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 is research demonstrates the results of an investigation into the California bearing ratio (CBR) of granular soils from Qassim
region, Saudi Arabia, using multilinear regression (MLR), pure quadratic (PQ) models, and gene expression programming (GEP)
methods utilized to develop mathematical models for estimating the CBR based on basic soil index properties. In this study,
samples were collected from di�erent borrowing pits in the Qassim area. Forty-three samples of soil were taken and transferred to
a laboratory for examination. Seven multilinear regressions and seven PQ models were investigated, while four GEP models were
made.  e selection of each model variable depends on soil indices, grouping into grain size distribution, Atterberg limits, and
compaction parameters. e results of this analysis showed that the PQmodel had a higher accuracy [coe�cient of determination
(R2) = 0.89, root mean square error (RMSE) = 16.006, uncertainty (U95) = 16.17, and reliability = 57%] than the multilinear
regression model, which has a lower accuracy model [R2 = 0.811, RMSE= 20.791, U95 = 15.569, and reliability = 51%].  e best
GEP model yields [R2 = 0.776, RMSE= 22.552, U95 = 15.787, and reliability = 53%]. Furthermore, sensitivity analysis was con-
ducted to distinguish the in�uences of di�erent input variables on CBR; it was found that ¡nes percentage (F200), maximum dry
density (MDD), and optimum moisture content (OMC) are the most in�uential variables.

1. Introduction

Saudi Arabian road network consists of 73,171 km. Saudi
Arabia has a vast and well-developed transportation net-
work. Roads carry approximately 65 percent of freight and
80 percent of passenger transportation [11].  e total
number of automobiles in Saudi Arabia exceeds 12 million,
and the growth rate of the number of vehicles is approxi-
mately 5% per annum over the last ¡ve years [20]. Geo-
technical engineering is one of the greatest crucial subjects in
the initial stages of infrastructure planning and design,
owing to the concept that poor geotechnics might conse-
quence in unnecessarily high costs if not addressed properly.
 e CBR value is a critical parameter in the structural design
of pavements.  e CBR value may be determined directly in
the laboratory using AASHTO T 193 and ASTM D 1883.

Two broad correlations for predicting CBR were also
presented in the Guide for Mechanistic and Empirical

design (2001).  e models are constructed using empir-
ical parameter data for the following soils; D60 (passing
60% diameter), P200 (percent passing sieve no. 200; US
sieve), and PI (plastic index). PI and % passing no. 200 US
sieve (or 0.075mm size sieve) are two parameters that are
included in the suggested model for plastic ¡ne-grained
soils [15].  e recommended equation is

CBR �
75

1 + 0.728F200PI
, (1)

where F200 is passing no. 200 US sieve (%).
PI is the plasticity index. For the nonplastic coarse-

grained soil, the proposed equation is

CBR � 28D0.358
60 . (2)
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Determine the CBR value of each soil sample that de-
mands at least four days in the laboratory. Historically, civil
engineers have struggled to determine a representative CBR
value for pavement design [36]. *e CBR value varies
according to the kind of soil and its various qualities. Due to
the variability in soil engineering features, conducting this
experiment with soil samples gathered from a few places
cannot be used for the entire road path. To overcome this, a
substantial number of specimens must be collected for
testing, which causes the method to be costly and time
consuming. Black made the first attempt to predict CBR in
1962 [13]; his work depends on remolded soil and its friction
angle. It is also shown that the suction of such a remolded
soil and its true angle of friction can be inferred from data on
the liquid limit, plastic limits, and water content of the soil.
Agarwal and Ghanekar predicted the CBR deepening on the
grain size distribution as well as the consistency parameters,
specifically the PI [2].*ese attempts were followed by many
subsequent attempts using more advanced methods of
prediction, each of these attempts expresses the classifica-
tion, considerable types of index properties, and unique
study area samples [3, 5, 7]. CBRwas determined by Yildirim
and Gunaydin [35] utilizing soft computing; they used soil
index properties and compaction properties of subgrade soil
in Turkey as input parameters. *eir work revealed a high
correlation (R2 � 0.80–0.95) employing soil indices. *ey
recommend using the provided formulas in the early stages
of the design process [35]. Kumar (2014) proposed a linear
regression model for ML and MI soils on the basis of the
variables PI, liquid limit (LL), plastic limit (PL), MDD, and
OMC, for ML and CBR and PI have an inverse linear re-
gression relation [32]. Several linear regression models for
estimating soaked CBR in clay soils are compared by
Ramasubbarao and Siva [26, 26]. Tenpe et al. constructed
several mathematical models to predict CBR utilizing a
variety of soil parameters as independent variables, with the
assistance of the GEP and ANNmodels.*ey also conducted
comparative research to demonstrate that there is little
difference between the findings acquired from GEP and
those from ANN [6]. Numerous scholars have presented
such models [6, 29, 34], but there is still a knowledge gap
concerning the assessment and comparison of their pre-
dictive capability. Aleksandra et al. investigated the effects of
compaction parameters, namely MDD and OMC on CBR
[10].

