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Wind �ow on a blu� body is a complex and nonlinear phenomenon that has been mainly studied experimentally or analytically.
Several mathematical methods have been developed to predict the wind-induced pressure distribution on blu� bodies; however,
most of them result unpractical due to the mathematical complexity required. Long-short termmemory arti�cial neural networks
with deep learning have proven to be e�cient tools in the solution of nonlinear phenomena, although the choice of amore e�cient
network model remains a topic of open discussion for researchers. �e main objective of this study is to develop long-short term
memory arti�cial neural network models to predict the external pressure distribution of a low-rise building. For the development
of the arti�cial neural network models, the multilayer perceptron and the recurrent neural network were also employed for
comparison purposes. To train the arti�cial neural networks, a database with the external pressure coe�cients from boundary
layer wind tunnel tests of a low-rise building is employed. �e analysis results indicate that the long-short term memory arti�cial
neural network model and the multilayer perceptron neural network outperform the recurrent neural network.

1. Introduction

�e study of wind e�ects on low-rise buildings is carried out
by using the wind-induced pressure distribution over the
structure. �is pressure distribution can be calculated from
experimental wind tunnel tests [1] or by using computa-
tional wind engineering [2]. Based on the pressure distri-
bution, international wind design codes and standards
propose the use of external pressure coe�cients (EPC) in
order to calculate the wind-induced forces.

�epredictionofEPCdue to the incidenceofwindonblu�
bodies has been an important topic for researchers in the last
decades. In particular, the study of the pressure distribution
near the edges of the structure, since wind e�ects are often
characterized as a nonlinear problem in these areas [3–5].

Database-assisted design (DAD) has been proposed for
thedesignand revisionofbuildingsunderwind loads [6–9]. In

a DAD, aerodynamic information from experimental wind
tunnel tests has beenused; however, the scarce informationon
representativebuildingmodelshasbeenanobstacle tousing it.
Recently, researchers have developed and applied complex
mathematicalmodels to characterize or simulate the turbulent
�ow of wind within an environment with certain character-
istics of natural roughness [10–14]. Other studies that include
novel methodologies are those by Wan et al., [15] where a
model based on support vectormachine regression (SVR) and
kernel ridge regression (KRR) was used to predict wind speed
records; Wan et al. [16] developed a new universal power law
based in the use of a wavelet multi-scale transform algorithm
to predict wind speed; Li et al. [17] used a least-squares
support-vector machine (LSSVM) model with parameter
optimization to forecast wind speed; Pang et al. [18] propose a
novel intelligence algorithm for airfoil design based on the
combination of low wind �eld, considering the e�ects of
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surface roughness on the lift coefficient and the lift-to-drag
ratio of the airfoil, the instability of wind speed, and wind
direction to ensure gentle stalling characteristics, and the
stable power generation of wind turbines.

Recently, artificial neural networks (ANNs) offer a great
advantage over complex mathematical models used in the
prediction of nonlinear phenomena.+e skill to simulate the
role of a human brain gives ANN models the capability to
solve problems from a database, combining and adapting to
the conditions and changes of different input variables to
find a generalized solution. Recent studies have shown the
versatility and usefulness of ANN models, for example,
Shaquid et al. [19] employed an ANN model to investigate a
reliability model centered on the exponentiated Weibull
distribution and the inverse power-law model. Moreover,
Shaquid et al. [20] demonstrated that ANNs are an excellent
engineering tool for predicting survival and mortality rates.

Some researchers have shown that the feed-forward
neural network (FFNN) can be used to interpolate pressure
coefficients for low-rise buildings [21, 22] or wind-induced
pressure time series [23]. FFNNs have also been employed to
predict wind-induced pressure on roofs of low-rise buildings
in an efficient way [24, 25] and to estimate the dynamic along-
wind response of tall buildings using ANNs as an alternative
to wind tunnel tests [26, 27]. More recently, Çolak [28]
employed an FFNN model to study the thermal conductivity
of water-based zirconium oxide nanofluid and showed its
ability to make predictions with a low margin of error.

Other studies have employed recurrent neural networks
(RNN) for the study of dynamic problems, where the results
obtained with the RNN outperform those obtained with the
FFNN [29, 30]. It is noted that the use of RNNs in solutions
of wind speed or pressure problems on structures is scarce in
the literature. Likewise, in recent years, deep learning in
ANNs has gained more attention for works with sequences
and time series [31, 32], data for classification and regression
tasks for language modeling [33, 34], speech recognition and
video analysis [35, 36] with the employ of long-short term
memory (LSTM) ANN; however, similar to the case of
RNNs, the use of LSTM ANNs in the prediction of EPC is
scarce in the literature.

