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In civil engineering, arches, such as steel arch roofs and arch bridges, are often subjected to linear temperature gradient field. It
is known that the in-plane instability of parabolic arches is caused by the significant axial force. 0e arch under the linear
temperature gradient field produces complex axial force, and so the instability of arches would be affected by temperature
gradient field significantly. However, the analytical solutions of in-plane instability of parabolic arches being subjected to the
uniformly distributed vertical load and the temperature gradient field are not solved in the opening literature. In this paper,
in-plane instability of a fixed steel parabolic arch under linear temperature gradient field and vertical uniform load is analyzed
theoretically. Firstly, the cross-sectional effective centroid and effective stiffness of the cross section for arches under the linear
temperature gradient field are derived. Secondly, the preinstability internal force analysis of the parabolic arch under the
linear temperature gradient field and the vertical uniform load is carried out based on the force methods. Novel theoretical
solutions for in-plane instability load for fixed steel parabolic arches under the linear temperature gradient field and the
vertical uniform load are obtained. It is found that the gradient temperature, slenderness, and rise-span ratio have important
influences on the critical in-plane instability load of the shallow parabolic arch, while there is no significant effect on the deep
parabolic arch.

1. Introduction

Long-span steel arch structures are widely applied to en-
gineering, for instance, long-span steel roofs of the terminal,
long-span steel arch bridge, etc. For large-span steel roofs,
the temperature inside and outside of the roof is different
due to sun exposure. In summer, the temperature inside the
structure is lower than that outside the structure, while in
winter, the temperature inside the structure is higher than
that outside the structure. 0e inconsistence of internal and
external temperature will produce linear gradient temper-
ature field and internal force to the structure, and the linear
gradient temperature field and internal force affect the
bearing capacity of the structure. Except for the linear

gradient temperature field caused by solar irradiation, the
fire inside the structure will cause the internal temperature of
the structure to be higher than the external temperature and
then generates the linear gradient temperature field. Hence,
the study of the steel arch structure under linear temperature
gradient field has a profound significance on the fire re-
sistance design of the steel arch structure.

Many scholars have conducted a series of research
studies on the buckling of steel arch structures. Pi and
Trahair. [1] studied the inelastic lateral buckling strength and
design of steel arches under general loading using an ad-
vanced nonlinear inelastic finite element method of analysis.
Mallon et al. [2] researched the influence of the initial
curvature of thin shallow arches on the dynamic pulse
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buckling load. Moon et al. [3] investigated the geometrically
nonlinear behavior of pin-ended shallow parabolic steel
arches subjected to a vertically distributed load for assessing
the buckling load. Pi and Bradford. [4] researched the dy-
namic in-plane buckling of a shallow pin-ended circular arch
under a central radial load that is applied suddenly with
infinite duration. Bradford et al. [5] researched the pre-
buckling behavior of a pin-ended circular arch under a
uniform radial load. Han et al. [6] researched the in-plane
nonlinear behavior and stability of shallow circular arches
with elastic horizontal supports under a uniform radial load
by the principle of virtual work. Zeng et al. [7] studied the
stability analysis of elastic restrained arc steel arch under
concentrated load. Kang et al. [8] conducted a dynamic
response analysis of an elastically supported arc steel arch
structure under blast impact loading. Yan et al. [9]
researched a nonuniform shallow arch characterized by
three constant stiffness regions under a central concentrated
load. Li et al. [10] established an analytical solution to predict
the buckling load of the thin-walled arch under a point load
at midspan position. Fan et al. [11] carried out an analytical
study and a numerical simulation on the nonlinear in-plane
buckling behavior of the shallow parabolic steel arches with
tension cables and pin joints. Pi and Bradford [12]
researched the nonlinear thermoelastic buckling behavior of
articulated shallow arc steel arches under the impact of linear
temperature gradient field. Bouras and Vrcelj. [13] carried
out the nonlinear elastic prebuckling and in-plane buckling
analysis of the circular shallow arches under a uniformly
distributed load and time-varying uniform temperature
field. Song et al. [14] analyzed an in-plane jump buckling and
bending behavior for arc steel arches subjected to fire. Asgari
et al. [15] theoretically researched the nonlinear thermo-
elastic behavior of pin-ended functionally graded material
(FGM) circular shallow arches. Li and Zheng, [16] inves-
tigated the buckling of confined thin-walled functionally
graded material (FGM) arch subjected to external pressure.
Tang et al. [17] researched the in-plane asymmetric buckling
of the heated functionally graded material (FGM) circular
arches under uniform pressure fields. Li et al. [18] researched
the analytical process of the functionally graded porous
(FGP) arch structure in an elevated thermal field. Cai et al.
[19] researched the in-plane stability of rotationally re-
strained parabolic shallow steel arches under a vertical
uniform load and temperature changes below 100°C and
used the virtual work principle method to establish the
nonlinear equilibrium and buckling equations. Pi and
Bradford [20] researched nonlinear in-plane buckling of
circular arches being subjected to uniform radial and
thermal loading. However, only a few scholars have
researched the parabolic steel arches under the temperature
field, especially the effect of temperature gradient field.
Parabolic arches are widely used in practical engineering.
0e internal force analysis and stability analysis of parabolic
arches are important parts of arch design, construction and
maintenance, etc. However, the analytical solutions of in-
plane instability of parabolic arches being subjected to
uniformly distributed vertical load and temperature gradient
field are not solved in the opening.

