extreme
upper left corner and lower central areas (see the left column
in Figure 6). In addition, the prediction uncertainty for OK
and SGS methods decreases significantly near the sampled
points suggesting that the existing conditions of the site must
have affected the prediction maps (middle column in Fig-
ure 6). By adding interpolated values to the original or raw
dataset for further interpolations, SGS overcomes the
smoothing effects in kriging estimations as seen in the clear
demarcations of smaller details [15, 49]. ,e probability
distribution function PDF bar plots for both OK and SGS
reveal a normal distribution similar to the empirical-based
bearing capacity after dynamic compaction used as the raw

data for spatial interpolations (right column in Figure 6).
,is observation implies that the distribution of estimated
bearing capacity (see third plots to the right of Figures 6(a)
and 6(b)) was influenced by the raw data used for OK and
SGS modeling [15, 49].

4.3. Machine Learning Spatial Interpolation (ML-SI). ,is
study uses the random forest (RF) as the machine learning
spatial interpolation ML-SI model. ,ere are three RF models
such as RFC using coordinates, RFVD using vector distances,
and RFNO using nearest observations and their distances. For
the RFC model, the input parameters are the X- and Y-co-
ordinates of the study area where the desired target value is
the bearing capacity after the dynamic compaction. By
contrast, the development of RFVD and RFNO models uses
colinear variables. ,e RFVD uses distance vectors while
RFNO uses near observations of empirically calculated
bearing capacity after dynamic compaction with their dis-
tances from the interpolation point to enable a better learning
process of spatial autocorrelation [39, 40].

4.3.1. Cross-Validation. Figure 7 shows the leave-one-out
cross-validation LOOCV plot for the threeML-SI models. In
general, there is a linear trend in predicted vs. empirical-
based bearing capacities after the dynamic compaction; yet
the three models tend to over and underestimate the bearing
capacity after dynamic compaction around BC ∼ 300 kN/m2.
Clearly, the deviation of predicted bearing capacity after
dynamic compaction from the 1-to-1 line varies with the
model. Table 3 shows the summary statistics for bearing
capacities predicted using machine learning spatial inter-
polation ML-SI and the raw data (i.e., empirical-based
bearing capacity after dynamic compaction) together with
the measure of accuracy MOA obtained from LOOCV
analyses. Based on the mean and standard deviation values
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Figure 4: Experimental semivariograms in the horizontal plane fitted with three theoretical semivariograms such as exponential, Gaussian,
spherical models: (a) Original or raw bearing capacities: and (b) Normal score transformed bearing capacities.
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shown in Table 3, the ML-SI projected values statistically
demonstrate strong similarities with the empirical-based
bearing capacity dataset, resulting in a reliable estimation of
bearing capacity after dynamic compaction. Overall, the low
positive values of the mean bias errorMBE indicate that ML-
SI tends to slightly overestimate the raw data. In addition,
RFVD has the biggest LOOCV range followed by RFNO,
and the least range was produced by RFC relative to the
empirical-based bearing capacity used as the raw data for
ML-SI.,e forecasts of RFVD are themost similar to the raw
data, followed by RFNO, and finally RFC.

According to the RMSE, MAE, and r2 values reported in
Table 3 for each ML-SI model, the RFNO appears to perform
best in contrast to the RFC and RFVD, with RFVD performing
better than RFC, therefore making RFC the least spatial pre-
dictor of bearing capacity after dynamic compaction. In terms
of accuracy measures (RMSE, MAE, and r2), the three ML-SI
models tend to surpass the two geostatistical models (Figures 5
and 7; Tables 2 and 3). ,ese three models are compared in
terms of their LOOCV findings of the ML-SI to aid in the
selection of the optimal ML-SI.

4.3.2. Spatial Distribution Maps. Figure 8 shows estimated
bearing capacity maps and other inferential plots developed
using the three ML-SI models. Each row in Figure 8 (i.e., a, b,
and c) involves three plots and describes a map of estimated
bearing capacity after dynamic compaction, a prediction
error map, and a PDF bar plot of estimated bearing capacity
overlaid with the PDF bar plot of the empirical-based
bearing capacity after dynamic compaction.

