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Detection and mapping of rock discontinuities are important during excavation. The terrestrial laser scanning (TSL) technology is
widely used to acquire accurate quantitative. However, there is rarely study about the influence of discontinuities parameters on
the detection. Through the 3D printing technology, we have built discontinuity models with different roughness and connectors
with different angles. Therefore, we can control the variables in the scanning. Several open-source packages were applied to derive
the information from the point cloud acquired by TSL. The result shows that the recognition effect decreases with the angle
between discontinuities. Moreover, the presence of roughness of discontinuity makes it prone to lead to lousy classification in the
detection process. The proposed method has successfully extracted discontinuity dip, dip direction, and roughness automatically
from the point cloud. The application on the two datasets showed great adaptability and accuracy. Consequently, the method

could meet realistic engineering needs.

1. Introduction

Detection and mapping of rock discontinuities are impor-
tant during excavation. The intersections between discon-
tinuities, known as faults, joints, and bedding planes, divide
a body of rock into fragments that detach from the larger
body of rock when revealed by tunnel construction.
Therefore, acquiring accurate quantitative discontinuity
data, which are not affected by biases and censoring, is
critical. The field mapping and handheld direct measuring
with a scan-line method or a scan-window method require
direct access to the excavation face. Consequently, collecting
geological information on rock discontinuities is difficult,
time-consuming, and often dangerous, especially in unstable
areas.

Recently, the applications in geosciences of remote
sensing investigations for the investigation of rock mass have
rapidly improved. The most common techniques used to
generate highly detailed 3D point clouds are terrestrial laser

scanning and digital photogrammetry [1-5]. Several ap-
proaches have been used to construct the 3D point clouds of
rock surface to obtain Digital Outcrop Model (DOM) about
the excavation face. The DOM formed by these dense point
clouds allows engineers to perform the information ex-
traction on a computer. Many researchers have been
working on automatically extracting discontinuity param-
eters (e.g., orientation, spacing, trace persistence, and
roughness) from the DOM. Assali et al. [6] developed a
semiautomatic process that classifies rock discontinuities
into subsets according to their orientation. Chen et al. [7]
presented a new method for extracting discontinuity ori-
entation automatically from rock mass surface 3D point
cloud. Chen et al. [8] discussed the accuracy of the 3D laser
scanning technique and demonstrated the potential of 3D
laser scanning techniques to replace traditional window
mapping. Idrees and Pradhan [9] investigated the influence
of rock geostructure on cave channel development. They
assessed the cave’s stability by determining areas susceptible
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to different failure types using surface discontinuity data
extracted from laser scanning point cloud. Li et al. [10]
presented an automatic characterization method for rock
mass discontinuities that uses 3D point clouds. The orien-
tation, trace, spacing, roughness, and aperture are extracted
automatically by this method. Monsalve et al. [11] generated
the DFNs by characterizing discontinuities in an under-
ground limestone mine by laser scan.

Unfortunately, there are some intractable technical
bottlenecks. First, these studies mainly cluster the point
cloud through statistical analyses of the geometric features of
triangular mesh units in a TIN generated from the point
clouds. However, this method only considers the small-scale
local features of point cloud data. Consequently, the auto-
matic clustering process is prone to make mistakes by un-
even rock mass surfaces. Second, these approaches are
mainly based on the k-means algorithm. It means that the
clustering is sensitive to the selection of initial centers and
the number of clusters. Third, the resample process was
widely used in these methods to get uniform point clouds.
Consequently, the information on the discontinuities could
be varied and dismissed.

This paper proposed a novel method to extract rock
discontinuities from unstructured raw point clouds auto-
matically. Our key innovation is to achieve the goal of point
cloud classification without resampling and the TIN process.
The remainder of this paper is organized as follows. In
Section 2, we summarize proposed methods for LiDAR
point cloud classification. In Section 3, we experiment to
verify the performance of our method. In Section 4, the case
study was carried out. Finally, the paper is discussed and
concluded in Sections 5 and 6.

2. Methodology

In this section, we introduce the proposed algorithm for
extracting rock discontinuities from point clouds. Section
2.1 describes the random forest algorithm as a classifier for
point clouds. In Section 2.2, the dynamic DBSCAN algo-
rithm is presented.