Hence, this paper derives the cross-sectional effective
centroid and effective stiffness for parabolic arches under the
linear temperature gradient field and obtains the axial and
bending actions of parabolic arches under linear tempera-
ture gradient field coupled with vertical uniform load. In
addition, the analytical solution of the critical load for in-
plane instability of the parabolic arches under temperature
gradient field coupled with vertical uniform load is also
obtained, and it is verified by the numerical simulations
software ANSYS.

2. Analysis of Geometrical and Material
Properties of Parabolic Arch

2.1. Basic Analysis

2.1.1. Mechanical Model. 0e fixed parabolic steel arch
under linear gradient temperature field coupled with vertical
uniformly distributed load is considered as the study object,
which is plotted in Figure 1.

o∗x∗y∗z∗ denotes the initial coordinates of the parabolic
steel arch, o∗ is situated in the cross-sectional geometric
center of vault, and o∗x∗, o∗y∗, and o∗z∗ are the horizontal
coordinate axis, the vertical coordinate axis, and the lateral
coordinate axis of the initial coordinates, respectively. o∗s∗ is
the geometric centroid axis of the initial coordinates.
Figure 1(a) shows that f, L, l, and S are the rise, span, half-
span, and length of the parabolic steel arch, respectively.
Figure 1(b) shows that T1 and T2 are top and bottom cross-
sectional temperatures, respectively. h represents the cross-
sectional height.

In addition, the equation of geometric coordinates of the
parabolic steel arch can be defined based on Figure 1 as

y
∗

�
a1l

2
x
2
1, (1)

where a1 represents the shape factor of the parabolic steel
arch, which can be given by

a1 �
2f

l
. (2)

x1 represents nondimensional coordinate of the o∗x∗

axis, which is denoted as x1 � x∗/l, and so the arc differential
ds of the parabolic arch can be calculated by

ds � l

���������

1 + a1x1( 􏼁
2

􏽱

dx1. (3)

2.1.2. Basic Hypothesis. 0e in-plane instability analysis for
parabolic steel arches under the linear temperature gradient
field studied in this paper satisfies the following hypothesis.

(1) 0e environment temperature is 20°C.
(2) Cross-sectional temperature, parabolic arch defor-

mation, temperature dilatation factor a, and Pois-
son’s ratio v are independent of time.

(3) 0e temperature T of the cross section of the arch
varies uniformly along the o∗s∗ axis and the o∗x∗
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axis and linearly along the o∗y∗ axis, as shown in
Figure 2, where T1 <T2.