In this study, a comparison of the prediction of EPC on a
low-rise building by using the FFNN, RNN, and LSTMANN
models with different types of architectures is carried out. For
the analyses, a database with EPC from boundary layer wind
tunnel tests of a low-rise building is employed for training,
validation, and testing of the ANNmodels.With the purpose
of making this study self-contained, in the following section
some basic concepts of ANNs are presented.

2. Basic Concepts of ANNs

An ANN is a tool designed primarily to mathematically
model the internal architecture and operational character-
istics of the human brain and nervous system, consisting of

three types of interconnected layers. +e first and last layers
are called input and output layers, respectively, and all other
layers between the input and output layers are called hidden
layers. Each layer has a certain number of artificial neurons,
each connection neuron has a synaptic weight, and each
layer has an activation function responsible for processing
the data that the system must recognize. Moreover, each
neuron has an activation value that is a function of the sum
of the inputs received by other neurons, and that is mul-
tiplied by the corresponding synaptic weights of each
connection.

+e number of hidden layers and hidden neurons in each
layer depends on several parameters, such as the complexity
of the problem to be solved, the architecture of the network,
the training algorithm, and the number of training cases.
+roughout the development of artificial intelligence, rules
have been proposed to choose the number of hidden layers
and neurons [37, 38]; however, a unified procedure is still
not available for all the possible cases considered. Up to date,
one of the methods usually employed to identify the opti-
mumANNmodel is to vary the number of hidden layers and
neurons, estimate the mean squared error (MSE), and
choose the ANNwith the minimumMSE as the optimal one,
this method is called “Test and Error” [39] and has been
extensively used in several ANN applications [40, 41].

ANN modeling usually involves three stages: training,
validation, and testing. In the training stage, neurons are
trained by a random input pattern to obtain a desired result.
Training consists of optimizing the synaptic connection
weights and modifying them after each iteration cycle until a
minimum MSE is achieved. In the validation stage, opti-
mized weights and biases are used to produce their asso-
ciated output. Normally, the inputs used in the validation
stage are associated with known outputs and additional
comparisons of the MSE are carried out. In the testing stage,
input scenarios are used to evaluate the prediction ability of
the trained ANN models.

2.1.!e FFNNModel. In the FFNN model, connections and
data flow are unidirectional, from the input layer to the
output layer, without transmission of information between
neurons located in the same or previous layer. +e FFNN
model has been used to solve dynamic problems; however,
this type of ANN does not offer any retention of infor-
mation, making it less effective than the RNN to solve certain
types of problems [42]. An FFNN has one of the simplest
architectures for training and getting good results for static
problems where the behavior of the values to be predicted
does not depend on time.

If an ANN model with a single output neuron and two
hidden layers are considered, the mathematical expression
that relates the output neuron in the output layer with the
neurons in the input and hidden layers is given by the
following equation [43]:
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where n is the total number of input neurons; m is the total
number of neurons in each hidden layer; xi is the i-th neuron of
the input layer; [W1]i, j is the matrix of synaptic weights that
optimize the connection between the input layer and the first
hidden layer; [W2]j,k is the matrix of synaptic weights that
optimize the connection between the first and second hidden
layers; [W3]k,1 is the matrix of synaptic weights that optimize
the connection between the second hidden layer and the output
layer; (φ1)j is the vector associated with the results of the first
hidden layer; (φ2)k is the vector associated with the results of
the second hidden layer; (φ3)1 is the vector associated with the
results of the output layer; f3(∙) and f2(∙) are each a Hyperbolic
Sigmoid Tangent activation function used between input and
hidden layers and within the hidden layers; and f1(∙) is a Linear
activation function used between the second hidden layer and
the output layer. Figure 1 presents the architecture of the FFNN
model used in this study.