Interestingly, no correlation formula has been created
utilizing the soil of the Qassim area. *e region’s geological
formations are divided into two large landmasses: the
Arabian Shield in the west and the Arabian Shelf in the east.
*e Arabian Shield is made up of igneous and metamorphic
rocks, while the Arabian Shelf is made up of sedimentary
rocks. *e weathering products of these rocks have gener-
ated the soils. Predicting the value of the CBR test would
shorten the time from 96 hours to minutes, achieving such a
goal would reduce the overall cost of projects in various
ways. Al-Qassim region is one of the most important lo-
gistical areas. Since at present, there is no published work
correlating soil properties and CBR in the Qassim area and
its environs. So that the purpose of the study is to determine

if GEP andmultivariate regression approaches are applicable
to estimate CBR of flexible pavement subbases and subbase
layers in the Qassim area.

1.1. SamplesCollection. Qassim is a region of predominantly
desert nature with a multigeological nature, and the so-
called Arab Shield is located in the southwestern part of it. It
is located in the middle of the Kingdom of Saudi Arabia [4].
Qassim is considered a vital region linking the north with the
south and the west with the east, thus heavy carriers pass
through its roads. In Saudi Arabia, roads are built in ac-
cordance with the Ministry of Transportation [8] (MOT,
1998) regulations. Tables 1 and 2 present the gradation of the
subbase layer and the limit of indices. During the building of
new roads in Qassim area, samples were taken from various
places and borrowed pits. *ese samples were sieved to find
the percentage of aggregate (gravel) and the percentage of
aggregate passing through sieve no. 4 (4.75mm) and were
retained on sieve no. 200 (0.075mm) (sand) and the per-
centage passing through sieve no. 200 (0.075mm) (fines).
*e consistency tests were conducted on fine soil to de-
termine the liquid and plastic limits. *e relationship be-
tween moisture content and dry density was then
determined by the proctor modified test. *en, each sample
was made at OMC and at different densities, with the one
with the highest dry unit weight being tested to see what its
CBR was for each unit weight.

1.2. ExperimentalWork. In this research, to study the factors
which explain CBR characteristics and its prediction, soil
samples were gathered from 43 borrowed pits in the Qassim
area as shown in Figure 1, with a different number of
specimens taken from each location.*e test method used to
determine the CBR is given by MOT (1998) specifications, in
which it complies with MRDTM: 213 ASTM D 1883-
AASHTO 193 [31].*e compaction parameters are found in
accordance to ASTM D 698–1557, AASHTO T99-T180. *e
particle size distribution shall follow MRDTM: 204.
MRDTM: 208/209 was used to conduct the test of LL, PL,
and the PI. *ese limits were determined on the soil samples
having a fine percentage greater than 5%. Table 3shows that
in general the average numbers of fines (silt and clay), sand,
and gravel were 15.32%, 28.3%, and 56.421%, respectively.
*e averages of LL, PL, and PI were 7.8%, 6.18%, and 1.62%,
respectively, while the average water content OMC was
7.73%, and the average MDD was 2.15 g/cm3.

AASHTO classification system [(ASTM designation
D-3282; AASHTO method M145)] was used to classify the
soil samples, and it was found that 34 samples are classified
as A-1a and A-1-b, and ten samples were classified as A-2.

Grain size analyses were performed firstly to classify the
soil in the studied area and to quantify the number of fines
[F200], sand percent [S], and gravel percentage [G]; grain size
distribution curve is shown in Figure 2.*en after analysis of
all samples, the tests of LLs and plastic limits were con-
ducted; the plasticity chart is shown in Figure 3. *irty
percent of soil samples had a liquid limit larger than zero,
which was classed as inorganic clays of low plasticity to
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medium plasticity and inorganic silt of low compressibility.
*e majority of the samples depicted fall above line A and
below line U.*e existence of soil samples parallel to the line
A on the plasticity chart shows that they have the same
geological origin [19, 30]. Table 3 provides a full statistical
summary of the soil. To see the distribution of the pa-
rameters more clearly, frequency histograms were created
for each parameter in Figure 4.

1.3. Multivariate Regression. Single and multivariate re-
gression analysis are well-known predictive techniques that
are frequently used to construct models for predicting de-
sired output parameters based on specified input factors
such as the physical and mechanical characteristics of rocks
[17]. Single regression studies examine the connections
between input and output variables using a linear, loga-
rithmic power or exponential function. Multivariate re-
gression studies are advantageous when several input
parameters are present in complicated connections, and the
common form of a multivariate regression equation is

CBR � a + 􏽘
n

i�1
bGpi + ε, (3)

where CBR is California bearing ratio (dependent variable).
Gpi is soil index or mechanical (independent variable), n is
the number of variables, bi is the coefficient of regression, a
is the constant, and ε is the error estimate.

CBR will be used as the dependent variable, while the soil
parameters in Table 4 will be used as independent variables
individually, or they will be used as groups of parameters
depending on the relationship between these data and the
correlation matrix as shown in Table 5. In addition, the
selection of input variables of multilinear equations depends
on grouping the soil indices into three categories; the first
one is the grain size distribution, in which the parameters are
gravel percent, sand percent, and fines percent. *e second

category is Atterberg limits, which are LL, PL, and PI. *e
third category is “compaction variables,” which include
“MDD” and optimum water content. *is will help to find
the highest correlation parameters with CBR.

