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Considering the incomplete contact between the adjacent layers of crossanisotropic multilayered half-space media, an algorithm
was derived based on the spectral element method (SEM) to determine the dynamic response at any point of the medium when an
axisymmetric harmonic load is applied. Te algorithm used two equivalent contact parameters to simulate the relationship
between the discontinuity of the displacement and stress. Te SEM was employed for the summation in the integral calculation to
avoid the infnite integral in the integral transformation and greatly improve the efciency of the solution to the dynamic response
of the crossanisotropic layered half-space medium.Te accuracy of the developedmethod is verifed by the numerical examples as
well as the efciency of the developed method. Finally, an extensive parametric analysis of the contact parameters of the interface
between the layers of the layered medium, namely, the point of the application of the external load, the excitation frequency, and
the heterogeneous properties of the layered medium was conducted, providing a reliable numerical basis for engineering practice.

1. Introduction

Layered structures such as pavement, soil, and composite
materials are common heterogeneous media, and the study
of the dynamic response of layered mediums is widely
applied to transportation, civil engineering, and material
science. Considering the complexity of engineering calcu-
lations, in the early related literature, layered mediums were
often assumed to be isotropic. However, many-layered
media are anisotropic due to their construction technology
or natural structure. With the development of computer
technology, some scholars have proposed that cross-
anisotropic properties can be seen as anisotropic properties
in a special case and that studying the dynamic response of
layered mediums with crossanisotropic properties can reveal
the dynamic response law of layered media more accurately,
which conforms to the actual engineering situation [1–3].

Tere are many literature works about the dynamic
displacement and stress responses of isotropic media [4–9].
However, the assumption of isotropy cannot refect the
anisotropic properties of layeredmedia in the horizontal and
vertical directions. In an early work, Robert [10] proposed
that the propagation of waves in a crossanisotropic medium
is quite diferent from that in an anisotropic medium.
Terefore, more scholars became interested in studying the
dynamic response of crossanisotropic layered mediums.

For instance, Buchwald [11] and Payton [1] examined
the elastodynamics of crossanisotropic half-space bodies
under surface loads. Rajapakse and Wang [12] made slight
modifcations to the method proposed by Buchwald [11] by
using the three potential functions proposed by the latter to
simplify the equation of motion into two coupled partial
diferential equations and a separate partial diferential
equation. Tey obtained Green’s function of the
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crossanisotropic medium under internal harmonic loads but
failed to solve the problem completely. Later, Rahimian et al.
[13] proposed a new, efective, elastodynamic, potential
method and found the basic analytical solution to the dis-
placement of a crossanisotropic half-space medium under
surface loads by introducing two potential functions for the
displacement. Khojasteh et al. [14] provided an analytical
solution to the dynamic response of a crossanisotropic half-
space body under internal harmonic loads by using this
method.

However, mediums have diferent degrees of het-
erogeneity along the vertical direction in many practical
situations. Compared with homogeneous and half-space
media, it is more difcult to determine the dynamic
response of crossanisotropic layered mediums. Research
on this issue has gradually increased in recent years, and
methods such as numerical solutions, analytical solu-
tions, and semianalytical and seminumerical solutions
have emerged. Numerical solutions, mainly including the
fnite element method [15, 16] and the boundary element
method [17, 18], usually require dividing a large number
of meshes using incremental algorithms and calculating
the mechanical responses of all the mesh elements at the
same time, which demands powerful computation sys-
tems and huge computational cost; meanwhile, they have
low efciency. Rokhlin and Wang [19] presented an
efcient recursive algorithm for wave propagation in
multilayered, generally anisotropic media with the
stifness matrix method. Ba et al. [20] also solved the
dynamic response of three-dimensional crossanisotropic
saturated layered media under the action of concentrated
force and pore pressure using the accurate stifness
matrix method. Ai et al. [21] and Ai and Li [22] proposed
the analytical layer-element method to fnd the frequency
domain solution for the crossanisotropic layered me-
diums and assembled the global stifness matrix of the
half-space body in the cylindrical coordinate system.
Later, Ai et al. [23] further improved the method and
obtained the dynamic response of an arbitrary 3-D
crossanisotropic layered medium under moving loads. Ai
et al. [24] analyzed the dynamic response of cross-
anisotropic saturated media under circular moving
loads, in which the vertical and tangential loads can be
simultaneously considered. In another work, Ba et al.
[20] employed the analytical layer-element method to
study the dynamic response of a three-dimensional
crossanisotropic half-space body moving at a constant
speed in the horizontal direction under a concentrated
load. Ba et al. [25] presented an algorithm to obtain the
dynamic responses of a crossanisotropic layer saturated
under dynamic loads and pore pressure. In addition,
Khojasteh et al. [26] used the dynamic potential method
to determine the dynamic response of a double-layered
crossanisotropic half-space body under the action of a
concentrated load and then extended the algorithm to
obtain 3-D Green’s function of a crossanisotropic
multilayered half-space medium [27]. Te thin-layer
method, an efective semianalytical technique for cal-
culating Green’s function of layered mediums, was used

by Barbosa and Kausel [28] to establish the dynamic
response of crossanisotropic layered media. Lin et al. [29]
and Han et al. [30] obtained the dynamic response of a
crossanisotropic layered foundation under arbitrary
loads by using a precise integration algorithm and car-
ried out a parameter analysis of the crossanisotropic
properties of the foundation. Li et al. [31] obtained the
dynamic response of a stratifed crossanisotropic half-
space with a poroelastic interlayer due to a buried
moving source. Han et al. [32] presented a modifed
scaled boundary fnite element method (SBFEM) to
obtain the dynamic impedance matrix of the anisotropic
layered media based on the continued-fraction method.
Te research mentioned previously on crossanisotropic
layered mediums is a supplement to the research on
crossanisotropic homogeneous bodies and truly refects
the mechanical behavior of layered media as the dif-
ference in the material properties of the layers has been
considered. However, few works have taken the contact
between the layers of layered media into account.

At present, the contact between the layers of a layered
medium is often assumed to be complete in engineering
designs. However, in actual projects, it is almost in-
complete due to the diference in the materials, the
construction conditions, and the construction technol-
ogy, so this assumption does not refect the real condi-
tions. Te existing studies have shown that the contact
between the layers seriously afects the dynamic response
of layered structures [33]. Terefore, it is necessary to
consider the infuence of the incomplete contact between
the layers of a layered medium on its dynamic response,
so the examination of the response of crossanisotropic
layered mediums can be more practical. Te existing
literature presents a variety of models such as the thin-
layer model [34], the spring model (Goodman model)
[35], and the density model [36] to deal with the problem
of contact between the layers of layered mediums. Liu
and Pan [37] proposed a transfer-matrix model (the dual
variable and position method) based on a variety of
traditional interlayer contact models, which is more
suitable for thin-layered structures at a high excitation
frequency.