2.2. !e RNN Model. RNNs employ feedforward and
feedback connections, the latter refers to the information
that can be interchanged between neurons that are in the

same or previous layers and subsequent layers, this type of
connection gives them an advantage over the FFNNs when
it comes to identifying and controlling a dynamic problem
[44]. +e RNN is mainly composed of three layers (Fig-
ure 2), the first one is the input layer with two types of
neurons: the external input neurons (xi) responsible for
feeding the RNN with external information, and the in-
ternal input neurons or context units (or), which receive
information from the neurons of the hidden layers (re-
current information). +e function of the context units is
to store knowledge generated by the network in each it-
eration, this knowledge will replace the external input to
achieve the appropriate adjustment of the trained model;
this ability provides the advantage of solving problems
where the variable is changing over time. In the hidden
layer, the combination of xi and or is carried out by
considering their corresponding synaptic weight matrix
(wij) and recurrent synaptic weight matrix (wrj). Finally,
the output of the hidden layer (Oj) is obtained by applying
the activation function f(∙) to the combination. Equation
(2) mathematically summarizes the calculation of Oj [43]
as follows:
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Figure 1: FFNN architecture with two hidden layers.
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where N is the total number of external neurons, and R is the
total number of internal neurons.

+e output of the hidden layer, Oj, becomes the internal
input (Or) for the next time step t, according to the following
equation [43]:

O
t
r � O

t−1
j . (3)

Finally, the output or solution from the RNN is obtained
by using the following equation [43]:
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where jk is a synaptic weight matrix, g is a linear activation
function, J is the total number of hidden neurons, and k is
the number of outputs.

2.3. !e LSTM ANN Model. +is kind of ANN model uses
backpropagation through the time training algorithm [45]
and deep learning in order to reduce the short-term de-
pendencies that are generated due to the decrease in gra-
dient, while the information from each step declines
[46–48].+is network aims to reach a generalized solution to
the problem. Such is done by overcoming the setbacks of the

declined gradients, selecting the information by filters or
gates; thus, relevant information is retained, whereas irrel-
evant information is forgotten. Reduced vulnerability in
time steps makes LSTM ANN better for data stream
treatment compared to FFNN and conventional RNN
models.

+e general architecture of this kind of ANN is illus-
trated in Figure 3(a), where the main components of an
LSTM ANN are shown. +e input vectors that feed the
LSTM ANN are also included in Figure 3(a). +e ht and ct
variables denote the hidden outputs or states, and the state of
the cell in time t, respectively.

+e network arrangement will have as many LSTM
blocks as the number of time steps that need to be analyzed.
Each block uses a predefined number of hidden units that
will process the information within them.

+e expression given in equation (5) is used for the
calculation of the cell state (ct) in the time step t [49].

ct � ft ct−1 + it gt, (5)

where ct−1 is the initial cell state, gt is the memory cell, it is
the input gate, and ft is the forget gate. +e expressions to
calculate gt, it, and ft are given, respectively, by the following
equations [49]:

gt � σc Wgxt + Rght−1 + bg , (6)

it � σg Wixt + Riht−1 + bi( , (7)
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Figure 2: Recurrent neural network (RNN) architecture used. For simplicity, the synaptic weights between input layer (external and
internal) and hidden layer have been omitted.
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ft � σg Wfxt + Rfht−1 + bf , (8)

where Wg, Wi, and Wf are the synaptic weights matrices by
cell state, input gate, and forget gate, respectively;Rg, Ri, and
Rf are the recurrent synaptic weights matrices by cell state,
input gate, and forget gate, respectively; bg, bi, and bf are the
biases by cell state, input gate, and forget gate, respectively; xt
is the signal data associated with the database time step t, and
ht−1 is the previous hidden output or state.

In the case of ht, it will be updated according to the
following equation (49):

ht � ot σc ct( , (9)

where ot is the output gate given by the following equation
[49]:

ot � σg Woxt + Roht−1 + bo( , (10)

where Wo, Ro, and bo are the synaptic weights matrix, the
recurrent synaptic weights matrix, and biases of the output
gate, respectively; ht−1 is the previous network status; xt is the
signal data associated with time step t. In equations (7), (8),
and (10), σg denotes the gate activation function, and in
equations (6) and (9), σc denotes the state activation function.

+e status of each block depends on ht, which contains
the output of the LSTM block for the appropriate time step t,
and the state of ct, which contains the knowledge from
previous time steps. Internally, at each block and at each
time step, cell state information is added or removed by
controlling gates (Figure 3(b)).