Hence, the temperature at any point on the cross section
of parabolic arch can be calculated by

T(y) � Ta +
y∗ΔTg

h
, (4)

where Ta represents the cross-sectional average temperature
of the parabolic arch, which can be obtained by

Ta �
T1 + T2

2
, (5)

and ΔTg represents temperature difference value between
top and bottom of the cross section, which can be calculated
by

ΔTg � T2 − T1. (6)

2.1.3. Modulus of Elasticity. In this paper, steel is chosen as
the material for the arch. 0e modulus of elasticity of steel
ET � ξT · E0, where E0 is the modulus of elasticity of Q235
steel at temperature 20°C, and ξT is the temperature affection
factor, which can be given by

ξT �
7T − 4780
6T − 4760

, 0°C<T≤ 600°C. (7)

Figure 3 shows the influence of temperature on steel
elastic modulus. As shown in the picture, steel elastic
modulus decreases with the an increase of material tem-
perature, and the value decreases more remarkably with the
augment of temperature.

2.1.4. Effective Stiffness and Effective Centroid. 0e I section
is taken as the cross section of parabolic steel arch studied in
this paper, and when the parabolic steel arch is under the
linear gradient temperature field, the elastic modulus
changes along the o∗y∗ axis, and the vertical coordinate of
effective centroid also changes. 0erefore, the effective co-
ordinate system oxyz can be determined by the location of
the effective centroid, which is shown in Figure 4.

ox, oy, and oz denote the effective horizontal axis, ef-
fective vertical axis, and effective lateral axis, respectively. os

is the effective centroid axis of the effective coordinate
system. By substituting (4) into (7), the elastic modulus
along the o∗y∗ axis is given by

q
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Figure 1: Mechanical diagram of parabolic arch. (a) Fixed arch. (b) Cross section.
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Figure 2: Linear gradient temperature field.
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Figure 3: Relationship between modulus of elasticity and
temperature.
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ET y
∗

( 􏼁 � E0
7Ta − 4780( 􏼁h + 7ΔTgy

∗

6Ta − 4760( 􏼁h + 6ΔTgy
∗. (8)

Accordingly, the vertical coordinate of effective centroid
of the o∗y∗ axis is given by

y
∗
c � − yc � − −

􏽒
A

ET y
∗

( 􏼁y
∗ dA

􏽒
A

ET y
∗

( 􏼁dA
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􏽒
A

ET y
∗

( 􏼁y
∗ dA

􏽒
A

ET y
∗

( 􏼁dA
,

(9)

where yc is the vertical coordinate of effective centroid of the
oy axis.

0e effect of linear gradient temperature field on the
effective center of parabolic arch cross section is shown in
Figure 5, and it can be seen that the effective center of shape
is shifted to the side with lower temperature under linear
gradient temperature field, and the effect of gradient tem-
perature on the I section is greater than that on the rect-
angular section.

In addition, To is the temperature of the effective cen-
troid, which can be given by

To � Ta +
ΔTgy

∗
c

h
. (10)

By replacing the vertical coordinate y∗ with y∗ � y − yc,
the elastic modulus along the oy axis can be given by

ET(y) � E0
7Ta − 4780( 􏼁h + 7ΔTg y − yc( 􏼁

6Ta − 4760( 􏼁h + 6ΔTg y − yc( 􏼁
. (11)

For ensuring that the analysis of the internal forces of the
parabolic arch under gradient temperature is precise, the
effective stiffnesses EI and EA of the arch section are de-
rived, which can be given separately by

EI � 􏽚
A

ET(y)y
2dA,

�
2320Tsh

2
E0

27ΔT2
g

1
2
twh + tf b − tw( 􏼁􏼔 􏼕 +

7E0twh
3

72ΔTg

+
7E0tf

12ΔTg

h
2

− 2tfh +
4
3
t
2
f􏼒 􏼓 b − tw( 􏼁 − y

2
cEA

+
1160h

3
T
2
s E0

81ΔT3
g

b − tw( 􏼁Ξ1 + bΞ2􏼂 􏼃,

EA � 􏽚
A

ET(y)dA �
1160hE0

9ΔTg

b − tw( 􏼁Ξ1 + bΞ2􏼂 􏼃 +
7E0

3
1
2
twh + tf b − tw( 􏼁􏼔 􏼕,

(12)
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Figure 4: Microelement of I-section arch structure.