2.1. Random Forest Algorithm. RF [12] is always found to be
the highest performing classifier for point clouds. RF is
natively a multi-class algorithm, meaning that a single run of
the model could predict all class labels. The output class
probability scores represent the proportion of trees that
voted for each class, and the sum of all probabilities is equal
to 1 by definition. The RF classifier we trained was used to
classify the point clouds into discontinuities and edges.
Consequently, the input features we used in this study are
the geometry features at multiple scales. The main idea
behind these features is to characterize the local dimen-
sionality properties of the scene at each point with different
scales. The discontinuity looks like a 3D at a few millimeter-
scale because of the roughness, and the edge also looks like a
3D object. Consequently, it is challenging to distinguish
them. At a larger scale (i.e., 10 cm), the edge still looks like a
3D. By contrast, the discontinuity now looks more 2D than
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3D. When combining geometry information from different
scales, we can thus build signatures that identify the dis-
continuity and edge. Consequently, the eigenvalues of the
covariance matrix of the neighborhood point X, Y, and Z
coordinates, searched with different scales, are calculated
and sorted from largest to smallest. The eigenvalues
A7\ /\ Ay >A) > A ) are then normalized as equation
@.
J ik i=1,2,3 1
P Y W
The j indicates the scale of the scene. These proportions
characterize the degree to which the point neighborhood can
be considered 1-D, 2-D, or 3-D. These three proportions are
calculated for each of the nine scene scales for 27 geometry
features.

2.2. Dynamic DBSCAN Algorithm. DBSCAN [13] can find
several clusters with irregular shapes based on the estimated
density distribution as one of the developed density-based
clustering algorithms. It does not need to know the number
of clusters in advance. The methodology of the traditional
DBSCAN algorithm is illustrated as shown in the left part of
Figure 1. Starting from a random unvisited point A,
DBSCAN retrieves all points in the neighborhood with a
user-defined radius e. The density threshold MinPts is the
minimum number of points required to form a dense region.
If at least MinPts points are within the e-neighborhood,
point A would be regarded as a core point. And all its
neighborhoods would be arranged into the density-reach-
able set. Then an unvisited point in this set will be visited
randomly, and the above procedure will be repeated. If the
number of e-neighborhood is less than Minpts, like point B,
the point will be regarded as a border point. The loop will be
carried on until there is no point unvisited in the density-
reachable set. The other points, like point C, which is
density-unreachable, should be allocated into another
cluster or noise.

However, in the TSL points cloud, the density of points is
anisotropic and inhomogeneous so that the hyper-
parameters MinPts and e can hardly be determined rea-
sonably. The dynamic DBSCAN algorithm is proposed in
this paper to address this shortage, as shown in the right part
of Figure 2. The number of e-neighbor points of every point
is treated as a constant MinPts. Moreover, the radius € is a
variable according to the density rather than a constant in
the traditional DBSCAN algorithm.

After the border points are distinguished, the search
operation shown in Figure 2 will be carried out following
these steps: first, the original point P; will be selected from
the points cloud set R by chance. If the P; is not a border
point, its e-neighbor points will be retrieved from R into set
Q. Otherwise, the operation should be suspended and the
first step repeated. Then the points in set Q will be visited and
operated the same way as P; until there is no unvisited point
in Q. The points in set Q come from the same discontinuity.
Finally, the points in set Q will be removed from the R, and
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FIGURE 1: The dynamic DBSCAN algorithm.
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F1GURe 2: The workflow of discontinuities clustering.

the first step will be executed repeatedly until the R is empty. As
shown in Figure 3, the points retrieved with the dynamic
DBSCAN method from point clouds in an application are
recognized as rough surfaces. Its oration will be calculated by the
best plane fitted algorithm with these points instead of by the
facet generated from a triangular mesh. So, the pseudosurface
caused by the small-scale roughness can be avoided rationally.

3. Experiment

This section scans discontinuities with different roughness
and angles by a laser scanner to learn how the accuracy is
affected. First, the model and data preparations are

described. Then, the influence of various levels of roughness
and angles is shown.