More specifically, the forget gate is used to control the
volume of information that will be discarded from past time
steps selecting the value of the vector ft, if the result of the
function is close to 1, the information stored by the state of
the cell is retained; however, when the function value is close
to 0, the cell state will discard the information.
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Figure 3: LSTM ANN: (a) architecture; (b) LSTM block.
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In this way, the current memory gt and the long-term
memory ct−1 are combined in the LSTM, resulting in a new
cellular state ct. +e information contained at a predefined
time can be preserved by the control of the forget gate ft,
while the current inessential information is removed from
memory by the control of the input gate it. +e output gate ot
is configured to control the amount of memory information
to update at the next time step, similar to the input gate
calculation.

3. Analysis Procedure

3.1. Experimental Input andOutput Parameters. To assemble
the experimental database of wind-induced EPC of a generic
low-rise building, wind tunnel tests at the boundary layer
wind tunnel (BLWT) of the National Autonomous Uni-
versity of Mexico (UNAM for its acronym in Spanish) were
carried out. +e UNAM BLWT is of the closed-circuit type
and is composed of four modules that form a rectangular
configuration in plan (Figure 4). Modules 1 and 3 are ap-
proximately 38m long, whereas modules 2 and 4 are 13.9
and 12.6m long, respectively. Module 3 is the module for
replicating the atmospheric boundary layer (ABL), it is 3m
wide, and the height ranges from 2m at the contraction cone
exit to 2.35m behind the second turntable. +e length of the
test section permits the placement of roughness elements
and turbulence generators to adequately characterize the
ABL and turbulence intensity profile for a predefined terrain
category [50]. All the experimental tests were carried out in
Module 3. A complete description of the BLWT employed
for the experimental tests can be found in Amaya-Gallardo
et al. [51].

For the wind simulation, a wind speed scale of 1 : 2.3 was
selected. +e reference wind speed for testing was obtained
from the Mexican wind standard for an urban terrain cat-
egory. For the simulation of the mean wind profile and

turbulence characteristics, a passive turbulence generator
was installed in Test Section 2, which consisted of roughness
elements, a castellated barrier, and spines (Figure 5). A total
of 27 measures of wind speed at different heights were
obtained by using a digital hot-wire anemometer. +ese
measurements were used to determine the mean wind speed
profile and turbulence indicators (i.e., turbulence profile and
power spectral density function (PSDF)). Figure 6(a) shows a
comparison of the experimental mean wind velocity (Ux)
profile with the classical theoretical power law (POW)
adopted by several international wind design codes. Also, in
Figure 6(b), the turbulence intensity profile is shown. +e
mathematical expressions that defined the power-law mean
wind velocity profile and longitudinal turbulence intensity
are defined, respectively, as[52]:

Ux � Uref
z

zref
 

α

IUx
�
σU

Ux

, (11)

where α is the power law exponent, Uref is a reference mean
wind velocity, zref a reference height, in this work considered
as 0.2m (which is equivalent to 10m above ground in full
scale), and σU is the standard deviation of the longitudinal
turbulence wind component.

To determine the experimental power-law exponent α, a
fitting exercise based on the least square method was carried
out, resulting in a value of α= 0.295 (urban terrain category).
Furthermore, it is observed in Figure 6(b) that the longi-
tudinal turbulence intensity values range from about 25%
near the wind tunnel floor level, up to 8% in the upper part of
the longitudinal turbulence profile. To further evaluate the
turbulence simulated in the wind tunnel, Figure 7 presents
the PSDF of the longitudinal turbulence component and its
comparison with the Von Karman Spectrum, which is
considered a suitable representation of the velocity spectrum
[52] and is given by the following equation:
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Figure 4: Sketch of the boundary layer wind tunnel of institute of engineering, UNAM.
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where f is frequency, LU is the turbulence integral length
scale in the longitudinal direction, SU is the power spectral
density of the fluctuating wind component. Figure 7 presents
a comparison of the normalized PSDF obtained at z= 0.2m
and the Von Karman Spectrum. It is observed in Figure 7 a
good comparison of the experimental and theoretical PSDFs.

+e parameters used as input neurons for the FFNN and
RNN models were θ, as well as the x- and y-coordinates of
each tap. +e output neurons were EPCmean, PCmax,
EPCmin, σ, and σ2. For the LSTMANNmodel, input vectors
containing the coordinates (x, y) of the taps and predefined θ
values were used, and the output neurons were the same as
those for the FFNN and RNN models.

3.2. ANN Data Sets and Training. For the ANN training, a
subset of the experimental database was used, where 75% of
the data were randomly selected and employed to train,
while the remaining 25% of the data were used as a first
validation set to monitor the training process to avoid
overtraining. A second validation set was used to identify the
optimum ANN models. With the optimum ANN models,

Figure 5: Wind tunnel set-up and passive turbulence generator.
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case scenarios were evaluated with a testing set. +e training,
first, and second validation, as well as test subsets, are
summarized in Table 1.