1.4. Multinonlinear Regression. Nonlinear regression esti-
mates the dynamic connection between the dependent
variable and the function. Nonlinear multivariable regres-
sion estimates the interaction between independent and
dependent variables. *ere are various modeling techniques
and regression approaches for specific aspects, especially
when data are limited [17].

It is possible that the greatest association between the
answer and independent variables may be explained by step-
by-step regression. *is algorithmic technique selects the
proper model subsets to filter forward or backward. First,
choose a permanent model and use the model words before
optimizing fitness. *at is, step-by-step regression is a
forward selection procedure that examines the significance
of all prior variables. For variables whose partial square sums
do not meet the minimal requirement, the retroactive ex-
clusion procedure is improved and variables are excluded
one at a time until the minimum condition is met. Step-by-
step regression requires more computations than forward or
backward detailed calculations, but it yields better results
[33]. Scheffe proposed a second-order polynomial for MNR
analysis of mechanical characteristics [21]. MNLR in PQ
forms has been studied.

1.5. Gene Expression Programming (GEP). GEP, which is an
algorithm based on genetic algorithm (GA) and genetic
programming (GP), was first proposed by Ferreira [27]. *e
GEP technique is an integration of two evolutionary strat-
egies that are broadly acknowledged in the scientific com-
munity. *e first approach is called the GA methodology,
and it simplifies complex relationships by depicting them
with linear structures called chromosomes that are of a fixed
length. In addition, the second method is known as GP, and
it makes use of the expression tree (ET) configurations that
may take on a wide range of forms and dimensions [22].
Developing a program code recorded in linear chromosomes
of fixed length, it exhibits some characteristics akin to bi-
ological evolution. GEP’s primary goal is to create a
mathematical function that fits a collection of data supplied
to the GEP model. *e GEP method performs symbolic
regression on the mathematical equation using the majority
of GA’s genetic operators. GEP and GA have some dis-
tinctions. Individuals are shown in GA as symbolic strings of
fixed length (chromosomes), but they are depicted in GP as
nonlinear entities of varying sizes and forms (parse trees),
whereas in GEP, each individual is represented by a fixed-
length string that is used to make ETs of different sizes and
shapes [9]. *e primary GEP process is presented in Fig-
ure 5. Five variables are employed in GEP analysis: function
set, terminal set, fitness function, control parameters, and
stop condition. After encoding the issue into the candidate
solution and specifying the fitness function, a randomly
generated population of viable people (chromosomes) is

Table 1: Ministry of transportation specification limits or grada-
tion of the subbase layer.

Sieve size designation
MOT specification limits (%

passing)
Upper limit Lower limit

2″ 100 100
1 1/2″ 1″ 100 90
1″ 85 55
3/4″ 80 50
3/8″ 70 40
No. 4 60 30
No. 10 50 20
No. 40 30 10
No. 200 15 0

Table 2: MOTspecifications of soil indices for materials of subbase
layer.

Sand equivalent Plasticity index Abrasion loss CBR
25 min. 6 max. 50 max. 50 min.
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constructed and then translated into an ET matching to a
mathematical equation. Following that, the projected values
are compared to the actual ones, and the fitness score for
each chromosome is calculated. *e algorithm is ended
when a suitable fitness score is reached. If this is not the case,

some chromosomes are randomly selected and thenmutated
to generate new generations. *is method is repeated until a
suitable fitness score is produced, at which point noncoding
chromosomal analysis is undertaken to determine the op-
timal solution to the problem [14].

(b)(a)

Figure 1: Location of samples.

Table 3: Descriptive statistics analysis of the tested samples.

Gravel
%

Fines
%

Sand
%

Liquid
limit

Plastic
limit

Plasticity
index

Maximum dry
density

Optimum moisture
content CBR %

Mean 56.421 15.327 28.3 7.8 6.181 1.623 2.15 7.73 89.45
Std. error of
mean 3.028 1.054 2.35 1.841 1.48 0.377 0.0124 0.288 7.37

Std. deviation 19.856 6.91 15.43 12.07 9.7 2.473 0.08134 1.89 48.32
Variance 394.27 47.81 238.17 145.8 94.06 6.12 0.07 3.591 2334.77
Median 63.4 14 19.1 0 0 0 2.157 7 60
Minimum 10.70 5.3 12.63 0.00 0.00 0.00 1.91 5.60 21
Maximum 80.37 28.3 75.8 35.20 28.70 6.80 2.24 16.50 172
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Figure 2: Representative grain size distribution of soil samples.
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1.6. GEP Elements. *e ET and chromosomes are the two
most important components of the GEP.*e chromosome is
made up of one or more genes and it is represented by a
mathematical equation on the genome. To code any
mathematical equation, two bilingual and conclusive lan-
guages named Karva languages (the language of genes and
the language of ET) are utilized, both of which are bilingual
and conclusive. *is property of the GEP is important for
inferring the genotype with more precision than it would
otherwise be possible. *e GEP genes are divided into two
sections, which are referred to as the head and tail. It is
necessary to use the head of a gene, which contains certain
mathematical functions, variables, and constants, for the
encoding of a particular function. However, the tail of a gene
that contains just variables and constants is used as sup-
plemental terminal symbols in addition to the main terminal
symbols. *ese symbols are used in the event that the ter-
minal symbols in the head are insufficient to express a

particular function. Many other functions, such as funda-
mental arithmetic operators, trigonometric functions, and
any other mathematical or user-defined functions, may be
utilized in the head of a gene.