3.1. Model Design and Data Collection. As shown in Figure 4,
to investigate the influence of roughness and included angle,
we design a series of plates with different roughness surfaces
and connectors with different included angles. The models
were scanned with a Leica C10 terrestrial laser scanner
(Figure 3(b)). The scanner was positioned at 1 m to the
models and operated at the highest possible angular reso-
lution. The resulting point cloud contained about 1.2 million
points on the model surface with a point-spacing of 1 mm on
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FIGURE 4: The experiment design.

average. According to the technical. Since the model is
placed on the desk, a random rotation was carried out to get
a random model.

4. Result and Analysis

4.1. Classification Result. Figure 5 is the classification result of
the test point cloud, and it can be seen that the overall clas-
sification accuracy can be stabilized at about 97.3%. Table 1 is
the recall of the decomposition line under the conditions of
different surface roughness and different included angles. When
the roughness of the discontinuity is less than 5mm, and the
included angle is less than 130°, the classifier can achieve a 100%
recognition effect on the boundary. With the increase of angle
and roughness of the structural plane, the classification accuracy
gradually decreases. With the increase of the angle, the three-
dimensional feature of the point cloud at the junction line
gradually decreases, and it shows a 2D feature at each scale, so it
is classified into the discontinuity category. When the roughness
is large, the point cloud of discontinuity presents three-di-
mensional features in the multiscale field. The classifier divides
the point cloud of discontinuity into the boundary category.

4.2. Segmentation Result. Figure 6 shows the segmentation
effect of discontinuities by the DBSCAN algorithm under the
conditions of 0.5mm and 1 mm roughness of discontinu-
ities. The black point cloud data are the identified

decomposition line points. When the included angle of the
structural plane is 170°, the two discontinuities are con-
sidered as a single surface. Consequently, the segmentation
of the discontinuities cannot be realized.

Figure 3 shows the segmentation effect of discontinuities
under the condition of 5mm roughness. It can be seen that
when the included angle of the structural plane reaches 150°,
the segmentation cannot be realized. Furthermore, when the
included angle is equal to 30°, the segmentation still fails, al-
though the boundary between the discontinuities is identified.
This is because when the included angle of the discontinuities is
slight, and the roughness of the discontinuities is large, the
distance between the two discontinuities near the boundary is
relatively close. Therefore, the DBSCAN algorithm is prone to
cross between different discontinuities point clouds when
searching the neighbors, leading to the error.

5. Case Study

The application in two cases is introduced in this section. Case
A consists of regular polygons scanned in laboratory condi-
tions; case B is points from a portion of a rock slop, available at
http://www.3D-landslide.com/projects/discontinuity/.

5.1. Case A. As shown in Figure 7, two representative
geometric shapes, cube, and dodecahedron, were selected for
analysis. The cube is represented using 60,488 points, and the
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TaBLE1: The recall in classification.
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FIGURE 6: The segmentation results of discontinuities.

dodecahedron is represented using 80,828 points. Data were
obtained using a 3D digitizer (Konica Minolta, Vivid 9i)
through progressive rotation of the objects around a fixed
platform axis and subsequent scanning.

Figure 8 shows the result of the automatic grouping of
the cube and dodecahedron point clouds. The cube can be
grouped into five different discontinuities, and the do-
decahedron can be grouped into six different discontinuities.
Different colors represent each discontinuity. The Silhouette
validity index (SVI) is calculated to evaluate the validity of
the clustering as follows.

b(x;)—a(x;)
max{a (x;),b(x;)}

S(x,) = (2)

The x; is a sample in one of the clusters. a(x;) is defined as
the average distance of x; to all other samples in its cluster,
and b(x;) is defined as the minimum of the average distance
between x; and samples in other clusters. A S(xi) value close
to 1 indicates that x; is assigned to an appropriate cluster. If
S(x;) is close to -1, xi is misclassified and lies somewhere
between the clusters. The average SVI is all data points in the
whole dataset. The SVI is shown in Figure 8 and compared
with reference [6].