For the development of FFNNs, models with one and
two hidden layers with 3 to 50 hidden neurons per hidden
layer, and the sigmoidal hyperbolic tangent and linear ac-
tivation functions were considered. +e variation of hidden
layers and neurons is with the aim of avoiding the lack of
learning and the inability of predicting outcomes for the
scenarios that are not used in training (i.e., overfitting).

One of the algorithms used to train the FFNN is the
back-propagation [54], where the error is propagated
backward by adjusting the weights from the output to the

input layer. For training the FFNN models, the following
steps were followed:

(1) Provide the ANN model with sample inputs and
known outputs;

(2) Evaluate an error function in terms of the difference
between the predicted and observed output;

(3) Minimize the error function (MSE) by adjusting the
weights and biases of all the layers from the output to the
input layer.

In order to evaluate the impact of using different types of
minimization algorithms on the prediction effectiveness of the
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Figure 8: Coordinates of the taps located in the low-rise building tested in wind tunnel and wind directions.

Table 1: Training, validation, and test data.

Subsets Wind direction (°)
Training set1 −90.0 −45.0 0.0 45.0 90.0 —
Validation set2 −60.0 −30.0 30.0 60.0 — —

Testing set −80.0 −70.0 −50.0 −40.0 −20.0 −10.0
80.0 70.0 50.0 40.0 20.0 10.0

Note. 1) For this set, 75% was used for training and 25% for the first validation; 2) Second validation set.
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FFNN models, the minimization of the MSE was carried out
using the following algorithms [54]: Gradient Descent (GD),
Gradient Descent with Momentum (GDM), Variable Learning
Rate Gradient Descent (VLRGD), Levenberg-Marquardt (L-M),
BFGSQuasi-Newton (BFGS), andBayesianRegularization (BR).

In the case of the RNN, models with 1 to 3 delays, and
with two groups of hidden neurons were considered. +e
first group includes 3, 5, 10, 15, 20, 25, 30, 40, and 50 hidden
neurons, while the second group includes 2, 4, 6, 7, 8, 9, and
11 hidden neurons. +e second group was included to
evaluate with more precision the use of a small number of
hidden neurons compared to the first group.

For the training of the RNN, the same steps followed for
the training of the FFNN were adopted, except that the
internal input neurons are also included in the minimi-
zation procedure by adjusting the recurrent synaptic
weight matrix and biases of all the layers from the output to
the input layer.

To develop the LSTM ANN models, a regression LSTM
network with sequence output where the targets are the
training sequences with values shifted over a time step was
used. To create an LSTM regression network architecture,
the next steps were followed:

(1) Determine a sequence input layer that has an input
size that matches the number of channels of the
input data. In this case 3 inputs data.

(2) Define the number of hidden units in each LSTM
block. For the LSTMANNmodels, each LSTM block
considered 100, 200, 300, 400, and 500 hidden units.

(3) Include a fully connected layer with an output size
that matches the number of channels of the output
targets.

(4) Include a regression layer.

For the training of the LSTM ANN, the algorithm used
was the Adaptive Moment Estimation (ADAM) optimizer,
which is an adaptive learning rate method. An ADAM
optimizer is a stochastic gradient descendent for use in Deep
Learning on non-convex optimization problems.

4. Analysis Results and Discussion

4.1. Identification of the Best ANN Models. To evaluate the
impact of record selection on the trained ANN models, a
total of 100 trials were carried out. For each trial, a new set of
randomly selected values (75% of the data used for training)
were used. +e second validation set was used to identify the
best ANN models. Tables 2 and 3 summarize the results
obtained from the best ANN models identified (i.e., the
ANN models with the smallest MSE) for the FFNN and
RNN, respectively, while Table 4 presents the best models
identified for the LSTM ANN. Also, in Tables 2-4, the
correlation coefficient (ρ) between the predicted and the
actual values are included.

It is observed in Table 2, that for the FFNN models, the
optimum number of neurons and hidden layers that provide
the lowest MSE for the trained model depends on the se-
lected data. It is also observed that, in general, the optimum

Table 2: Best FFNN models identified in the validation stage with 1 and 2 hidden layers.