Tis paper takes account of the incomplete contact be-
tween the layers of a crossanisotropic layered medium and
establishes a new SEM to calculate the displacement response
and the vertical stress response of the layeredmedium under a
vertical load. Compared with the previous numerical inte-
gration technique, the proposed algorithm has higher ef-
ciency. Ten, parameter analyses related to the point of the
application of the external load, the excitation frequency, and
the heterogeneous properties of the layered media have been
carried out. Relevant results can provide a reliable theoretical
and numerical basis for engineering practice.

2. Problem Description

We assumed that n layers of the layered medium were lo-
cated in the homogeneous half-space medium (see Figure 1),
and each layer of the medium was presumed to be

2 Advances in Civil Engineering



crossanisotropic. Tus, a cylindrical coordinate system (r, θ,
and z) was established as shown in Figure 1, and the origin of
the coordinate (O) was set on the surface of the layered
medium with the z-axis vertically downward and the r-axis
in the radial direction. Te contact between the other ad-
jacent layers was complete, except for the imperfect inter-
face. Te interface zj between layers j and j+ 1 is imperfect
with values on its upper and lower sides being indicated by
−0 and +0. Te displacements on the imperfect interface
satisfed the discontinuous boundary conditions. An axi-
symmetric load was applied within the range of Δr. Te
expression of the load was defned as P(t) � S(r)eiωt, where
ω is the angular frequency and S(r) can be expressed by the
following equation:

S(r) �
q, for0⩽r⩽Δr,

0, forr>Δr,
􏼨 (1)

3. Wave Equations for Axisymmetric Problem

3.1. Governing Equations. Te governing equations of axi-
symmetric wave motion in the absence of body forces for a
continuous medium in a cylindrical coordinate system are
given by the following equation:
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where σr, σθ, and σz are the normal stress in the r, θ, and z
directions, respectively; τzr is the shear stress in the plane
z − r; ρ is the density of the medium; u and w are the
displacement components in r and z directions, respectively.

Te displacements u and w in the governing equations
(2) can be expressed in the Helmholtz decomposition as
follows:
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where ξ1 and ξ2 are the gradients of the scalar potential and
curl of the vector potential, respectively.

Te constitutive equations for a crossanisotropic elastic
medium is defned as follows:
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(4)

where cij is the elastic constant of the crossanisotropic
medium and c11, c12, c13, c33, c44, and χ are defned as follows:
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where Ehh and Evh are Young’s modulus of the cross-
anisotropic medium in the horizontal and vertical direc-
tions, respectively; vhh and vvh represent Poisson’s ratios on
the horizontal and vertical planes, respectively; Gvh is the
shear modulus on the vertical plane; χ stands for the ratio of
horizontal Young’s modulus of the crossanisotropic me-
dium to the vertical one.

Te displacement wave equation can be obtained by
substituting equation (4) into equation (2):
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Figure 1: Te computational model of the layered medium.
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where ∇2 � 1/rz/zr(rz/zr).
Te displacement expressed by the scalar potential in

equation (3) is substituted into equation (6), and the scalar
potential needs to satisfy the following equation after al-
gebraic simplifcation.
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Similarly, by substituting equation (3) into equation (7),
the following equation can be obtained after algebraic
simplifcation.
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It is necessary to solve potential functions ξ1 and ξ2 of
equations (8) and (9) to avoid discussing the propagation
paths of the waves in the r and z directions. Obviously, the
solutions of equations (8) and (9) are similar to those of
equations (11) and (12). Tus, for the sake of simplicity, only
the solutions of equations (8) and (9) are presented. Te
detailed derivation process can be found in Appendix A.

3.2. InterlayerContact. It is usually assumed that the contact
between the layers of layered mediums is complete, that is,
the displacement and stress are continuous at the interface.

However, there is usually a certain relative slip between
the adjacent layers of a layered medium due to the
process conditions and natural structure of the layered
mediums, that is, the contact between the layers is in-
complete, and the interface is imperfect. In this work,
interface zj of the layered medium displayed in Figure 1 is
assumed to be imperfect, so the relationship between the
stress on layer z � zj (􏽢τzr, 􏽢σz) and the displacement of
layer z � zj (􏽢u, 􏽢w) and the contact parameters (tr and tz) of
the interface is defned as follows:

􏽢σz zj+0􏼐 􏼑 � 􏽢σz zj−0􏼐 􏼑,

􏽢σz zj+0􏼐 􏼑 � tz 􏽢w zj+0􏼐 􏼑 − 􏽢w zj−0􏼐 􏼑􏽨 􏽩,
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􏽢τzr zj+0􏼐 􏼑 � tr 􏽢u zj+0􏼐 􏼑 − 􏽢u zj−0􏼐 􏼑􏽨 􏽩,

(14)

where tr and tz are the contact parameters of the interface
and can be regarded as the stifness modulus of the hori-
zontal and vertical interfaces of the interface z� zj,
respectively.

Equation (14) can be expressed in a matrix form as
follows:
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. (15)

Moreover, we assume that the modulus of the hor-
izontal interface is the same in any direction of the
horizontal plane, so it can be regarded as axisymmetric.
We can deduce from the formula that the displacement of
both sides of interface z � zj is almost continuous when tr
and tz approach infnity. On the contrary, the contact
between both sides of interface z � zj is completely
slidable when tr and tz approach zero. In addition, both
sides of interface z � zj slide only in the horizontal di-
rection when tr has a defnite value and tz approaches
infnity, while the vertical displacement is approximately
continuous. Te contact between the upper and lower
surfaces in the horizontal direction is totally incomplete
when tr is equal to zero.

4. Summation of the Spectral Element Method

Te superposition principle is the key theory of the SEM.
Both equations (8) and (9) are linear homogeneous equa-
tions. Following the superposition principle, the solutions of
equations (8) and (9) can be executed by summing an
infnite number of wave numbers ηm (m� 1, 2, . . ., M) in
Section 3.2:

4 Advances in Civil Engineering



ξ1(r, z,ω) � 􏽘
M

m�1
Ame

− iηpzmz
J0 ηmr( 􏼁e

− iωt
, (16)
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Bme

− iηszmz
J1 ηmr( 􏼁e

− iωt
. (17)

Te sum of theMwave numbers can be calculated by the
Fourier–Bessel series. Equations (16) and (17) replace the
infnite integral, which facilitates the summation of the wave
numbers and improves the efciency of the solution algo-
rithm. For infnite integration, the integrand has singular
points, especially if the damping ratio is very small, further
complicating the calculations. However, the proposed
method in this paper can efectively avoid this problem.

Te solution to the displacement of the axisymmetric
problem can be obtained by substituting the general solu-
tions for ξ1 and ξ2 into the equation.
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iωt
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where 􏽢G(ηm, z) is the fexibility coefcient of the medium in
the translated domain; 􏽢θm can be calculated by the following
equations:
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Expressing S (r) by means of Fourier–Bessel series, we
obtain

S(r) � 􏽘
M

m�1

􏽢θmJ0 ηmr( 􏼁. (20)

5. Spectral Axisymmetric Element Formulation

Te solution for 􏽢G(ηm, z) in Equation (18) in the translated
domain can be found by solving a two-point boundary value
problem. Tere are two situations that must be considered
for the layered half-space medium: one is a homogeneous
single-layered medium, and the other is a homogeneous
half-space medium.