1.7. GEP Operators. *e major operators in GEP are se-
lection, mutation, transposition, and crossover (recombi-
nation), which are all based on natural selection. By using
these operators, the chromosomes may be adjusted to im-
prove the fitness score of the following generation for
survival. *e operator rates, which are specified at the outset
of the model construction, indicate a particular chance of a
chromosome appearing in the model. In general, a mutation
rate of 0.001 to 0.1 is suggested, with the lower limit being
0.001. *e transposition operator and the crossover oper-
ator, on the other hand, are recommended to be 0.1 and 0.4,
respectively [24].
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Table 4: Summary of sample results.

No. Gravel % Fines % Sand % LL PL PI MDD g/cm3 OMC % CBR %
1 72 7.6 20.4 0 0 0 2.185 6.4 123
2 48 20.6 31.4 23.5 19 4.5 2.12 8.4 47
3 68 5.3 26.7 0 0 0 2.15 8.6 114
4 73 7.9 19.1 0 0 0 2.19 6.8 113
5 49.9 21.2 28.9 20.8 15.1 5.7 2.157 8.2 123
6 72.1 9.2 18.7 0 0 0 2.236 6.9 172
7 63.4 20.1 16.5 20.6 16 4.6 2.105 8.4 80
8 43.2 13.4 43.4 0 0 0 2.14 6.7 54
9 75.39 7.5 17.11 0 0 0 2.235 6.6 150
10 15.5 26.9 57.6 0 0 0 2.092 6.5 27
11 40.3 23.2 36.5 0 0 0 2.135 7.3 43.8
12 26.9 19.7 53.4 0 0 0 2.156 7 45.5
13 80.37 7 12.63 0 0 0 2.237 6.8 155
14 62.7 19.8 17.5 34.5 28.7 5.8 2.144 7.3 60
15 10.7 13.5 75.8 0 0 0 2.042 7.7 35
16 76.11 9.4 14.49 0 0 0 2.236 6.9 170
17 75.39 7.5 17.11 0 0 0 2.235 6.6 150
18 62.8 21 16.2 0 0 0 2.128 6.8 51
19 75.65 7.2 17.15 0 0 0 2.23 6.6 150
20 59.9 21.5 18.6 0 0 0 2.147 8.2 45
21 65.7 17.3 17 24.5 18.6 5.9 2.166 8.3 51
22 43.2 13.4 43.4 0 0 0 2.184 6.6 54
23 40.7 15.4 43.9 0 0 0 2.205 6.7 60
24 73.11 9.6 17.29 0 0 0 2.225 7.1 120
25 13.6 24.8 61.6 17.9 15.3 2.6 2.149 7.2 21
26 72.69 8.4 18.91 10.9 8.7 2.2 2.231 6.9 154
27 49.9 21.2 28.9 20.8 15.1 5.7 2.157 8.2 51
28 73.3 8.8 17.9 0 0 0 2.237 5.6 143
29 76.64 9.1 16.26 0 0 0 2.236 6.5 153
30 61.6 19.5 18.9 22 17.2 4.8 2.115 8.8 56
31 71.1 14 14.9 32.1 27.5 4.6 2.156 7.9 48
32 63.8 9.1 27.1 0 0 0 2.236 6.9 170
33 45.1 28.3 26.6 34.2 27.8 6.4 2.125 9.3 49
34 63.4 20.1 16.5 20.6 16 4.6 2.105 8.4 80
35 35.2 25.9 38.92 35.2 28.4 6.8 1.99 10.5 37
36 25.9 24.2 49.9 0 0 0 1.914 16.5 48
37 45.3 19.4 35.3 0 0 0 2.05 10.5 54
38 76.41 6.9 16.69 0 0 0 2.24 6.2 130
39 22.9 24.9 52.2 0 0 0 1.93 11.8 58
40 37.5 21.5 41 18 12.4 5.6 2.05 9.2 33
41 70.95 10.8 18.25 0 0 0 2.23 6 126
42 70.5 8.5 21 0 0 0 2.21 6.6 123
43 76.3 8.5 15.2 0 0 0 2.206 6 119

Table 5: Correlations matrix.