Training algorithm
MSE ρ

1HL 2HL 1HL 2HL
L-M 0.345 (30) 0.210 (20) 0.947 0.968
BR 0.246 (50) 0.227 (10) 0.967 0.960
BFGS 0.434 (50) 0.280 (50) 0.929 0.961
VLRGD 0.676 (15) 0.799 (25) 0.853 0.841
GDM 0.966 (5) 0.768 (40) 0.814 0.855
GD 0.867 (15) 0.799 (30) 0.817 0.853
1HL� 1 hidden layer; 2HL� 2 hidden layers. +e values inside brackets indicate the number of hidden neurons.

Table 3: Best RNN models identified in the validation stage with 1, 2, and 3 delays.

Training algorithm
MSE ρ

1D 2D 3D 1D 2D 3D
BFGS 0.607 (11) 0.662 (11) 0.674 (7) 0.341 0.320 0.333
BR 0.671 (11) 0.790 (11) 0.858 (7) 0.335 0.306 0.325
GD 0.699 (11) 0.894 (7) 0.941 (11) 0.309 0.302 0.296
VLRGD 0.765 (8) 0.791 (6) 0.850 (4) 0.321 0.308 0.310
GDM 0.774 (7) 0.815 (11) 0.804 (10) 0.701 0.692 0.319
L-M 0.777 (6) 0.727 (7) 0.847 (2) 0.334 0.325 0.302
1D� 1 delay; 2D� 2 delays; 3D� 3 delays. +e values inside brackets indicate the number of hidden neurons.

Table 4: Best LSTM NN models identified in the validation stage
with ADAM training algorithm and a batch equal to 30.

HU MSE ρ
400 0.022 0.982
300 0.023 0.981
100 0.032 0.977
500 0.069 0.982
200 0.073 0.982
HU�Hidden unit.
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number of neurons is greater than 10, and that the 2-hidden-
layers models outperform those of 1 hidden layer. +e
minimumMSE andmaximum ρ are associated with the L-M
training algorithm, although the BR and BFGS produce
comparable results to those obtained with the L-M algo-
rithm. Based on these observations, the use of 20 neurons
and the ANN model with 2 hidden layers is selected for the
prediction of EPCmean, PCmax, EPCmin, σ, and σ2 values,
with associated values ofMSE and ρ equal to 0.210 and 0.968,
respectively.

+e results summarized in Table 3 for RNN models
indicate that the optimum number of neurons and the
optimum number of delays also depend on the selected
data. +e optimum number of neurons is between 2 and 11.
+e RNN models with 1 delay outperform those with 2 and
3 delays. +e minimum MSE and maximum ρ are asso-
ciated with the BFGS training algorithm. From the RNN

models presented in Table 3, the use of 11 neurons and 1
delay is selected for the prediction of EPCmean, PCmax,
EPCmin, σ, and σ2 values. +e associated values of MSE and
ρ for this RNN model are equal to 0.607 and 0.341,
respectively.

+e results presented in Table 4 for the LSTMANN show
that, in general, as the hidden units increase, the MSE re-
duces and ρ increases. Based on this observation, the best
model selected for the prediction of EPCmean, PCmax,
EPCmin, σ, and σ2 values are with 400 hidden units and with
30 batches, with associated values of MSE and ρ equal to
0.0219 and 0.9824, respectively.

4.2. Comparison of Trained ANN Models. +e comparison
between the predicted EPCmean, EPCmax, EPCmin, σ, and
σ2 by using the best FFNN, RNN, and LSTM trained models,
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obtained with the second validation set, and those obtained
from the actual experimental database is shown in Figure 9.
It is observed from Figure 9 that, in general, there is good
agreement between the predicted and the observed values.
+e computed correlation coefficients range between 0.67
and 0.98. +e best correlation is observed for the values
predicted with the FFNN and LSTMmodels, while the worst
correlation is obtained when the RNNmodel is employed. It
is also observed in Figure 9 that there is no clear preference
among the trained LSTM and FFNN models for providing
the best estimates. Figure 9 also shows that the parameters
best predicted by the LSTM ANN are EPCmean, EPCmax,
and EPCmin, with correlation coefficients greater than 92%.
On the other hand, the parameters best predicted by the
FFNN models are EPCmean, EPCmax, and σ, with corre-
lation coefficients greater than 91%. +e previous observa-
tion indicates that, for preliminary design purposes, the use
of the LSTM ANN model would be preferred, since the
parameters EPCmax and EPCmin are generally used in the
design of cladding, while EPCmean is used for the design of
the main structure. Moreover, the prediction made with the
RNNmodels is not robust because they produce undesirable
behavior for predicting EPCmean, EPCmin, σ, and σ2.