,e first plot in Figure 8(a) shows that blocky features as
delineated by the contour lines characterize the spatial
distribution of the bearing capacities estimated by RFC.
Higher bearing capacity values prevail in the left-hand side
to the central part of the site while relatively lower appear in
the right-hand side region. ,e blocky pattern-dominant
RFC prediction map successfully displays the spatial dis-
tribution of bearing capacity, yet this map does not ensure
the adequate prediction of realistic spatial data distribution.
,erefore, the use of this model requires further analyses to
capture the autocorrelation in the site via the introduction of
additional correlated covariates or geostatistics as in ML-
geostatistics hybrid models [39]. ,e prediction error for

Table 1: Parameters and metrics of accuracy derived from theoretically-fitted experimental semivariograms.

Data type ,eoretical
semivariogram model Nugget Partial

sill
Range
(m)

Mean absolute
error, MAE

Coefficient of
determination, r2

Root mean square
error, RMSE

Raw data
Exponential 0.000 1125.319 45.556 768.688 0.950 792.365
Gaussian 318.944 674.951 50.997 761.149 0.935 785.332
Spherical 101.969 908.993 93.135 787.329 0.932 815.586

Normal
score

Exponential 0.016 1.146 45.534 0.059 0.883 0.073
Gaussian 0.332 0.730 50.924 0.061 0.874 0.078
Spherical 0.195 0.885 107.856 0.062 0.868 0.080

,e bold text in Table 1 highlights the optimal theoretical semivariogram with their measures of accuracy and semivariogram parameters required for
semivariogram-based spatial interpolations and simulations.
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Figure 5: Leave one out cross-validation (LOOCV) results of geostatistical models. ,e predicted bearing capacity BC after dynamic
compaction (DC) is obtained using: (a) Ordinary kriging (OK) and (b) Sequential Gaussian simulation (SGS). Empirical-based bearing
capacity after DC is computed using equation (1).
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RFC was generally low over the whole site, with a few pe-
ripheral locations having larger errors (second plot in
Figure 8(a)). ,e estimation error for RFC is different from
the conventional spatial prediction error map [15]. From the
third plot of Figure 8(a), the PDF bar plot of RFC-estimated
bearing capacities is similar to the PDF bar plot for em-
pirical-based bearing capacity which indicates the influence
of the raw data which is comprised of the empirical-based
bearing capacity on the predicted values.

,e bearing capacity map developed by RFVD was able
to delineate the relatively high, medium, and low bearing
capacity zones as shown in the first plot of Figure 8(b), and
the prediction error for RFVD indicates generally low
prediction error values in most places of the map except for
the boundaries between low, medium, and high bearing

capacity zones, indicating that further field data should be
collected to confirm this characteristic at these locations if it
is of critical importance (second plot in Figure 8(b)).
According to the RFVD estimated FBC PDF bar plots
overlaid with the PDF bar plot for the raw data (right column
in Figure 8(b)), RFVD estimates more values similar to the
raw data.

RFNO was able to demarcate the site into three clear
zones of high, medium, and low estimated bearing capacities
as shown in the first plot of Figure 8(c). Also, based on the
second plot in Figure 8(c), RFNO shows high prediction
errors generally across the site. ,e PDF bar plot of the
estimated bearing capacity by RFNO suggests that most of
the predictions were biased towards the mean value. ,e
predicted FBC is also likewise a Gaussian distribution, but

Table 2: Summary statistics and metrics of accuracy from OK and SGS LOOCV.

Description Type Mean
(kN/m2)

Standard
deviation
(kN/m2)

LOOCV range
(kN/m2)

Root mean square
error, RMSE
(kN/m2)

Mean absolute
error, MAE
(kN/m2)

Mean bias
error, MBE
(kN/m2)

Ordinary kriging
OK Linear 299.46 21.80 248.03–351.98 22.62 18.43 0.67

Sequential Gaussian
simulation SGS Non-linear 300.45 21.70 235.83–365.94 23.69 18.71 1.65