CBR Gr F200 S LL PL PI MDD OMC
CBR 1 0.773 −0.82 −0.623 −0.42 −0.42 −0.403 0.716 −0.437
Gr 0.773 1 −0.738 −0.953 −0.121 −0.118 −0.127 0.727 −0.46
F200 −0.82 −0.738 1 0.499 0.524 0.516 0.536 −0.741 0.565
S −0.623 −0.953 0.499 1 −0.081 −0.081 −0.078 −0.6 0.337
LL −0.42 −0.121 0.524 −0.081 1 0.998 0.968 −0.282 0.26
PL −0.42 −0.118 0.516 −0.081 0.998 1 0.951 −0.275 0.252
PI −0.403 −0.127 0.536 −0.078 0.968 0.951 1 −0.296 0.28
MDD 0.716 0.727 −0.741 −0.6 −0.282 −0.275 −0.296 1 −0.844
OMC −0.437 −0.46 0.565 0.337 0.26 0.252 0.28 −0.844 1
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Mean = 56.42
Std. Dev. = 19.856
N = 43

Mean = 28.30
Std. Dev. = 15.433
N = 43

Mean = 6.18
Std. Dev. = 9.699
N = 43

Mean = 1.62
Std. Dev. = 2.474
N = 43

Mean = 7.73
Std. Dev. = 1.895
N = 43

Mean = 2.155
Std. Dev. = .081
N = 43

Mean = 7.8
Std. Dev. = 12.075
N = 43

Mean = 15.33
Std. Dev. = 6.915
N = 43
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Figure 5: Frequency histograms of the index, MDD, and OMC.
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1.8.Model Performance. To examine the performance of the
prediction models, the RMSE, the coefficient of determi-
nation (R2), as well as mean absolute percentage error

(MAPE), the scatter index (SI) [23], Bias, and index of
agreement (IOA) are being used as shown in (4)–(9).

RMSE �

������������������������

􏽐
N
i�1 (CBR) CBRm − CBRp􏼐 􏼑

2

N

􏽳

,

R
2

� 1 −
􏽐

N
i�1 CBRm − CBRp􏼐 􏼑

2

􏽐
N
i�1 CBRp􏼐 􏼑

2

,

MAPE �
1
N

􏽘

N

i�1

CBRm − CBRp

CBRp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100,

SI �

���������������������������������������

1/N􏽐
N
i�1 CBRpi

− CBRp􏼐 􏼑 + CBRmi
− CBRm􏼐 􏼑􏼐 􏼑

2
􏽱

(1/N)􏽐
N
i�1CBRmi

,

Bias �
􏽐

N
i�1 CBRp − CBRm􏼐 􏼑

N
,

IOA � 1 −
􏽐

N
i�1 CBRpi

− CBRmi
􏼐 􏼑

2

􏽐
N
i�1 CBRpi

− CBRm􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + CBRmi
− CBRm􏼐 􏼑􏼒 􏼓

2.

(4)

n, CBRm, and CBRp indicate the total number of data
measured experimentally, and the developed predicted
value, respectively.

In addition, the Durbin–Watson statistic was used to
determine the existence of multicollinearity [1]. *e Dur-
bin–Watson statistic has a range of values between 0 and 4,
and the midpoint (that is, 2) indicates that there is no as-
sociation between the input variables. *erefore, a value
between 1.5 and 2.5 is sufficient for obtainingmodels that are
unaffected by multicollinearity. *is section covers mathe-
matical expressions and models. Each model’s R2 and
P-value (p) are described in the Tables 6 and 7.

DW �
􏽐

T
t�2 et − et−1( 􏼁

􏽐
T
t�1e

2
t

, (5)

whereas DW is the Durbin–Watson test and et and et−1 least-
squares regression residuals.

1.9. Uncertainty and Reliability. *e main purpose of un-
certainty analysis is to narrow the predicted range in which
the real value of an experiment’s result resides. *is esti-
mated range is expressed as an interval and is referred to as
the uncertainty interval. It may be approximated using the
calculated errors for the measuring method of the experi-
ment in question [28]. U95 is one of the uncertainty analysis
algorithms used to calculate the uncertainty interval. *e
value of U95 relating to a specific experiment result may be
read as follows: if the provided experiment is performed
again, the real value of the experiment’s outcome will fall

within the specified uncertainty range around 95 times out of
every 100 trials. Furthermore, the value of U95 is provided by

U95 �
1.96
N

�����������������������������������������

􏽘
N

i�1 CBRmi
− CBRm􏼐 􏼑

2
+ 􏽘

N

i�1 CBRmi
− CBRpi

􏼐 􏼑
2
.

􏽲

(6)

1.10. Relative Absolute Error and Reliability. *e relative
absolute error is a relative statistic that compares a predictive
model’s performance to that of a simple model. *e pre-
dictive model’s performance is defined as the total absolute
difference between the actual and anticipated values (i.e., the
error). *e basic model’s performance is defined as the total
absolute difference between the realized value and the av-
erage of all realized values [25]. In other words, the relative
absolute error determines if a model outperforms just
forecasting the average (i.e., the simple model). *e relative
absolute error formula is

RAE �
􏽐

N
i�1 CBRmi

− CBRpi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽐
N
i�1 CBRmi

− CBRm

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (7)

*e meaning of the relative absolute error is straight-
forward: if the RAE is less than one, the model outperforms
the basic model. *e relative absolute error for a perfect
model is 0. RAE should ideally be as near to zero as feasible.