To further evaluate the ability of the ANN models de-
veloped, in the following, the discussion is focused on the
EPCmean since it is widely used for wind design in codes and
standards. For the comparison between the results predicted
by using the testing set and the experimental ones, a case
scenario of wind direction equal to −10° is considered. +is
wind direction was not included in the training set nor in the
validation sets. By using the testing set, Figure 10 shows a
comparison of predicted and experimental EPCmean values
along the longitudinal and transverse central lines for
θ� −10°. It is observed in Figure 10 that the EPCmean values
predicted with the LSTM and the FFNN models follow
closely those from the experimental test, and that the RNN
model is the one with less predictive ability, with abrupt

changes in the prediction of EPCmean along the longitudinal
and transverse central lines. +e MSE obtained based on the
experimental and predicted values for the three compared
ANN models are included in Figure 10, where the minimum
MSE is associated with the FFNN. It is further observed in
Figure 10(a) that the predictions of EPCmean made with both
the FFNN and the LSTMANNmodels for the windward wall
(from point 0 to point 1) are the best, contrary to the pre-
dictions made with the RNN, which present a sudden drop
compared to the experimental results. For the roof (from
point 1 to point 2), the three ANNmodels considered do not
reach the minimum EPCmean values from experimental tests;
however, the FFNN and LSTM ANN models are able to
mimic the sudden change from pressure to suctions. +e
latter is not observed for the predictions made with the RNN
model. For the leeward zone (from point 2 to point 3), the
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predictions of the three models (i.e., FFNN, LSTM, and
RNN) are in good agreement with the experimental results.
Similar observations to those drawn from Figure 10(a) are
also applicable to Figure 10(b), except that the RNNmodel is
not able to mimic the behavior observed from the experi-
mental results for the lateral walls (from point -1 to 0 and
from 1 to 2) and the windward wall (from point 0 to 1).

A generic low-rise building represented by a cube with a
side dimension equal to 10m was considered for the ex-
perimental tests. +is type of low-rise building has been
widely studied worldwide and is referred to as the Silsoe cube
[53]. A length scale equal to 1 : 50 was selected for the
modeling. +e model was built with rigid acrylic plates with
4mm thickness. +e pressure tap layout consisted of a total
of 125 pressure taps, with 25 pressure taps per face (Fig-
ure 8). Plastic tubes made of urethane with an internal
diameter of 8.6×10−4m and an exterior diameter of
1.68×10−3m were used to connect the pressure taps to the
pressure scanners. During the experimental tests, the tem-
perature was controlled with a heat exchanger, the average
temperature during the tests was 15°C. +e pressure scan-
ners were set with a sampling rate equal to 256Hz and a
sampling time of 21 s. Wind direction (θ) was varied within
−90° to 90° with increments of 10°; additional angles of 45°
and −45° were also considered (Figure 8). From the ex-
perimental tests, a total of 1125 time-history records of EPC
were registered and processed to calculate mean EPC
(EPCmean), maximum EPC (EPCmax), minimum EPC
(EPCmin), root mean square of EPC (σ), and variance of
EPC (σ2), which are typical measures to evaluate the wind-
induced forces in structures [1]. With the information
processed and organized, an experimental input and output
database was assembled, which included EPCmean, EPC-
max, EPCmin, σ, and σ2 values, which were associated with
predefined θ values and coordinates (x, y) for each tap
(Figure 8). For simplicity, the instrumented faces of the cube
were unfolded as shown in Figure 8, and the reference
system to define the coordinates for each tap was located at
the intersection of the lines A and B. +e total number of
elements in the experimental database was equal to 5625.

To further investigate whether the LSTM and FFNN
models outperform the RNN model, Figure 11 presents a
comparisonof the experimental andpredictedEPCmean values
for all the taps and for wind direction −10°. It is observed in
Figure 11 that, in general, the LSTM and FFNN models are
able to mimic the behavior of the EPCmean values, with very
good predictions for the upper and lower bounds of EPCmean
(i.e., the greatest positive values of EPCmean and the lowest
negative values). It is also observed from Figure 11 that the
RNNmodel provides predictions of the EPCmean values from
taps 1 to 25 that follow a similar trend to that of the experi-
mental values, but with lower magnitude; from taps 26 to 50
and from taps 101 to 125, the RNN predictions are consid-
erably different to those from the experimental tests; and from
taps 50 to 100, the RNN model provides EPCmean values that
follow an average trend to that of the experimental values.