12

10

8

6

4

2

0

y c
 (m

m
)

400250 35030010050 2000 150
∆T (°C)

Rectangular solid section
I-section

Figure 5: Influence of the temperature difference with the vertical
coordinate of effective centroid.
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where tf represents the thickness of the flange plate of the I
section, tw represents the thickness of the web of the I
section, and b, h, and A represent the width, height, and area
of the I section, separately. Beyond that, the parameters Ts,
Ξ12 can be mathematically expressed as

Ts � 2380 − 3Ta,

Ξ1 � ln
2Tsh + 3 h − 2tf􏼐 􏼑ΔTg

2Tsh − 3 h − 2tf􏼐 􏼑ΔTg

⎡⎢⎣ ⎤⎥⎦,

Ξ2 � ln
2Ts − 3ΔTg

2Ts + 3ΔTg

􏼢 􏼣.

(13)

3. Results and Discussion

3.1. Internal Force Analysis. As the parabolic steel arches are
linear elastic, their strain energy in the preinstability state
under linear temperature gradient field coupled with vertical
uniformly distributed load q can be given by

Uss0 �
1
2

􏽚
S/2

− S/2
􏽚

A
ETε

2
xx0 dAds − 􏽚

S/2

− S/2
􏽚

A
ETα ΔTo −

yΔTg

h
􏼠 􏼡εxx0 dAds, (14)

with ΔTo � To − 20°C, where A is the cross-sectional area,
ET, α, and εxx0 are the modulus of elasticity, the thermal
coefficient of the steel, and the linear normal strain, re-
spectively. εxx0 is given by

εxx0 � εm0 + εb0 �
ds1 − ds

ds
+ y

1
ρ1

−
1
ρ

􏼠 􏼡, (15)

where ds1 is the arc differential after deformation and ρ and
ρ1 are radii of curvature of the parabolic steel arches before
and after deformation, respectively. In addition, the axial
force N and bending moment M can be expressed as

N � − 􏽚
A

ETεxx0 dA � − 􏽚
A

ET(y)
ds1 − ds

ds
+ y

1
ρ1

−
1
ρ

􏼠 􏼡􏼢 􏼣dA � − EAεm0, (16)

M � − 􏽚
A

ETyεxx0 dA � − 􏽚
A

ET(y)y
ds1 − ds

ds
+ y

1
ρ1

−
1
ρ

􏼠 􏼡􏼢 􏼣dA � − EIεb0. (17)

Accordingly, by substituting (16) and (17) into (14), the
term of the strain energy can be simplified as

􏽚
A

ETε
2
xx0 dA � 􏽚

A
ET(y)

ds1 − ds

ds
+ y

1
ρ1

−
1
ρ

􏼠 􏼡􏼢 􏼣

2

dA

� EAε2m0 + EIε2b0 �
N

2

EA
+

M
2

EI
.

(18)

By substituting equations (3), (16), (17), and (18) into
equation (14), the strain energy can be further simplified as

Uss0 �
1
2

􏽚
1

− 1

N
2

EA
+

M
2

EI
􏼢 􏼣lV1 dx1 − αΔT0 􏽚

1

− 1
NlV1 dx1 +

αΔTg

h
􏽚
1

− 1
MlV1 dx1, (19)

where

V1 �

���������

1 + a1x1( 􏼁
2

􏽱

. (20)

0e accurate solutions of the preinstability axial force N

and bending moment M of a parabolic steel arch are es-
sential for the in-plane instability of the arch. However, no
accurate solutions of internal forces for arches being
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subjected to linear temperature gradient filed and vertical
uniformly distributed load q can be obtained in the opening
literature. 0e internal force of the arch can be solved by the
force method which is based on Castigliano’s theorems, and
when an arch is under linear temperature gradient field
coupled with vertical uniformly distributed load q, the in-
ternal forces for the arch can be herein calculated by the
force method in this paper.