5.1. Homogeneous Single-Layered Medium. As shown in
Figure 2, the wave propagates on two parallel upper and
lower boundary surfaces in a homogeneous single-layered
medium. Both points have radial and vertical degrees of
freedom. In the horizontal direction, it is deemed that the
wave disappears when the propagation distance of the wave
is equal to R.

Te wave response of any point in a single-layered
medium is determined by the superposition of the incident
wave and the refected one. Te external force produces the
incident waves, which propagate and touch the vertical

boundary to produce the refected waves. Te wave prop-
agation can be decomposed into longitudinal and shear
waves. Assuming a single-layered medium with the same
material properties has parallel upper and lower boundaries.
Te displacement vector 􏽢U and stress vector 􏽢T in the single-
layered medium are defned as follows:

􏽢U � 􏽢u 􏽢w􏼂 􏼃
T

,

􏽢T � −􏽢τzr − 􏽢σz􏼈 􏼉
T
.

(21)

Ten, the state equation between 􏽢U and 􏽢T in the fre-
quency-wave number domain can be expressed as follows:

􏽢V′ � H􏽢Vwith 􏽢V �
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⎩
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22
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−1
22K21 + ρω2

nI K12K
−1
22

⎡⎢⎣ ⎤⎥⎦,

(22)

where H is the characteristic matrix of the layered medium;
#′ stands for the frst-order partial derivative of # with re-
spect to the coordinate z; I is the identity matrix; the matrices
K11, K12, K21, and K22 are defned as follows:

K11 � κ2m
d11 0

0 d44
􏼢 􏼣,

K21 � −KT
12 � iκm

0 d44

d13 0
􏼢 􏼣,

K22 �
d44 0

0 d33
􏼢 􏼣.

(23)

Te general solution to equation (22) in every single-
layered medium can be obtained by the precise integration
method (PIM) accurately and easily [29]. Te dual vector
form of the wave motion equation makes its solution easy to
conduct and maintains numerical stability. Based on the
solution of the diferential equation (Equation (22)), for the
conservative linear system, the following matrix form re-
lationship between the displacements and stresses at the two
ends of the layer can be obtained by the PIM:

􏽢U zj−1􏼐 􏼑

􏽢T zj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�
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11m
􏽢Ej

12m

􏽢Ej
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􏽢Ej

22m

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

􏽢U zj􏼐 􏼑

􏽢T zj−1􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (24)
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z
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r

Figure 2: Te homogeneous single-layered element.
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5.2. Considering Incomplete Contact. Te relationship be-
tween the surface force and the displacement of the nodes on
the upper and lower sides of layer j (j� 1, 2, . . ., n) in a single-
layered medium can be expressed according to the following
equation:

􏽢U zj−1􏼐 􏼑

􏽢T zj−0􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�

􏽢Ej

11m
􏽢Ej

12m

􏽢Ej

21m
􏽢Ej

22m

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

􏽢U zj−0􏼐 􏼑

􏽢T zj−1􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (25)

Te relationship of the surface force with the displace-
ments of the upper surface (z� zj− 0) and the lower surface
(z� zj+ 0) of interface z� zj can be given according to the
following equation:

􏽢U zj−0􏼐 􏼑

􏽢T zj+0􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�

I t

0 I
􏼢 􏼣

􏽢U zj+0􏼐 􏼑

􏽢T zj−0􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (26)

where I represents a 2× 2 identity matrix and t is defned as
follows:

t �

−
1
tr

0

0 −
1
tz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

Considering the incomplete contact, T (zj− 0) and U
(zj− 0) are eliminated based on

􏽢U zj−1􏼐 􏼑

􏽢T zj+0􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�

􏽢Ej∗
11m

􏽢Ej∗
12m

􏽢Ej∗
21m

􏽢Ej∗
22m

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

􏽢U zj+0􏼐 􏼑

􏽢T zj−1􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (28)

where

􏽢Ej∗
11m � 􏽢Ej

11m + 􏽢Ej

11mt I − 􏽢Ej

21mt􏼔 􏼕
− 1

􏽢Ej

21m,

􏽢Ej∗
12m � 􏽢Ej

12m + 􏽢Ej

11mt I − 􏽢Ej

21mt􏼔 􏼕
− 1

􏽢Ej

22m,

􏽢Ej∗
21m � I − 􏽢Ej

21mt􏼔 􏼕
− 1

􏽢Ej

21m,

􏽢Ej∗
22m � I − 􏽢Ej

21mt􏼔 􏼕
− 1

􏽢Ej

22m.

(29)

It is noted that if t � 0, then equation (29) is reduced to
the submatrices for the perfect interface case. If there is
imperfect contact between the adjacent layers, we just need
to use the matrices calculated in equation (29) to propagate
the solution.

5.3. Homogeneous Half-Space Medium. As depicted in
Figure 3, the homogeneous half-space medium is similar to a
carrier that transfers system energy, and the waves propagate
in one direction without refection. Two cases of the layered
half-space are considered: the layered stratum on a rigid base
and the layered stratum on a half-space. In the former case,
the boundary condition is as follows:

􏽢U zn( 􏼁 � 0. (30)

In case themultilayered soil overlies an elastic half-space,
the radiative condition should be considered. To determine
the boundary condition in this case, some treatment is
conducted as described in the following paragraph.

Te eigenvalue problem of the homogeneous cross-
anisotropic half-space is solved as follows:

HΨ � ΨΛ, (31)

with the eigenvalues Λ and eigenvectors Ψ, and,

Λ �
λi

−λi

􏼢 􏼣,

Ψ �
Ψ11 Ψ12
Ψ21 Ψ22

􏼢 􏼣,

(32)

where the real parts of all elements λi are positive.
Introducing a vector,

b � Ψ− 1 􏽢V. (33)

Ten, equation (22) becomes

b′ � Λbwithb(z) �
exp λiz( 􏼁

exp −λiz( 􏼁
􏼢 􏼣

c1
c2

􏼨 􏼩, (34)

where c1 and c2 are integration constants.
Substituting equation (34) into equation (33) yields

􏽢U
􏽢T

⎧⎨

⎩

⎫⎬

⎭ �
Ψ11 Ψ12

Ψ21 Ψ22
􏼢 􏼣

exp λiz( 􏼁c1
exp −λiz( 􏼁c2

􏼨 􏼩. (35)

For a homogeneous half-space, the displacements 􏽢U and
stresses 􏽢T must remain fnite, which leads to c1 � 0. Ap-
plying Equation (35) results in the boundary condition at the
surface (z� 0) of the half-space.