+e comparison shown in Figure 11 was repeated, except
that a wide range of wind directions (not included in the
training set nor in the validation sets) and the prediction at
each face of the low-rise building were considered, the re-
sults of this comparison in terms of theMSE are summarized
in Table 5. Similar observations to those drawn for Figure 11
are applicable to the results presented in Table 5, indicating
that the LSTM and FFNN models are the ones with better
predictive ability. Among all the cases considered in Table 5,
the predictions with the three ANN models at the leeward
wall are associated with the minimumMSE values and those
at the roof with the maximum. It is also observed from the
results of Table 5 that, on average, the FFNN is the model
associated with the minimum MSE values.

5. Conclusions

Numerical analyses were carried out to investigate whether
the FFNN, RNN, and LSTM models could adequately
predict the mean, maximum, minimum, root mean square,
and variance of external pressure coefficients of a low-rise
building. For the analysis, 1125 time-history records of
external pressure coefficients calculated from wind tunnel
tests were considered.

Table 5: Variation of MSE on the faces of the low-rise building for different wind direction by using the trained ANN models.

θ (°)
Right wall Windward wall Left wall Leeward wall Roof

RNN FFNN LSTM RNN FFNN LSTM RNN FFNN LSTM RNN FFNN LSTM RNN FFNN LSTM
−80 0.212 0.029 0.018 0.141 0.025 0.022 0.014 0.015 0.031 0.023 0.007 0.039 0.199 0.026 0.149
−70 0.306 0.017 0.015 0.152 0.024 0.017 0.015 0.015 0.033 0.029 0.013 0.044 0.194 0.033 0.135
−50 0.340 0.023 0.061 0.205 0.033 0.032 0.059 0.023 0.044 0.033 0.010 0.022 0.305 0.081 0.073
−40 0.240 0.017 0.021 0.157 0.016 0.033 0.108 0.028 0.056 0.022 0.010 0.024 0.311 0.065 0.067
−20 0.141 0.027 0.018 0.141 0.018 0.018 0.193 0.034 0.062 0.010 0.015 0.015 0.456 0.039 0.083
−10 0.128 0.033 0.026 0.178 0.020 0.039 0.276 0.047 0.048 0.011 0.014 0.010 0.546 0.035 0.062
10 0.065 0.010 0.013 0.130 0.026 0.021 0.193 0.053 0.055 0.017 0.019 0.010 0.515 0.035 0.035
20 0.056 0.017 0.019 0.114 0.019 0.012 0.096 0.037 0.038 0.015 0.018 0.009 0.489 0.039 0.064
40 0.047 0.016 0.007 0.067 0.019 0.026 0.187 0.055 0.040 0.024 0.019 0.010 0.483 0.085 0.075
50 0.040 0.012 0.008 0.024 0.030 0.025 0.263 0.050 0.052 0.031 0.018 0.012 0.389 0.069 0.061
70 0.032 0.011 0.012 0.144 0.025 0.040 0.296 0.038 0.046 0.054 0.025 0.015 0.357 0.039 0.050
80 0.027 0.013 0.011 0.244 0.022 0.039 0.331 0.036 0.051 0.099 0.026 0.025 0.334 0.039 0.052
Mean 0.139 0.018 0.018 0.137 0.022 0.028 0.164 0.035 0.047 0.031 0.016 0.020 0.376 0.050 0.075
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+e main observations that can be drawn from the
analysis results are:

(1) +e best-trained FFNN and RNN models require
more than 10 hidden neurons, while the LSTMANN
requires 400 hidden units and 30 batches. +e latter
indicates that the developed ANN-based models
need a considerable number of hidden neurons and
units to provide predictions with low error values for
the cases considered.

(2) +e input neurons employed in all the ANN models
showed to be adequate and concordant with the
physical phenomenon where the external pressure
coefficients depend on the wind direction and location

(3) For preliminary design purposes, the use of the
LSTM ANN model would be preferred, since it
provides the best predictions for the maximum,
minimum, and mean external pressure coefficients,
which are used in the design of cladding and the
main structure.

(4) +e RNN models are not robust because they pro-
duce undesirable behavior for predicting EPCmean,
EPCmin, σ, and σ2.
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