Based on the force method, the parabolic steel arch is cut
into two pieces at the top, which is shown in Figure 6. 0ese
two parts are the statically determinate structures with
unknown additional axial forces (Nc), bending moment
(Mc), and shear force (Qyc). However, according to the
principle of structural symmetry, the unknown additional
shear force (Qyc) is equal to zero.

In addition, to make the cut arch equivalent to the
original arch, the relative axial displacement ΔNC and the
relative rotation ΔMC at the cutting location should be equal
to zero. Based on Castigliano’s theorems, the relative axial
displacement ΔNC and the relative rotation ΔMC can be,
respectively, given by

ΔNC �
zUss0

zNc

� 0, (21)

ΔMC �
zUss0

zMc

� 0. (22)

Substituting (19) into (21) and (22), respectively, the
corresponding force method equation can be obtained as

􏽚
1

− 1

N

EA

zN

zNc

+
M

EI

zM

zNc

􏼢 􏼣lV1 dx1 − αΔT0 􏽚
1

− 1

zN

zNc

lV1 dx1 +
αΔTg

h
􏽚
1

− 1

zM

zNc

lV1 dx1 � 0, (23)

􏽚
1

− 1

N

EA

zN

zMc

+
M

EI

zM

zMc

􏼢 􏼣lV1 dx1 − αΔT0 􏽚
1

− 1

zN

zMc

lV1 dx1 +
αΔTg

h
􏽚
1

− 1

zM

zMc

lV1 dx1 � 0. (24)

Because the segmentations of two part of the parabolic
steel arch are the statically determinate structures, based on
the principle of force equilibrium, the axial force N and
bending moment M can be solved, respectively, as

N �
qla1x

2
1 − Nc�������

a
2
1x

2
1 + 1

􏽱 , (25)

M � Mc −
q lx1( 􏼁

2

2
− Nca1lx1.

(26)

0e solutions of the internal force obtained from (25)
and (26) have two unknown values (Nc and Mc); to solve
them, substituting (25) and (26) into (23) and (24), Nc and
Mc can be obtained as

Nc �
Γ1EAαΔTo − Γ2ql

Ψ
, (27)

Mc �
3l Γ4ql − Γ3EAαΔTo( 􏼁

Ψ Ξ − 2a1

�����

a
2
1 + 1

􏽱

􏼒 􏼓

−
EIαΔTg

h
, (28)

T1

T2

Mc Mc

Nc Nc
Qyc

Qyc

Figure 6: Parabolic arch force method diagram.
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where