Empirical-based
bearing capacity — 299.00 30.51 237.74–368.91 — — —
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Figure 6: Spatial distribution maps for estimated bearing capacity after DC, prediction error for bearing capacity after DC, and probability
distribution function (PDF) for geostatistical models after the dynamic compaction. Results are obtained using: (a) Ordinary kriging (OK)
and (b) Sequential Gaussian Simulation (SGS). Note. ,e location of the SPT-N boreholes after DC is indicated with black circular markers.
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the mean value has a high density in comparison to the raw
data which is the empirical-based bearing capacity (third
plot in Figure 8(c)). ,is illustrates that the RFNO-predicted
bearing capacity after dynamic compaction may deviate
from the empirical-based bearing capacity in terms of sta-
tistical characteristics.

Machine learning spatial interpolation (ML-SI) can, in
general, predict the spatial distribution of unsampled
geographical data. Based on the spatial maps and PDF bar
plots of spatial interpolated bearing capacity after dy-
namic compaction, the RFVD is judged to be the best
model since its map is nonblocky, unlike the RFC, and it is
not excessively skewed towards the mean, as in the PDF

bar plot of RFNO (Figure 8). Although RFC has blocky
properties that make it inappropriate for map modeling, it
might be used in conjunction with other computational
models for further research [39].

4.4. Artificial Neural Network ANN Modeling. Since Artifi-
cial Neural Network ANN is a commonly applied AI al-
gorithm in geotechnical engineering that has produced
reliable and robust predictions, this study employs ANN to
predict the degree of ground improvement (DI) after the
dynamic compaction by using the projected coordinates (X,
Y), applied energy AE normalized in terms of the tamper
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Figure 7: Cross-validation results - Machine learning-based predicted bearing capacity (BC) after dynamic compaction (DC) versus
empirical-based BC after DC. ,e bearing capacity prediction uses machine learning spatial interpolation models. (a) Random forest using
coordinates (RFC), (b) random forest using vector distances (RFVD), and (c) random forest using the nearest observations and their
distances (RFNO).
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cross-sectional area, and average SPT-N values before dy-
namic compaction Nbefore. Although measured penetration
resistances before and after the dynamic compactions have
traditionally been used to evaluate the efficiency of the
dynamic compaction, the evaluation method may add some
uncertainty because the locations of measured penetration
resistances before and after dynamic compaction are
practically different. ,is section clearly addresses the
challenge abovementioned by utilizing the optimal RFVD to
match empirical-based bearing capacities before and after
dynamic compaction with their estimated counterpart based
on location.

4.4.1. Optimal ANNModel: Architecture. ,e architecture of
the optimal ANN model for DI prediction consists of the
connecting lines between the layers and provides infor-
mation about the optimal connecting weights (Figure 3).,e
black lines represent positive weights whereas the grey lines
indicate negative weights, and the thickness of each con-
necting line corresponds to the magnitude of the weights.
,e thick black line connecting I4 to H2 in Figure 3 suggests
that Nbefore may play a primary role in the ANN model. By
contrast, a mix of both grey and black lines indicates that the
remaining variables such as X, Y, and AE seems to have a
secondary influence on DI prediction with an almost equal
effect.

4.4.2. Training and Testing. Ten distinct iterations were
utilized to train the ANNmodel, with ten randomly sampled
subsets produced by the ten-fold cross-validation technique
for training and testing to avoid bias sampling. Figure 9(a)
shows the root mean square error RMSE for the 10-folds
cross-validation CV. ,e RMSE for training was mostly
lower in comparison to the testing case because the training
set is known to the model whereas the testing set is entirely
new to the model. RMSE for training cases suddenly in-
creased for second iterations and then gradually decreased
with increasing iteration numbers. ,is trend suggests that
the individual characteristics of each training and testing set
can influence the predictions. ,e model at iteration eight
was selected and used as a representative model for further
analyses because the RMSE value is slightly lower compared

to other testing cases as shown in Figure 9(a). ,en,
Figure 9(b) presents the cross-validation CV result for the
estimated and empirical-based degree of ground improve-
ment DI. ,e plot for the testing sets shows a good pre-
diction with a high r2 � 0.93, a low MAE� 0.15, and
RMSE� 0.19. ,is observation implies that the learning
process was successfully carried out without significant
overfitting and underfitting between the predicted and
calculated DI for both the training and testing subsets.