􏽢T zn( 􏼁 � 􏽢S∞ 􏽢U zn( 􏼁with 􏽢S∞ � Ψ22Ψ
−1
12 . (36)

5.4. Assembling Structural Stifness Matrix. Te stifness
matrix of the entire system (􏽢Sglobal(ηm)) can be assembled
using the stifness matrix of each layer and the half-space
stifness matrix with the same wave number after obtaining
the stifness matrices of the crossanisotropic single-layered
medium and the homogeneous half-space medium. Te
assembly follows the classical assembly theory of the fnite
element stifness matrix, and the equation for the case of the
n-layered medium and the homogeneous half-space me-
dium at the bottom can be defned as follows:

O u (zn)

w (zn)

Half-space

z

zn r

Figure 3: Te homogeneous half-space medium.
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􏽢P z0( 􏼁

􏽢P z1( 􏼁

􏽢P z2( 􏼁

⋮
􏽢P zj􏼐 􏼑

⋮
􏽢P zn( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

􏽢S111m
􏽢S112m 0 · · · 0 0 0

􏽢S121m
􏽢S122m + 􏽢S211m

􏽢S212m · · · 0 0 0

0 􏽢S221m
􏽢S222m · · · 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 · · · 􏽢Sj−1
22m + 􏽢Sj

11m · · · 0

0 0 0 · · · ⋮ ⋱ 􏽢Sn

12m

0 0 0 · · · 0 􏽢Sn

21m
􏽢Sn

22m + 􏽢S∞

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽢U z0( 􏼁

􏽢U z1( 􏼁

􏽢U z2( 􏼁

⋮
􏽢U zj􏼐 􏼑

⋮
􏽢U zn( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (37)

or simplifed to
􏽢P � 􏽢Sglobal ηm( 􏼁 􏽢U, (38)

where 􏽢P(zi)(i � 0, 1, 2......, n) is the external load vector of
the node at the depth of zi, and,

􏽢P zi( 􏼁 �
T z0( 􏼁, (i � 0),

−T zi−1( 􏼁 + T zi( 􏼁, (i≥ 1).
􏼨 (39)

􏽢Sj

m is the stifness matrix of the jth layer defned by
Equation (40), and its value can be obtained from the fol-
lowing equation:

􏽢Sj

m �

􏽢Ej

12m􏼒 􏼓
− 1

− 􏽢Ej

12m􏼒 􏼓
− 1

􏽢Ej

11m

−􏽢Ej

22m
􏽢Ej

12m􏼒 􏼓
− 1

−􏽢Ej

21m + 􏽢Ej

22m
􏽢Ej

12m􏼒 􏼓
− 1

􏽢Ej

11m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (40)

If the layered stratum rests on a rigid base, the boundary
conditions at the bottom interface of the layered stratum
must satisfy Equation (30). Ten, the dynamic (Equation
(37)) for the entire n layers should be modifed by

eliminating the last (i.e., n+ 1) row and the last (i.e., n+ 1)
column.

Te stifness matrix in the SEM has the same charac-
teristics as that in the general fnite element method.
􏽢Sglobal(ηm) is a symmetric bandmatrix, and its inverse matrix
is 􏽢G(ηm) in equation (18). Terefore, the radial and vertical
displacements in the spatial domain can be obtained by
substituting displacements 􏽢u and 􏽢w in the wave number
domain, which are determined by substituting the dis-
placement calculated from equation (37) into equation (18)
when a vertical axially symmetric load is applied.

u(r, z, t) � 􏽘
M

m�1
􏽢um z, ηm,ω( 􏼁􏽢θmJ1 ηmr( 􏼁eiωt

,

w(r, z, t) � 􏽘
M

m�1
􏽢wm z, ηm,ω( 􏼁􏽢θmJ0 ηmr( 􏼁eiωt

.

(41)

Te vertical stress can also be calculated by substituting
equation (41) into equation (4) as follows:

σz(r, z, t) � c13 􏽘

M

m�1
􏽢um z, ηm,ω( 􏼁􏽢θmηmJ0 ηmr( 􏼁eiωt

+ c33 􏽘

M

m�1

z􏽢um z, ηm,ω( 􏼁

zz
􏽢θmJ1 ηmr( 􏼁eiωt

. (42)

6. Numerical Example Verification

6.1. Crossanisotropic Layered Mediums. A multilayered
mediummodel constructed by Khojasteh et al. [27] was used
as a numerical example to verify the applicability of the
algorithm to crossanisotropic mediums. Te parameters of
the layered medium are listed in Table 1. Te medium in-
cludes three homogeneous layers, and the bottom is a ho-
mogeneous half-space medium. Layer 3 is an isotropic
medium, and the other layers and the half-space medium are
crossanisotropic. A vertical, uniformly distributed, har-
monic load with an amplitude (p) was applied to a disk with

a radius (Δr) of 0.0705h centered at the point (0, 0, 4h), and
the displacement and stress responses of the cross-
anisotropic layered medium at r� 0 and at diferent depths
were calculated at a dimensionless frequency (ω0) of 2 and 4.
Te frequency was made dimensionless using equation ω0 �

ωh/
������
Gvh1/ρ1

􏽰
, where Gvh1 and ρ1 are the elastic parameter

and the mass density of the frst layer, respectively. Te
dimensionless depth was also defned as z/Δr. Te calculated
dimensionless vertical displacement and dimensionless
stress were expressed in Gvh1wh/p and σzh2/p, respectively.

Te calculated dimensionless vertical displacement and
dimensionless vertical stress are delineated in Figures 4 and 5.
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Moreover, the comparison of the calculation data with the
results of Khojasteh et al. [27] verifes the accuracy of the
algorithm for solving the dynamic response of isotropic
layered mediums.

6.2. Verifying Models of Contact between Diferent Layers.
To verify the correctness of the calculation method proposed
herein, the layered medium model proposed by Liu and Pan
[37] was used as an example to calculate the displacement
response of the crossanisotropic layered medium when

incomplete contact between the layers was considered, and
the results were analyzed and compared with those obtained
from the dual variable and position (DVP) method. A
double-layered half-space medium model was also con-
structed as shown in Figure 6, and we assumed that the
upper crossanisotropic layered medium was over the ho-
mogeneous elastic half-space body. Te material properties
of each layer are also presented in Figure 6.Te mass density
of all the materials is equal to 5000 kg/m3, and the damping
ratio equals 5%; the thickness of the upper medium is
h= 1.0m. Tree models with diferent interface contact

Table 1: Te material parameters of the crossanisotropic layered medium.