Γ1 � 768r
2
xa

4
1 Ξ1 − 2a1

�����

a
2
1 + 1

􏽱

􏼒 􏼓,

Γ2 � 3Ξ2 64a
2
1r

2
x + l

2
􏼐 􏼑 − 4a1 8a

4
1 + 8a

2
1 + 3􏼐 􏼑Ξl2

�����

a
2
1 + 1

􏽱

+ 4a
2
1 a

2
1 + 1􏼐 􏼑 4a

4
1 − 8a

2
1 − 9􏼐 􏼑l

2
− 192r

2
xa

2
1􏽨 􏽩,

Γ3 � 32r
2
xa

2
1 Ξ

2
+ 4a

3
1Ξ

�����

a
2
1 + 1

􏽱

− 4a
2
1 2a

4
1 − 3a

2
1 − 1􏼐 􏼑􏼔 􏼕

Γ4 � 8r
2
x

4a
2
1 4a

2
1 + 1􏼐 􏼑 a

2
1 + 1􏼐 􏼑Ξ − Ξ3 − 2a1

�����

a
2
1 + 1

􏽱

2a
2
1 − 1􏼐 􏼑Ξ2

− 8a
3
1 2a

2
1 + 1􏼐 􏼑

�����

a2
1 + 1

􏽱

􏼒 􏼓
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Ψ � 3Ξ2a1 128a
2
1r

2
x + l

2
􏼐 􏼑 − 4a

2
1

�����

a
2
1 + 1

􏽱

8a
4
1 + 8a

2
1 + 3􏼐 􏼑l

2
+ 192r

2
xa

2
1􏽨 􏽩Ξ + 4a

3
1l
2 4a

4
1 − 8a

2
1 − 9􏼐 􏼑 a

2
1 + 1􏼐 􏼑,

Ξ � ln
�����

a
2
1 + 1

􏽱

+ a1􏼒 􏼓 − ln
�����

a
2
1 + 1

􏽱

− a1􏼒 􏼓.

(29)

Hence, the accurate solutions of axial force N and
bending moment M can be obtained by substituting (27)
and (28) into (25) and (26).

In order to expound the effect of the linear temperature
gradient field on N and M in (23) and (24), the changes of
Nc and Mc with rise-span ratio f/L for parabolic arches
having temperature difference between the top and base of
the cross section ΔTg (i.e., ΔTg � 50°C, 100°C, 150°C) are
shown in Figures 7(a) and 7(b), respectively, where Nc and
Mc are the central axial and bending actions, and
Ta � 200°C, q � 2 × 105 kN/m, and L/cx � 30 with cx being
the radius of gyration of the arch. Beyond that, the changes
of Nc and Mc with rise-span ratio f/L for parabolic arches
having different average temperatures of the cross section Ta
(i.e., Ta � 150°C, 200°C, 250°C) are plotted in Figures 7(c)
and 7(d), respectively, where ΔTg � 100°C,
q � 2 × 105 kN/m, and L/cx � 30.

According to Figure 7(a), Nc almost does not change for
parabolic arches having different ΔTg, which is consistent
with (27) without ΔTg. Figure 7(a) also reveals that Nc

augments as the rise-span ratio f/L augments at the be-
ginning; after that, it decreases as the rise-span ratio f/L
augments in case the rise-span ratio of arches reaches to a
certain value. Figure 7(b) shows that Mc decreases as the
temperature difference between the top and bottom of the
arch section ΔTg augments. Figure 7(b) also shows that Mc

decreases as the rise-span ratio f/L augments initially; after
that, it augments as the rise-span ratio f/L augments in case
the rise-span ratio of arches reaches to a certain value.
Figure 7(c) shows that Nc augments as the average tem-
perature of the arch section Ta augments. Figure 7(d) shows
that Mc decreases as the average temperature of the arch
section Ta augments.

To demonstrate the influences of the uniformly dis-
tributed vertical load on N and M given by (23) and (24), the
changes of Nc and Mc with rise-span ratio f/L for parabolic
arches having different uniformly distributed vertical loads q

(i.e., q � 105 kN/m, 2 × 105 kN/m, 3 × 105 kN/m) are plotted
in Figures 8(a) and 8(b), respectively, where ΔTg � 100°C,
Ta � 200°C, and L/cx � 30.

According to Figure 8, the central axial and bending
actions Nc and Mc augment as the uniformly distributed
vertical load q augments.

Figures 9 and 10 show the variation of the dimen-
sionless internal force with the rise-span ratio for parabolic
arch under the linear gradient temperature field and the
vertical uniformly distributed load. Figure 9(a) shows that
the central axial force Nc augments with the augments of
the slenderness ratio L/rx when temperature difference
ΔTg � 0°C and the average temperature Ta � 20°C. 0e
central axial force Nc augments as the rise-span ratio f/L
augments when the rise-span ratio f/L is less than 0.1 and
then decreases as the rise-span ratio f/L augments when
the rise-span ratio f/L is bigger than 0.1. Figure 9(b) shows
that the central axial force Nc decreases with the augments
of the slenderness ratio L/rx when temperature difference
ΔTg � 100°C and the average temperature Ta � 200°C. 0e
central axial force Nc decreases as the rise-span ratio f/L
augments.