The Silhouette values corresponding to different
methods are shown in Figure 8. The hollow mark presented
the results from reference [6]. As the number of clusters
must define manually, the maximum SVI corresponds to
three and six for the cube and the dodecahedron. However,
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the preknowledge in the number of clusters could be ignored
in the dynamic DBSCAN algorithm. Furthermore, in our
method, the SVI, presented by the red solid mark, is better
than that in reference [6].

5.2. Case B. As shown in Figure 9, case B was a portion of a
rock slope, which covers an area of approximately 6 m* with
an average point spacing of 0.0055 m. After classifying points
to discontinuities, the RANSAC plane fitting algorithm
considers the volatility and produces an objective estimate of
the discontinuity orientations. Details of the RANSAC
method have been introduced in reference [8]. Figure 9(b)
shows the result of the automatic grouping of the
discontinuities.

_ 180 x arctan VA? + BY/|C|
n )
dip — direction = 180 x arctan|B/Al/7.

dip

The dip and dip direction statistics are represented in
Figure 10. The discontinuities could be divided into five
groups according to the density distribution characteristics
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FIGURE 9: Automatic clustering results. Consequently, the discontinuity plane parameters could be obtained. Furthermore, assuming the
plane equation is Ax + By + C(z) + D=0, the discontinuity dip and dip direction could be recovered with equation (3).
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Figure 10: The extracted discontinuities information.

of dip and dip direction: setl: 217°220°, set2: 277°240°, set3:
277°240°, sset4: 100°£15°, and set5: 120°250°. As there is no
triangulation and resampling for the point cloud in the
calculation process, we can extract the roughness of dis-
continuities. In this paper, the roughness of discontinuities is
defined as the average distance between the point cloud of
the same discontinuity and the fitting plane. As shown in
Figure 10(b), it can be seen that the roughness is less than
lcm for most discontinuities, and only a few have a
roughness of more than 2 cm.

6. Discussion

In the TSL point cloud, the density of points is aniso-
tropic and inhomogeneous so that the hyperparameters
MinPts and € in the DBSCSAN algorithm can hardly be
determined reasonably. Consequently, we proposed a
dynamic DBSCAN algorithm, which only needs one

hyperparameter. During this study, the effectiveness and
accuracy of the dynamic DBSCAN algorithm are com-
promised by several factors. The influence of these factors
was studied by model test. When the roughness of the
structural plane is less than 5 mm, and the included angle
is 170° or less, the discontinuities could be segmented.
However, when the structural plane’s roughness reaches
5mm, the angle between the discontinuities needs to be
less than 150° to realize the segmentation. Meanwhile, due
to the increase of roughness, when the angle between the
two discontinuities is 30° or less, the point clouds of the
two discontinuities are too close to the dividing line, so the
segmentation tends to fail.

The computation efficiency and accuracy of the dynamic
DBSCAN algorithm are acceptable for practical usage but still
need improvement. For case B, when gravel piles are between
two discontinuities, it is easy to cause wrong structural plane
segmentation. The point cloud classification takes a lot of



computing time because it needs multiple cycles to extract the
features of point clouds at different scales.

7. Conclusions

This paper proposed a novel algorithm for automatic dis-
continuity information extraction from a point cloud. The
proposed method consists of three steps: (1) through the
Random Forest (RF) algorithm, the point cloud is classified
automatically, and the point cloud is divided into plane
points and boundary points. (2) The dynamic DBSCAN
algorithm segments the point cloud data between different
discontinuities. (3) The plane fitting of the same structural
plane is carried out by the RANSAC algorithm. The dip, dip
direction, and roughness of the structural discontinuity are
calculated. The process could be carried out without manual
intervention and shows good robustness to the roughness
and unevenness of rock mass surface. Through the physical
model, the application showed great adaptability and ac-
curacy. Consequently, the method could meet realistic
engineering needs.

Future research could be focused on the following
aspects to improve the method: (1) Through matrix calcu-
lation, a large number of cyclic calculations in the algorithm
is avoided, and the multiscale spatial features of the point
cloud are extracted quickly; (2) automatic interference re-
moval of debris pile to improve the signal to noise ratio of
point cloud data. [14-17].
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