Layer h (m) Ehh (MPa) Evh (MPa) μhh � μvh Gvh (MPa) ρ (kg/m3)

1 h 2.5 3.0 0.25 1.00 1.0
2 2h 3.0 4.0 0.25 1.40 1.1
3 4h 5.0 5.0 0.25 2.00 1.3
Half-space — 7.5 6.0 0.25 2.50 1.5
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Figure 4: Te real and imaginary parts of the dimensionless vertical displacement at origin versus the dimensionless depth.
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parameters were used to calculate the displacement re-
sponse; Model I: tr= 1× 1010N/m3 and tz= 3×1010N/m3;
Model II: tr= 1× 1010N/m3 and tz=∞; Model III: tr=∞
and tz= 3×1010N/m3. A vertical, uniformly distributed,
harmonic load with an amplitude of p � 1.0 Pa was applied
on the surface of the medium. Te radius of the uniformly
distributed load Δr= 1.0m. Te dimensionless frequency
and the calculated dimensionless vertical displacement were
expressed through ω0 � ωh/

����
c44/ρ

􏽰
and c44uzh/ρ, respec-

tively.Te displacement w at the surface of the medium with
a distance from 0 to 5m was calculated at a dimensionless
frequency ω0 � 1.

Te calculation results are plotted in Figure 7. Ten, the
displacement response at the surface of the medium, i.e., (x,
y, z)� (0.5, 0, 0), at diferent load frequencies was calculated.
In addition, our calculation results (see Figure 7) are in good
agreement with the ones determined by the DVP algorithm
in the existing literature [37], verifying that the algorithm
developed in this work is suitable for crossanisotropic lay-
ered mediums when incomplete contact between the layers
is considered. It is worth noting that the proposed method in
this paper is muchmore efcient than the algorithm using an
infnite integral. It takes only 0.35 seconds for each fre-
quency point by adopting the proposed method, while the
algorithm using infnite integrals does the same calculation
in about 60 seconds.

7. Numerical Examples

7.1. Infuence of tr and tz onDisplacement andStressResponses.
Te contact conditions of the interface between the adjacent
layers afect the dynamic response of the layered medium.
Tus, this section discusses the impact of the interface
contact parameters, namely, tr and tz, on the dynamic re-
sponses of the crossanisotropic multilayered medium. Te
material properties of the layers of the crossanisotropic
layered medium used for the solution analysis are listed in
Table 2. Te layered medium includes two homogeneous
layers resting on a homogeneous elastic half-space. We
assumed that the contact between layer 1 and layer 2 is
incomplete, but the contact between the second layer and the
homogeneous half-space medium is complete. Te calcu-
lation examples were divided into six cases (Case 1 to Case 6)
according to the values of tr and tz, and the interface contact

parameters of the six cases are tabulated in Table 3. A
vertical, uniformly distributed, harmonic load with an
amplitude of 1.0 Pa was applied to the disk with a radius of
0.15m on the surface of the medium. Te displacement and
stress responses of the medium at a distance (i.e., r) in the
range of 0 to 5h from the center of the disc on the planes with
a depth (i.e., z) of 0, 0.15, and 0.45m were calculated at a
dimensionless frequency of 2, i.e., ω0 � 2. Te real and
imaginary parts of the calculated dimensionless displace-
ment and stress are delineated in Figures 8–10.

Figure 8 depicts the displacement response of the me-
dium at a distance within the range of 0 to 5h from the center
of the disc when the load is applied on the surface of the
layered medium. It can be seen that the peak of the dis-
placement curve is generally higher when the contact pa-
rameters are small, and at r� 0, only the real part of Case 2 is
larger than that of Case 1. Te peak values of the real and
imaginary parts of the displacement curves gradually de-
crease with an increase in the contact parameters.Te curves
of Cases 4–6 basically overlap, that is, the cases in which the
contact parameters are greater than or equal to those in Case
4 can simulate complete contact. Indeed, the contact be-
tween the layers of the medium improves further, so the frst
layer of the medium is more constrained at the bottom,
resulting in a gradual decrease in the peak of the dis-
placement curve.

Figure 9 illustrates the dynamic displacement and stress
responses of the surface of the medium when the contact
between the layers of the medium is incomplete. It is clear
that the displacement and stress amplitude of the layer tends
to enlarge as the contact parameters increase; that is, the
infuence of the load of the layered medium on the bottom of
the incomplete contact layer gradually intensifes as the
contact between the layers of the medium further improves.

Figure 10 shows the displacement and stress responses of
the medium at a depth of 0.45m. It is obvious that the load
on the surface of the layered medium has less infuence on
the inner layers of the medium when the contact parameters
are small, i.e., in Case 1. Moreover, the displacement and the
stress generated by the load applied on the plane increase
greatly when the contact parameters enlarge, i.e., in Case 2.
However, the displacement and stress responses of this layer
tend to decline gradually as the contact parameters continue
to increase because it is difcult for the load on the surface of

Eh2=150 GPa, Ev2=50 GPa,
Gvh2=20 GPa, µh2=µvh2=0.25

Eh1=50 GPa, Ev1=150 GPa,
Gvh1=20 GPa, µh1=µvh1=0.25

Stratum

Half-space

Imperfect interface

z

1.0 m

rP (t)

Δr Δr

Figure 6: A crossanisotropic double-layered half-space medium with an imperfect interface.
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Figure 7: Te vertical displacement of the medium calculated by imperfect interface models I, II, and III at a fxed surface point, i.e.,
(x, y, z) � (0.5, 0, 0): (a) as a function of the dimensionless distance at a fxed dimensionless frequency of one (ω0 �1); (b) as a function
of the dimensionless frequency.

Table 2: Te material properties of the layers of the crossanisotropic layered medium.

Layer h (m) E hh (MPa) E vh (MPa) μ hh μ vh G vh (MPa) ρ (kg/m3) β (%)
1 0.15 3000 3500 0.35 0.30 1270 2400 5
2 0.30 600 700 0.33 0.30 254 2300 2
Half-space — 40 60 0.45 0.40 18.5 1900 2

Table 3: Te interface contact parameters (tz and tr) of the six cases.

Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
t r (N/m3) 3.2×107 3.2×108 3.2×109 3.2×1010 3.2×1011 3.2×1012

t z (N/m3) 9.6×107 9.6×108 9.6×109 9.6×1010 9.6×1011 9.6×1012
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Figure 8: Te vertical displacement of the medium versus the dimensionless distance for the diferent cases at a fxed dimensionless
frequency of 2 (ω0 � 2) and a depth of zero (z� 0m): (a) the variation of the real part; (b) the variation of the imaginary part.
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the medium to generate a dynamic response to the inner
layers of the medium through incomplete contact when the
contact parameters are small. On the one hand, as the
contact parameters increase, the impact of the load on the
inner layers of the medium intensifes; on the other hand, as
the contact parameters continue to increase, the integrity of
the layered medium strengthens, and the dynamic response
of the entire layered medium gradually declines under the
same load.