A statistical technique known as reliability analysis may
be used to evaluate a model’s level of general consistency. To
be more specific, it determines whether or not a proposed
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model reaches a level of performance that is within ac-
ceptable limits. A measurement that may be used for the
examination of reliability is defined as

Reliability �
100%

N
􏽘

N

i�1
ki. (8)

*en after we check to see if RAEi is greater than δ, if it is,
we set ki equal to 1; otherwise, we set it equal to 0. We define
ki as the number of times the value of RAE is either less than
or equal to that of δ. According to Chinese standards, the
ideal value of δ is 0.2 [28].

2. Results and Discussion

2.1. MultivariateModels Development and Prediction of CBR.
*e data were fully analyzed for the relationship between
CBR and the parameters, each one individually, followed by
a multiple linear regression relationship between CBR and
the parameters: grain size, the relationship between CBR and
Atterberg limit, and the relationship between the compac-
tion parameter and CBR. With the help of the correlation
matrix, a certain parameter will be selected to get the best
model representing this data. Each model will be evaluated
based on the correlation coefficient of determination (R2)
and its level of significance (P≤ 0.05).

*e correlation matrix in Table 5 clearly illustrates the
nature of the relationship between the CBR and the soil
parameters individually. As was expected, the studied area is
sandy in nature.*erefore, all Atterberg coefficients appear to
have a poor correlation with CBR. On the other hand, the
relationship between the granular size distribution parame-
ters, especially F200, appears from the compaction parameters
(MDD) such that the highest correlation is related to CBR.

2.2.MultilinearRegression. Several attempts were conducted
to find the best combination of parameters that represent the
CBR correlation with the soil index and compaction pa-
rameters based on the findings from the correlation matrix
(Table 5). Out of several models, a possible correlation was
made among those who exceeded R2 of 0.5 and, at the same
time, was statistically significant. Multilinear regression
models (MLR) are presented herein. Table 6 presents the
outcomes of the multilinear regressions. MLR 1 and 3 in
Table 6 are controlled by the grain size distribution; those
models revealed R2 of 0.753 and 0.74. Consequently, MLR 4
presents the compaction parameters MDD and OMC as
input parameters to predict the corresponding CBR; it
revealed R2 of 0.61. MLR 2, 5, and 7 incorporate the effect of
all indices as predictors for CBR; a better performance is
revealed from these models where their R2 is 0.811, 0.79, and
0.792 consequently. *e combination of grain size param-
eters and compaction parameters inMLR.6 gives R2 of 0.775.
Consistency parameters could be considered with no con-
tribution inMLR.6; this may be attributed to the fact that the
soil in this study is nonplastic due to low plasticity soil. *e
best model of multivariate linear regression model is shown
in (8), Table 7.

CBR � −835 + 6.76LL − 8.97PL + 321MDD − 15.6 ln (Gr)

− 32.6 ln(S) − 52.9 ln F200( 􏼁,

(9)

where R2 is 0.81, and P< 0.05.

2.3. PQ Models. *e PQ which is none linear generally
contains linear variables and constants; it is effective when
such a pattern does not appear to be linear, and the rela-
tionships of the variables tend to be curvilinear [16]. Table 8
illustrates the PQ models for the prediction of CBR of
granular soil. *e model’s significance (P) value is zero,
signifying robust models.

*e best model determination coefficient (R2) is 0.888,
which is better than MLR CBR model in (8). *e best PQ
regression model is shown in (9).

CBR � 9184 + 5.1Gr − 4.8F200 + 2.6S + 7.86LL − 10.01PL

− 9284MDD + 16.6OMC000000 − 0.0074Gr2

+ 0.211F
2
200 + .0145S

2
+ 2257MDD2

− 0.79OMC2
,

(10)

where R2 is 0.888, and P< 0.05.

2.4. GEP Model Development. *e primary objective of
developing the GEP model was to provide mathematical
functions that might be used to predict the CBR value.
Numerous GEP models with differing quantities of input
variables were built in this study in order to estimate the
CBR. Each model’s number of input variables was distinct.
*e GEP models use the same input parameters as the
multivariate models, which are also shown in Table 3.
Similar to multivariate models, all GEP data were arranged
into a format with seven input parameters, including per-
centages of gravel (Gr), sand (S), and fines (F200), as well as
LL, PI, MDD, and optimal water content (OMC). To create

Table 8: GEP parameters obtained for the best three models.

Chromosomes 30
Error type fitness function RMSE and R2

Count of the genes 5
Head size 10
Linking function +
Function set +, -, ×, /, √
Mutation rate 0.044
One-point recombination rate 0.3
*e recombination rate of two points 0.3
Inversion rate and transposition rate 0.1

Table 9: Statistical performances of the proposed GEP models.

Model id SI IOA Bias
GEP1 0.252231 0.958626 −33.5488
GEP2 0.256308 0.933823 −33.7025
GEP3 0.522693 0.984099 −46.5304
GEP4 0.819813 0.928315 −16.7601
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the best GEP model, the number of chromosomes was al-
tered between 20 and 35, the number of genes between 3 and
7, and the head size between 8 and 13. During the building of

GEP models, it was observed that the same GEP parameters
were gathered for the “four best models”; Table 8 lists these
parameters.

Table 10: Performances of multivariate and GEP models.