,e statistics of the total training and testing data
enumerated in Table 4 indicate that these randomly unbi-
ased sampled subsets have similar statistics and do not show
remarkable variance from the total dataset. Furthermore, the
feature variables and output which is the degree of ground
improvement after dynamic compaction for total, training,
and testing datasets do not have any significant dissimi-
larities. In fact, the training subset adequately captured
representative characteristics of the total dataset. ,e usage
of a 10-fold CV ensures that the datasets used for ANN
modeling are unbiased and the resulting trained ANNmodel
has a greater generalization ability.

4.4.3. Sensitivity Analyses for ANN Model Variables. A
sensitivity analysis was performed to examine the confor-
mity of the ANN model to the general physical behavior
which occurs in the dynamic compaction process as depicted
in Figure 10. ,e sensitivity analysis assesses the contri-
butions and behavior of a single input variable on the degree
of ground improvement DI while the other independent
variables vary based on predefined quantiles. Once again, the
input variables studied in the ANN model involve X- and
Y-coordinates applied energy AE, and averaged SPT N value
before dynamic compaction. ,ose variables were divided
into six splits based on their minimum and maximum
values, and also 0.2, 0.4, 0.6, and 0.8 quantiles across their
range. By this approach, the variation of the degree of
ground improvement is examined from lower to higher
quantiles.

Figure 10(a) shows the effect of varying X (i.e., coor-
dinates) on the DI while varying the other explanatory
variables across the quantiles stated above. It can be observed
that DI generally decreased with increasing quantiles of the
other explanatory variables irrespective of the magnitude of

Table 3: Summary statistics for bearing capacities after dynamic compaction predicted using the machine learning spatial interpolationML-
SI and the empirical-based equation together with the measure of accuracy MOA obtained from LOOCV analyses.

Description Mean
(kN/m2)

Standard
deviation
(kN/m2)

LOOCV range
(kN/m2)

Root mean
square error,

RMSE (kN/m2)

Mean absolute
error, MAE
(kN/m2)

Mean bias
error, MBE
(kN/m2)

Coefficient of
determination, r2

RF coordinates
RFC 300.00 28.53 250.55–351.86 19.35 15.58 1.57 0.71

RF vector
distances RFVD 299.00 28.05 242.29–351.66 15.83 12.33 0.00 0.81

RF nearest
observation
RFNO

299.00 24.81 244.19–348.06 12.41 10.42 0.42 0.91

Empirical-based
bearing capacity 299 30.51 237.74–368.91 n/a n/a n/a n/a
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the value of X (regardless of the splits). Also, at a constant
quantile for the other explanatory variables, the DI reduced
for increasing values of X, implying the ANNmodel was able
to detect a trend in conjunction with location and therefore
making provision for the contribution of the site-specific
characteristics in the model. Similarly, the effect of the Y
input variable on DI as shown in Figure 10(b) indicates little
or no change in DI for most of the Y splits. Nevertheless,
split 1 shows the highest DI values. ,is pattern indicates
that the ANNmodel for low Y values was able to capture the
impacts of the site’s geographical locations in the estimation
of the DI. ,e X and Y input variables for projected co-
ordinates revealed a slight trend (Figures 10(a) and 10(b)),
implying that the ANN model identified a relationship
between these input variables and DI, which might be
thought of as spatial characteristics describing site-specific
information.

Since the maximum DI is generally recorded at the
initial impact of the tamper (Figure 10(c)), split 1 which
indicates the first tamper drop recorded the highest DI for
all cases with increasing explanatory quantiles. Also, with
an increase in the explanatory quantiles, an increment in
DI is observed for the first two splits of AE as shown in
Figure 10(c). ,is observation implies that based on the
site-specific conditions and at the initial stages of dynamic
compaction higher DI can be recorded. AE splits 3 to 6
which are of higher energy show relatively no change in
the DI with increasing other explanatory variables, sug-
gesting that the higher energy dynamic compaction can
result in lower gains [7, 52].