7.2. Efect of the Application Point of Load on Displacement
and Stress Responses. Te dynamic response generated in
the layered medium is diferent when the load of the same
magnitude was applied to the diferent layers of the layered
medium. Te model of the three-layer medium with a
homogeneous half-space medium at the bottom described
in Section 6.1 was used to analyze the infuence of the load
applied to the diferent depths of the layered medium on
the distribution of the displacement and stress responses.
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Figure 9: Te vertical displacement and the vertical stress of the medium versus the dimensionless distance for the diferent cases at a fxed
dimensionless frequency of two (ω0 � 2) and a depth of 0.15m (z� 0.15m): (a) and (c) are the variation of the real parts; (b) and (d) are the
variation of the imaginary part.
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To this end, a vertical, uniformly distributed, harmonic
load was applied to the diferent depths of the layered
medium at r � 0. Specifcally, the load was applied within
the range of the disc with a radius of Δr � 0.0705h and at a
depth of 0, 1h, 2h, 3h, 4h, and 5h, respectively. Te dis-
placement and stress responses of the layered medium were
calculated at a dimensionless frequency of two (ω0 � 2.0).
Figure 11 delineates the distributions of the displacement
and stress responses of the medium in a depth range of 0 to
7h at r � 0. It can be seen that the real part of the dis-
placement of the medium at the position where the load is
applied is singular due to the small radius of the uniform
load, while its imaginary part is fnite and continuous when
the load is applied. As the depth to which the load is applied

increases, the displacement response of the medium surface
gradually decreases; that is, the efect of the load on the
medium surface gradually lessens. Te distribution of the
stress response of the medium at r � 0 is similar to that of
the displacement of the medium. Te real part of the stress
response is also singular when the load is applied, but the
real parts of the stress on the upper and lower surfaces of
the plane to which the load is applied are in opposite
numerical directions.Te imaginary part is also limited and
continuous when the load is applied to the plane and equals
zero when the load is applied to the ground surface. As the
depth to which the load is applied increases, the frst peak of
the distribution curve along the vertical direction gradually
declines.
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Figure 10:Te vertical displacement and the vertical stress of the medium versus the dimensionless distance for the diferent cases at a fxed
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Figure 12 depicts the distributions of the vertical dis-
placement and the vertical stress of the medium at r� h.
According to the displacement distribution, the real part of
the displacement is no longer singular on the plane to which

the load is applied when there is a certain horizontal distance
from the position where the load is applied; however, there is
a kink, and the imaginary part is still fnite and continuous.
As the depth to which the load is applied increases, the
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Figure 11: Te real and imaginary parts of the vertical displacement at (a) r� 0 and (b) r� h versus the dimensionless depth at a fxed
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impact of the load on the surface of the layered medium
gradually softens. Te distribution of the stress response
along the vertical direction at r� h is similar to that at r� 0.

7.3. Infuence of Frequency on Displacement and Stress
Responses. Tis section considers the infuence of the in-
terlayer contact on the dynamic response of the medium
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Figure 12:Te real and imaginary parts of the vertical stress at (a) r� 0 and (b) r� h versus the dimensionless depth at a fxed dimensionless
frequency of two (ω0 � 2).
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using the model of the three-layered medium with a ho-
mogeneous half-space body at the bottom described in
Section 6.1 to explore the impact of the frequency on the
dynamic response of the layered media. Te parameters of
the layered medium are listed in Table 1. Moreover, we
assume that the contact between layer 1 and layer 2 is in-
complete; that is, there is an imperfect interface between the
two layers with tr= 1× 1010N/m3 and tz= 3×1010N/m3. Te
contact between the remaining layers and the adjacent
layered medium or the uniform half-space body is complete.
A vertical, uniformly distributed, harmonic load with an
amplitude of 1.0 Pa was applied to the surface of the medium
within the range of the disc with a radius of 0.0705h. Te
displacement and stress responses at diferent depths and
r= 0 were calculated at a dimensionless frequency of 0, 4, 6,
and 10.

Figure 13 displays the distributions of the vertical dis-
placement and the vertical stress in a depth range of 0 to 2h
at r� 0. It can be seen that the displacement response of the
surface of the medium gradually decreases as the frequency
rises, and the positions where the frst peaks of the real part
and the imaginary part of the displacement emerge gradually
move up.Te real and imaginary parts of the displacement at
a depth of h (z� h) are shifted due to the incomplete contact
between layer 1 and layer 2, while the real and imaginary
parts of the stress are continuous. Te displacement re-
sponse at diferent load frequencies approaches zero as the
depth to which the load is applied increases. In a depth range
of 0–h, the rate of change in the displacement-depth curve
declines with an increase in the depth to which the load is
applied, and the curve gradually fattens. In a depth range of
h to 2h, the displacement of the medium gradually ap-
proaches zero. Te rate of change in the displacement-depth
curve is low, and the curve approximates to a straight line;
this indicates that when there is an incomplete contact
between the layers of a layered medium, the load on its
surface has a small efect on the stress and displacement
responses of the medium below the depth of the imperfect
interface; this also implies that the frequency has a negligible
impact on the stress and displacement of the medium.

Te distribution of the vertical stress response of the
layered medium in a depth range of 0–2h at r� 0 is similar to
that of the vertical displacement of the medium, and the
medium surface has a similar stress response at diferent load
frequencies. Te curve of the real part of the stress still
oscillates with a small amplitude in a depth range of h to 2h
when the dimensionless frequency equals 10, which is be-
cause the displacement of the adjacent layers of the medium
at the imperfect interface is discontinuous, while the stress
on the medium is still continuous. Te imaginary part of the
stress on the medium is equal to zero when the dimen-
sionless frequency is 10. As the frequency increases, the peak
of the imaginary part of the stress rises, and the depth of the
point where the peak appears is diferent when the di-
mensionless frequency equals 4, 6, and 10.

7.4. Infuence of Heterogeneous Properties of Mediums on
Displacement and Stress Responses. Diferent layered media
have various heterogeneous properties which afect their
dynamic response. Tis section uses the model of the
three-layered medium with the homogeneous half-space
body at the bottom described in Section 6.1 to analyze the
displacement and stress responses of layered mediums
with diferent heterogeneous properties under the same
load. Te parameters of the medium are presented in
Table 1. Te medium was divided into four cases (Cases
1–4) according to the heterogeneous properties of the
medium; the properties of the medium in Case 1, that is, a
three-layer medium (layers 1–3) with a homogeneous
half-space body (the half-space) at the bottom, are listed
in Table 1. Case 2 is a double-layer medium (layers 1 and
2) with a homogeneous half-space body at the bottom and
the properties of which are the same as those of layer 3 in
Case 1 (see Table 1). Case 3 is a single-layer medium (layer
1) with a homogeneous half-space body at the bottom; the
properties of the half-space medium are the same as those
of layer 2 in Case 1. Case 4 is composed of a cross-
anisotropic homogeneous half-space medium, and its
properties are the same as those of layer 1. A vertical,
uniformly distributed, harmonic load with an amplitude
of 1.0 Pa was applied to the surface of the medium within
the range of a disc and Δr � 1.0 m; the displacement and
stress responses at the surface were obtained at r values of
0, 0.5h, and h in a dimensionless frequency range of 0–10.
Te calculation results are depicted in Figures 14–16.