Model MAE MSE RMSE MAPE R 2 U95 Reliability
MLR1 18.177 563.803 23.745 24.28 0.75 15.940 49
MLR2 16.546 432.261 20.791 24.51 0.81 15.569 51
MLR3 19.208 593.443 24.361 28.12 0.74 16.033 49
MLR4 24.952 890.208 29.836 41.58 0.61 16.833 43
MLR5 17.783 474.159 21.775 27.34 0.79 15.699 49
MLR6 17.618 513.078 22.651 26.83 0.78 15.816 49
MLR7 16.698 478.326 21.871 24.69 0.79 15.702 53
PQ1 15.933 485.939 22.044 18.94 0.79 15.723 55
PQ2 11.560 244.783 15.646 16.75 0.89 15.022 62
PQ3 15.822 470.641 21.694 21.35 0.79 15.678 57
PQ4 16.843 470.530 21.692 26.93 0.79 15.678 51
PQ5 11.490 256.206 16.006 16.17 0.89 15.084 57
PQ6 11.744 293.372 17.128 17.16 0.87 15.174 57
PQ7 12.087 273.340 16.533 18.00 0.88 15.127 62
GEP1 18.251 509.44 22.552 24.79 0.776 15.787 53
GEP2 16.401 523.861 22.888 20.31 0.771 15.828 53
GEP3 16.878 532.636 23.0789 21.195 0.766 16.803 45
GEP4 18.471 510.715 22.599 28.393 0.776 16.766 45
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Figure 6: Comparison of the estimated PQ model and measured values of CBR.
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Results of the best models which have better statistical
performance that are presented in (5)–(8), in which the
input parameters and mathematical function are included.
Model GEP1 has three inputs that include grain size

distribution. Models incorporate the OMC, while model
GEP3 includes the parameters compaction and grain size
analysis with PI. Model 4 has all indices that can affect the
value of CBR.

GEP.1.CBR � 18.0824 + 2.073Gr − F200 +
Gr

F200
−
Gr × F200

S
,

GEP.2.CBR � 21.056 +
4Gr
OMC

+ 2OMC − F200 +
7.135Gr
F200

,

GEP.3.CBR � 3.13 +(Gr − S) − PI + 0.334(S − 8.964) −
6.186(1 − Gr)

F200
+

�����������

OMC2
×

F200

Gr

􏽲

,

GEP.4.CBR � −148 + 98.8MDD + 3.9PI − 0.8603F200 + Gr + OMC

− 0.89PL × MDD −
�����������
MDD × F200

􏽰
+

PI
(PL/(OMC − 3.882)) − 23.61/F200( 􏼁( 􏼁

.

(11)

*e IOA, the SI, and Bias are the three indices that are
produced in order to carry out a full statistical evaluation of
the models that have been offered for the GEP. Table 9
displays the findings of the statistical analysis that was
carried out. According to Table 10, GEP 1 and GEP 4 have
the highest coefficient of determination (R2 of 0.776), al-
though GEP4 has the least RMSE with a value of 22.552.
According to Table 9, GEP 1 has the lowest SI of 0.252, which
indicates that it has better GEP model performance than the
other GEP models. Good indexes of agreement can be seen
across all GEP models, with values ranging from 0.928 for
GEP 4 to 0.984 for GEP 3. In addition, the predictions of
CBR that were made available by GEP 1 had a higher re-
liability (53%) and uncertainty (15.78) in comparison to the
predictions that were made available by GEP 4 (45% reli-
ability and 16.766 uncertainty).

2.5. Models Comparison. In this section, an examination,
discussion, and comparison of the results were acquired
from multilinear, PQ, and GEP models. *e coefficient of
determination (R2), RMSE, MAPE, and Durbin–Watson
(DW) were employed as statistical verification tools to assess
the accuracy of the created models’ outputs. Table 10
summarizes the statistical performances of the multivari-
ate and GEP models. According to Table 10, the majority of
models exhibit acceptable agreement between the developed
model and experimental values. Table 10 further shows that
the performance of the majority of models derived by
multilinear regression, PQ, and GEP techniques is accept-
able in terms of R2, RMSE, MAPE, uncertainty, and reli-
ability. *is event can be regarded as the models’ inputs
being appropriately chosen. Table 10 presents the statistical
performances of multivariate and GEP models.

However, in statistics, the total error performance of a
link between two groups may be assessed using coefficient of
determination (R) values. According to Benjamin [12], if a

given model provides an R value greater than 0.80, there is a
strong correlation between the measured and predicted
values for the whole available database of data. In addition,
the statistical performance of any model is assessed using
error criteria such as RMSE; MAPE, an important criterion;
and R value, because amodel with a high R2 value may have a
high RMSE or MAPE value. Taking into consideration these
criteria, the best multivariate models are MLR2, PQ2, and
PQ5. However, the four GEP models have a higher R2 and a
lower RMSE of 22.56. *e error magnitudes of these models
are sufficient for forecasting the CBR of soils. In addition,
Model PQ5 is clearly the best model for both GEP and
multivariate models based on all statistical measures. In
Figures 6 and 7, the estimated CBR values generated by PQ5,
of multivariate and GEP1 are visually contrasted with the
observed CBR values. Figures 6 and 7 show that both the
multivariate model and the GEP model make good pre-
dictions based on the experimental data.