According to the results of the ANN sensitivity plot for
Nbefore in Figure 10(d), the biggest DI was recorded at the
initial application of the tamper, regardless of the mag-
nitude of Nbefore, and the lowest DI occurred at the highest
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Figure 8: Spatial distribution maps for estimated bearing capacity after DC, prediction error for bearing capacity, and probability dis-
tribution function (PDF) for machine learning spatial interpolation models after the dynamic compaction. Results are obtained using (a)
random forest using coordinates (RFC), (b) random forest using vector distances (RFVD), and (c) random forest using the nearest
observations and their distances (RFNO). Note. ,e location of the SPT-N boreholes after DC is indicated with black circular markers.
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values of the other explanatory variables.,is is consistent
with dynamic compaction’s physical and intuitive pro-
cess. It also suggests that, regardless of the Nbefore split, the
biggest gains in a dynamic compaction process are
recorded at the beginning, and after a certain number of
tamper drops, smaller improvements are recorded due to
progressive increase in soil strength during the dynamic
compaction process [7]. In observing the general behavior
of each explanatory variable, it can be deduced that the
Nbefore appears to be the most sensitive parameter as it
shows significant changes with increasing quantiles of the
other explanatory variable. ,e other parameters show

lesser variations compared to Nbefore. ,is trend suggests
that Nbefore is the most influential explanatory variable on
DI prediction.

4.4.4. Variable Importance. Figure 11 shows the impor-
tance of the independent variables. Clearly, Nbefore has the
biggest influence on the model, which is consistent with the
intuitive dynamic compaction process, suggesting that the
initial site conditions in terms of soil strength have a greater
impact on the result of the dynamic compaction. Note that
lower strength characteristics of loose soils show greater
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Figure 9: Cross-validation plots for observed and predicted degree of ground improvement (DI) using ANN: (a) Root mean square error
RMSE plot for training and testing subsets under 10-fold cross-validation, and (b) cross-validation plot for training and testing of the eighth
fold. CV utilizing training subset resulted in a mean absolute error MAE� 0.08, coefficient of determination r2 � 0.97, and root mean square
error RMSE� 0.11 and CV using testing subset resulted in an MAE� 0.15, r2 � 0.93, and RMSE� 0.19.

Table 4: Summary statistics of total, training, and testing subsets used for ANN modeling.

Model variable Dataset Minimum Maximum Range Mean Standard deviation

X-coordinate (m)
Total 109 302 193 214.34 56.11

Training 109 302 193 215.52 58.94
Testing 175 250 75 204 28.23

Y-coordinates (m)
Total 11 198 187 116.56 59.23

Training 11 198 187 120.23 59.09
Testing 13 172 159 84.57 59.28

Applied energy AE (MJ/m4)
Total 0.09 0.21 0.12 0.14 0.03

Training 0.09 0.20 0.11 0.14 0.03
Testing 0.11 0.21 0.1 0.16 0.04

Average SPT N-values before dynamic compaction Nbefore

Total 9.17 31.75 22.58 16.97 5.08
Training 9.17 31.75 22.58 16.98 5.1
Testing 10.80 26.13 15.33 16.86 5.67

Degree of ground improvement, DI
Total 0.19 3.12 2.93 1.33 0.65

Training 0.19 3.12 2.93 1.32 0.65
Testing 0.45 2.47 2.02 1.44 0.76
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gains from the dynamic compaction than soils with higher
bearing strength. ,e input parameter X is the next in-
fluential followed by Y, and then, lastly by the AE. Once
again, this occurrence is in line with the physical process of
the dynamic compaction as the site-specific characteristics
can be located using their coordinates. As a result, it is not
surprising that the ANN model captured the relevance of
the input variables in this way. Furthermore, AE has a
limited influence on the dynamic compaction process since
very small improvements are gained for soils with higher
bearing strength regardless of the AE employed [7]. In
addition, the site conditions serve as a basis for the ap-
propriate selection of AE, making the Nbefore the dominant
parameter relative to the rest.