Figure 14 delineates the distributions of the vertical
displacement of and the vertical stress on the surface of
the layered medium at r � 0 in a dimensionless frequency
range of 0–10. It can be seen that the real and imaginary
parts of the displacement tend to decline as the frequency
rises in the range of 0–10. Te curves of the displacement
response in Cases 1–4 gradually coincide when the fre-
quency is in the high range of 6–10, indicating that the
impact of the heterogeneous properties on the dynamic
response of the layered medium gradually softens as the
frequency enlarges and is small within a high-frequency
band.

In addition, among Cases 1–4, the curves of the dis-
placement response in Cases 2 and 3 coincide, indicating
that the diference in the heterogeneous properties of the
layered medium in Cases 2 and 3 has a small infuence on
the dynamic response of the medium. Case 4 has a quite
diferent curve of the displacement response compared to
the other cases, implying that the heterogeneous prop-
erties of the medium have a signifcant efect on its dy-
namic response. Te dimensionless frequency at which
the peaks of the real and imaginary parts of the dis-
placement of the medium appear is smaller in Case 4 than
in Cases 1–3, and the peak of the imaginary part of the
displacement of the medium is obviously larger in Case 4
than in Cases 1–3.

Advances in Civil Engineering 15



Figures 15 and 16 illustrate the distributions of the vertical
displacement of and the vertical stress on the surface of the
layeredmedium in a dimensionless frequency range of 0–10 at

r values of 0.5h and h, respectively. Te trend of the variation
in the displacement and stress responses of the surface of the
medium at r values of 0.5h and h is similar to the one at r� 0.

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0
–0.5

–15 –10 –5 0 5 0 2 4 6 8 10

0.0 0.5 1.0 1.5 2.0 –1.2 –0.8 –0.4 0.0 0.4

D
im

en
sio

nl
es

s d
ep

th
 z 

(h
)

D
im

en
sio

nl
es

s d
ep

th
 z 

(h
)

D
im

en
sio

nl
es

s d
ep

th
 z 

(h
)

D
im

en
sio

nl
es

s d
ep

th
 z 

(h
)

Dimensionless displacement Gvh1 wh (p)

Dimensionless stress σzh2 (p) Dimensionless stress σzh2 (p)

Dimensionless displacement Gvh1 wh (p)

ω0 = 6
ω0 = 10

ω0 = 6
ω0 = 10

ω0 = 0
ω0 = 4

Real part

ω0 = 6
ω0 = 10

ω0 = 0
ω0 = 4

Real part

ω0 = 0
ω0 = 4

Imaginary part

ω0 = 6
ω0 = 10

ω0 = 0
ω0 = 4

Imaginary part

Figure 13: Te real and imaginary parts of the vertical displacement and the vertical stress versus the dimensionless depth at diferent
dimensionless load frequencies.

16 Advances in Civil Engineering



0.3

0.2

0.1

0.0

-0.1
0 2 4 6 8 10

Dimensionless frequency ω0

D
im

en
sio

nl
es

s d
isp

la
ce

m
en

t G
vh

1w
h 

(p
)

0 2 4 6 8 10
Dimensionless frequency ω0

0.1

0.0

-0.1

-0.2D
im

en
sio

nl
es

s d
isp

la
ce

m
en

t G
vh

1w
h 

(p
)

Case 1
Case 3

Case 2
Case 4

Case 1
Case 3

Case 2
Case 4

Real Part Imaginary Part

(a)

0.3

0.2

0.1

0.0

0 2 4 6 8 10
Dimensionless frequency ω0

0.4

-0.1

-0.2

-0.3

-0.4

-0.5

D
im

en
sio

nl
es

s s
tre

ss
 σ

zh
2  (p

)

0.3

0.2

0.1

0.0
0 2 4 6 8

Dimensionless frequency ω0

0.4

0.5

D
im

en
sio

nl
es

s s
tre

ss
 σ

zh
2  (p

)

10

Case 1
Case 3

Case 2
Case 4

Real Part
Case 1
Case 3

Case 2
Case 4

Imaginary Part

(b)
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Figure 15:Te real and imaginary parts of (a) the vertical displacement and (b) the vertical stress at a fxed surface point (r, θ, z)� (0.5h, 0, 0)
for the diferent cases versus the dimensionless frequency.
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8. Conclusions

In this paper, a new SEM was proposed to determine the
dynamic response of the crossanisotropic layered mediums
under a dynamic load. Te incomplete contact between the
adjacent layers of the multilayered medium is considered in
the proposed algorithm. A double summation algorithm was
utilized in this model instead of the infnite integral in the
traditional algorithm. Te efciency of the inverse trans-
formation has greatly improved. Te numerical examples
verifed the accuracy and efciency of the algorithm in this
paper. Furthermore, an extensive parametric analysis of the
contact parameters of the interface between the layers of the
layered medium, namely, the point of application of the
external load, the excitation frequency, and the heteroge-
neous properties of the layered medium, was conducted.Te
results demonstrate that

(1) Te contact parameters of the interface between the
layers of the layered medium have a signifcant in-
fuence on its dynamic response. Te efect of the
load on the dynamic response of the layered medium
is signifcantly lessened when the contact parameters
are small. However, when they gradually increase,
the contact between the layers of the medium be-
comes closer, so the displacement of the upper and
lower surfaces of the contact layer tends to be
continuous.

(2) Te dynamic response of the point at which the load
is applied to the layered medium is also signifcant;
indeed, the dynamic response near the load is cor-
respondingly larger. As the vertical distance from the
load rises, the impact of the load on the medium is
gradually reduced.

(3) Although both the excitation load and the hetero-
geneous properties of the layered medium have a
signifcant infuence on the dynamic response of the
layered medium, they act through diferent
mechanisms.

Symbols

Am and Bm: Unknown constant coefcients
cij: Elastic stifness coefcients
Ehh and Evh: Young’s moduli of the crossanisotropic

medium in horizontal and vertical
directions, respectively

􏽢E and 􏽢E∗: Correlation matrix between the
displacement and stress vectors

Gvh: Shear modulus on the vertical plane
􏽢G(ηm): Flexibility coefcients of the medium in

the wave-number domain
H: Te characteristic matrix of the layered

medium
h: Tickness of the layer medium
J0 and Y0: Te Bessel functions of the frst kind and

the second kind
J1: Te frst-order Bessel function of the frst

kind

K11, K12, K21, and
K22:

Properties of coefcient matrices of the
layered medium

m: Ordinal number of the wavenumber
M: Number of the wavenumbers of

summation
n: Number of the layers of the layered

medium
P(t): Axisymmetric harmonic load
􏽢Pi (i� 0, 1, 2, . . .,
n):

Load vector at the depth of zi

R: Radius of the wave vanishing
(r, θ, z): Te cylindrical coordinate system
􏽢S: Stifness matrix of a single homogeneous

layer
tr and tz: Horizontal and vertical contact

parameters
t� diag {−1/
tr − 1/tz}:

Interface contact parameters matrix

􏽢T(zj) (j� 0, 1, 2,
. . ., n):

Unknown tractions vector at the depth of
zj

u and w: Radial and vertical displacements
􏽢U(zj) (j� 0, 1, 2,
. . ., n):

Displacement vector at the depth of zj

􏽢ui (i� 0, 1, 2, . . .,
n):

Displacement vector of node i

􏽢V � 􏽢U 􏽢T􏽨 􏽩
T
: Te variables of the dual equation

zj (j� 1, 2, . . ., n): Te bottom depth of the jth layer
ω: Angular frequency
ω0: Dimensionless angular frequency
ρ: Mass density of the layered medium
σi(i � r, θ, z): Normal stress in i-direction
τzr: Shear stress on z-r plane
􏽢θ: Fourier–Bessel transform coefcient
ξ1 and ξ2: Potential functions of the Helmholtz

decomposition
vhh and vvh: Poisson’s ratio on the horizontal and

vertical plane, respectively
ηpzm (m� 1, 2,
. . ., M):

Wave number of the compression wave

ηszm (m� 1, 2, . . .,
M):

Wave number of the shear wave

χ � Ehh/Evh: Ratio between Young’s modulus in
horizontal and vertical directions

Δr: Radius of uniform harmonic load
Ψ� [Ψ11 Ψ12;
Ψ21 Ψ22]:

Te eigenvectors matrix

Λ� diag {λi − λi}: Te eigenvalues matrix
αm: Positive roots of function J0
β: Material damping ratio.

Appendix

A. Constructing Potential Function

Te scalar potential function ξ1 is frst solved. Te Fourier
analysis of the second-order diferential Equation (8) is
performed, and the following formula can be obtained by
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transforming the computational domain from the time
domain into the frequency domain.

z
2􏽢ξ1(r, z)

zr
2 +

z􏽢ξ1(r, z)

rzr
+

z
2􏽢ξ1(r, z)

κ1zz
2 +

ω2

c
2
p1

􏽢ξ1(r, z) � 0. (A.1)

Te variables with the caret symbol (̂) are the ones in the
frequency domain. Te solution of Equation (A.1) can be
obtained by the method of separation of variables. Since 􏽢ξ1 is
a function of two orthogonal axes r and z, the solution may
consist of two independent functions of r and z:

􏽢ξ1(r, z) � 􏽢Y1(r)􏽢Y2(z). (A.2)

Substituting Equation (A.2) into Equation (A.1), both
sides of the equation are divided by 􏽢Y1(r)􏽢Y2(z) and set equal
to the constant −η2. Ten, the two independent ordinary
diferential equations of 􏽢Y1(r) and 􏽢Y2(z) can be obtained.

d
2 􏽢Y1(r)

dr
2 +

1
r

d􏽢Y1(r)

dr
+ η2 􏽢Y1(r) � 0, (A.3)

z
2 􏽢Y2(z)

zz
2 + κ1

ω2

c
2
p1

− η2⎛⎝ ⎞⎠􏽢Y2(z) � 0. (A.4)

If s� ηr, Equation (A.3) can be reduced to the Bessel
equation by using the chain rule.

d
2 􏽢Y1(s)

ds
2 +

1
s

d􏽢Y1(s)

ds
+ 􏽢Y1(s) � 0. (A.5)

Te solutions for Equation (A.5) are the Bessel functions
of the frst kind J0 and the second kind Y0; Y0 approaches
infnity when r� 0. However, the solution should be dis-
carded as the vibration is fnite at the origin. 􏽢Y1(r) is
expressed by the following equation:

􏽢Y1(r) � A1J0(s) � A1J0(ηr), (A.6)

where A1 is an unknown constant and η is the wave number
in the radial direction. It is also assumed that the amplitude
of the wave can be ignored when r�R (far away from the
source), then the nonzero solution to equation (A.6) can be
expressed in the following way:

􏽢Y1(R) � J0(ηR) � 0. (A.7)

Tis condition can be satisfed at the infnitely many
positive root αm of function J0. If we let ηr � αm, that is,
η� ηm � αm/R, the m solutions in the radial direction can be
expressed as follows:

􏽢Y1m(r) � A1mJ0
αm

R
r􏼒 􏼓. (A.8)

Te solution for 􏽢Y2(z) in equation (A.4) can be
expressed through an exponential equation:

􏽢Y2m(z) � A2me
− iηpzmz

, (A.9)

where A2m is a constant; i �
���
−1

√
; ηpzm represents the

compression wave number as follows:

ηpzm �
κ1ω2

c2p1
− κ1ηm

2
􏼠 􏼡

1/2

. (A.10)

Ten, the solution to equation (8) can be expressed as
follows:

􏽢ξ1m(r, z) � Ame
− iηpzmz

J0 ηmr( 􏼁. (A.11)

Te potential function 􏽢ξ2 can also be solved in a similar
way by transforming equation (9) from the time domain into
the frequency domain with the Fourier transform.

z
2􏽢ξ2(r, z)

κ2zz
2 +

z
2􏽢ξ2(r, z)

zr
2 +

1
r

z􏽢ξ2(r, z)

zr
−

􏽢ξ2(r, z)

r
2 +

ω2

c
2
z1

􏽢ξ2(r, z) � 0. (A.12)

Since 􏽢ξ2 is also a function of two orthogonal axes, r and z,
the solution to 􏽢ξ2 is composed of two independent functions
as expressed in the following equation:

􏽢ξ2(r, z) � 􏽢Y1(r)􏽢Y2(z). (A.13)

Te expression of the solution (equation (A.13)) is
substituted into equation (A.12), and both sides of the
equation are divided by 􏽢Y1(r)􏽢Y2(z), then both sides of the
equation are set equal to the constant −η2, and the two
independent ordinary diferential equations can be calcu-
lated by the following equations:

z
2 􏽢Y1(r)

zr
2 +

z􏽢Y1(r)

rzr
−
1
r
2
􏽢Y1(r) + η2 􏽢Y1(r) � 0, (A.14)

z
2 􏽢Y2(z)

zz
2 + κ2

ω2

c
2
z1

− η2􏼠 􏼡􏽢Y2(z) � 0. (A.15)

If s� ηr, then by use of the chain rule, equation (A.14)
reduces to Bessel’s equation as follows:

d
2 􏽢Y1(s)

ds
2 +

1
s

d􏽢Y1(s)

ds
+ 1 −

1
s
2􏼠 􏼡􏽢Y1(s) � 0. (A.16)

Ten, the solution to equation (A.12) can be obtained as
follows:
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􏽢ξ2(r, z) � Bme
− iηszmz

J1 ηmr( 􏼁, (A.17)

where Bmn is a constant; J1 indicates the frst-order Bessel
function of the frst kind; ηszm represents the number of the
vertical shear waves and is calculated by the following
equation:

ηszm �
κ2ω2

c2z
− κ2η

2
􏼠 􏼡

1/2

. (A.18)
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