An importance analysis of GEP is also performed to
realize to what extent the input variables can affect the
output CBR (see Figures 8 and 9). Gravel% and Fines% are
found to be themost contributing variables to CBR, followed
by Sand%, as shown in model GEP 3 figure. While in model
GEP 4, where the contribution of the consistency limit is
incorporated into the model, it is found that the consistency
parameters are affecting the CBR significantly, which is in
agreement with the study performed by El-Ashwah et al.
[18].

2.6. Sensitivity Analysis. To determine the quantitatively
relative implication of each input variable on the CBR, the
MLR, PQ, and GEP models were employed to carry out a
sensitivity analysis. *e analysis is executed such that one
variable of 15(6) and (8) is taken out each time to assess the
effect of that variable’s inclusion on output. For (5), the
results of the analysis depict that F200 (R2 � 0.723,
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RMSE� 24.94, DW� 1.696) is the highest influence variable
on the CBR, while GR in which (R2 � 0.808, RMSE� 20.95,
DW� 1.718) has the least influence on the CBR equation
based on multilinear regression. For (11), the MDD
(R2 � 0.8162, RMSE� 20.474, DW� 1.805) is the highest
influence variable on the CBR, as well as the Gr (R2 � 0.8868,
RMSE� 16.06837, DW� 1.485). In (10), the most significant
influencing parameter is OMC, where R2 � 0.721,
RMSE� 25.522, DW� 1.767, while PI is the least influencing
parameter, where R2 � 0.788, RMSE� 22.38, DW� 1.774.
Statistical parameters resulting from sensitivity analysis of
the best models are shown in Table 11.

200

175

150

125

100

75

50

25

0

Pr
ed

ic
te

d 
CB

R 
G

EP
1

200

175

150

125

100

75

50

25

0

CB
R

0 25 50 75 100 125 150 175 200
Measured CBR

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Sample ID

R2 = 0.78

GEP 1
Linear (GEP 1)

Measured CBR
GEP 1

CBR = 2.0734Gr – F200 + 18.0824 + Gr Gr×F200
F200

– S

Figure 7: Comparison of the estimated GEP1 model and experimental values of CBR.

100
89

13
1.232 0.027

0

20

40

60

80

100

120

Gr

Im
po

rt
an

ce
 %

Parameters 
F200 Sand OMC MDD

Figure 8: Importance analysis for CBR GEP 3.

100

70.678
58.903

41.687

9.853

0

20

40

60

80

100

120

Im
po

rt
an

ce
 %

PL
Parameters 

PI F200 Gr OMC

Figure 9: Importance analysis for CBR GEP 4.

14 Advances in Civil Engineering



3. Conclusion

*is study’s primary objective is to investigate the appli-
cability of multivariate regression analysis and gene ex-
pression programming (GEP) for predicting CBR. To do
this, CBR test data for coarse-grained soils belonging to the
A-1 and A-2 soil groups were supplied from various loca-
tions in the Qassim area. Seven MLR and PQ nonlinear
regressions and four GEP models with different input
variables were examined to determine the optimal con-
nection between fundamental soil indices and the parameter
CBR.*e models’ performance was assessed using statistical
verification criteria. *e models MLR, PQ, and GEP with
eight input parameters yielded the greatest results. It can be
concluded that the MLR, PQ, and GEP are capable of ac-
quiring the relationship between CBR and basic soil pa-
rameters and may be used to predict CBR values of soils. *e
results of this analysis showed that the PQ model had a
higher accuracy [coefficient of determination (R2)� 0.89,
RMSE� 16.006, uncertainty (U95)� 16.17, and
reliability� 57%] than the multilinear regression model,
which has a lower accuracy [R2 � 0.811, RMSE� 20.791,
U95�15.569, and reliability� 51%]. *e best GEP model
yields [R2 � 0.776, RMSE� 22.552, U95�15.787, and
reliability� 53%]. Furthermore, an important analysis
revealed that gravel percent and fine percent have the
greatest influence on CBR, followed by consistency pa-
rameters (LL, PL, PI) and OMC. Given how hard, time-
consuming, and expensive CBR soil tests are, it can be
emphasized that using MLR, PQ, and GEP models to es-
timate CBR for granular soils in terms of soil parameters
could be a useful method for early stages of material de-
velopment or as a way to judge the validity of CBR values.
Compaction parameters (OMC and MDD) give a weaker
correlation with the CBR of granular soils, but when used
with gravel and fines percentage, they play a significant role
in the determination of the CBR of granular soil in the

Qassim area. A sensitivity analysis was conducted to yield
that F200 is the most variable factor affecting the multilinear
regression model, while MDD is the most variable factor
affecting the PQ model, and the optimum moisture content
(OMC) significant variable affects the best GEP model. *e
models used in this work to estimate CBR were based on
granular-grained soils with low to nonplastic properties. As
a result, it cannot accurately figure out CBR in fine soils or
soils of high plasticity.
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