4.4.5. ANN Model Results: Spatial Distribution of Degree of
Ground Improvement (DI). Figure 12(a) presents a spatial
distribution of the degree of ground improvement (DI)
obtained using the ANN ML-SI model. Clearly, most of the
highest gains due to the dynamic compaction were achieved
in the central part of the site, presuming relatively lower soil
strength conditions before the dynamic compaction.
Figure 12(b) shows the spatial distribution of the bearing
capacity after the dynamic compaction obtained from the
DI. Presumed bearing capacity after dynamic compaction
can be distinguished predominately into three distinctive
zones: the right-hand side is characterized by relatively low
bearing capacities whereas the central parts to portions of
the left-hand side regions are characterized by medium
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Figure 10: Sensitivity analyses of ANN model - Relationship between degree of improvement DI and explanatory variables. (a) X-co-
ordinate, (b) Y-coordinate, (c) Applied energy (AE), and (d) Averaged SPT N value before dynamic compaction.
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Figure 12: Results fromANNmodel: (a) exhaustive map for the degree of improvement (DI) due to dynamic compaction interpolated using
ANN model, (b) Bearing capacity after dynamic compaction deduced from predicted degree of ground improvement, and (c) PDF plots of
ANN generated bearing capacities after DC overlaid with PDF of the raw data of bearing capacities after DC.Note.,e location of the SPT-N
boreholes after DC is indicated with black circular markers.
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bearing capacities. In addition, the upper and lower portions
of the left-hand side are characterized by relatively high
bearing capacity.,e contour lines of the bearing capacity in
Figure 12(b) aids in the identification of high, medium, and
low zones of bearing capacities after dynamic compaction.
PDF bar plot for predicted bearing capacity after the dy-
namic compaction in Figure 12(c) is more comparable to the
PDF of the raw data-bearing capacities.,e ANNmodel was
trained to simulate the dynamic compaction process to
estimate the degree of improvement DI, which may be used
as a parameter for dynamic compaction efficacy. In addition,
the ANNML-SImodel employed in this research predicts DI
well and may be used to create bearing capacity maps.
,erefore, the unique prediction model used in this study is
beneficial because it can produce the spatial distribution of
estimated bearing capacity after the dynamic compaction
from its target variable, DI, which is important for the
dynamic compaction evaluation.

5. Conclusion

,is study aims to assess the efficiency of dynamic com-
paction using geostatistics methods such as ordinary kriging
(OK) and sequential Gaussian simulation (SGS), random
forest (RF), and artificial neural network (ANN). ,e geo-
statistics and random forest methods were used to obtain
spatial interpolation of bearing capacity after the dynamic
compaction.,e artificial neural network (ANN) also allows
the prediction of the spatial distribution for the degree of
ground improvement (DI) attained after dynamic
compaction.

,e OK outperformed the SGS according to the LOOCV
MOA results of the two geostatistical models. After dynamic
compaction, the smoothing effect of OK resulted in a lower
range of expected bearing capacities, whereas SGS resulted
in a larger range of predicted bearing capacities that were
closer to the raw data (i.e., empirically calculated bearing
capacities).

In general, all ML-SI models outperformed geostatistical
models. Furthermore, ML-SI modeling may be utilized to
address the smoothing effect in kriging. Based on the
LOOCV approach, the best ML-SI model (RFVD) appeared
to be reliable and robust, with high prediction accuracy
indices (RMSE� 15.83 and MAE� 12.33).

,e results of the ANN ML-SI trained model based on
the cross-validation showed that the predictive model for the
response variable DI is reliable and satisfactory. A bearing
capacity map after dynamic compaction was developed
based on the ANN ML-SI-based predicted DI. ,e com-
parison between the maps generated by the ML-SI models
indicates the additional covariates captured in ANN ML-SI
can contribute to a better prediction of bearing capacities.

According to the variable importance evaluation of the
ANN model, the average SPT-N value before dynamic
compaction (Nbefore) appeared to be the most significant
variable whereas the applied energy (AE) contributed the
least in forecasting the degree of improvement by dynamic
compaction. Furthermore, in the ANNDI prediction model,
the X- and Y-coordinates played an intermediary role

between the Nbefore and AE variables. ,is unique technique
(i.e., ANN model) can be used to assess the efficacy of
dynamic compaction and to deduce a final bearing capacity
map after or during the dynamic compaction.
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