Figure 10(a) shows that the central bending moment Mc

augments with the augments of the slenderness ratio L/rx

when temperature difference ΔTg � 0°C and the average
temperature Ta � 20°C. 0e central bending moment Mc

decreases as the rise-span ratio f/L augments. Figure 10(b)
shows that the central bending moment Mc decreases with
the augments of the slenderness ratio L/rx when tempera-
ture difference ΔTg � 100°C, the average temperature
Ta � 200°C, and the rise-span ratio f/L is approximately less
than 0.1. 0e central bending moment Mc decreases as the
rise-span ratio f/L augments, while the central bending
moment Mc augments with the augments of the slenderness
ratio L/rx when the rise-span ratio f/L is approximately
bigger than 0.1. 0e central bending moment Mc augments
as the rise-span ratio augments f/L.
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3.2. In-Plane Instability Analysis. According to the paper of
Pi and Bradford [20], the in-plane instability critical load of
parabolic arches boundary load can be compared with the
relevant equation of circular arc arch. According to paper of
Song et al. [14], the critical axial force of a solidly connected
circular arch at both ends can be calculated by the following
equation:

Ncr �
EI(ηπ)

2

(S/2)
2 −

EI

R
2, (30)

where the parameter ηπ can be expressed as

ηπ � 1.403π. (31)
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Figure 7: Influences of the temperature gradient on internal forces. (a) Rise-span ratio f/L vs. axial forces Nc with different ΔTg. (b) Rise-
span ratio f/L vs. bending moment Mc with different ΔTg. (c) Rise-span ratio f/L vs. axial forces Nc with different Ta. (d) Rise-span ratio
f/L vs. bending moment Mc with different Ta.
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For a parabolic arch, the focal collimation distance p can
be calculated by the following equation:

p �
L
2

8f
. (32)

In addition, the radius of curvature of the parabolic arch
is given by

R �
1 + y′

2
􏼒 􏼓

2/3

y″
� p 1 +

x

p
􏼠 􏼡

2
⎛⎝ ⎞⎠

2/3

≈ p. (33)

For the sake of solving the critical load of instability of
the parabolic arch with fixed ends, the axial force term of
(30) can be replaced by the axial force at the top of the arch in
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Figure 8: Influences of the uniformly distributed vertical load on internal forces. (a) Axial forces. (b) Bending moments.
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Figure 9: Relationship between rise-span ratio and central force. (a) Only considering the vertical uniformly distributed load q. (b) Only
considering the gradient temperature field.
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the analytical solution of the internal force in the previous
section [19].

Ncr �
Γ2ql − Γ1EAαΔT0

Ψ
. (34)

Substitute (33) and (34) into (30) and obtain

qcr �
Ψ EA(ηπ)

2/(S/2)
2

− EI/p2
􏽨 􏽩 + Γ1EAαΔT0

Γ2l
. (35)

Equation (35) is the critical in-plane instability load of a
fixed parabolic steel arch under the gradient temperature
coupled with vertical uniform load.

0e change regular of dimensionless instability critical
load with rise-span ratio for parabolic arches having
different gradient temperature fields is shown in Fig-
ure 11, where NE2 is the second mode flexural instability
load of an axially compressive fixed column having the
same length of the fixed parabolic steel arch, which can be
expressed as

NE2 �
(1.4303π)

2
E0Ix

(S/2)
2 . (36)

According to Figure 11, when the rise-span ratio is less
than 0.15, the dimensionless critical in-plane instability load
of parabolic arch is obviously influenced by the temperature
gradient field and decreases with the augment of gradient
temperature difference. However, when the rise-span ratio is
larger than 0.15, the dimensionless critical in-plane insta-
bility load of parabolic arch is slightly influenced by the
gradient temperature field. In addition, the dimensionless

critical in-plane instability load of parabolic arches decreases
with the increasing rise-span ratio.

0e variation of the dimensionless instability critical
load with the rise-span ratio for the parabolic arch under the
linear gradient temperature field is shown in Figure 12. As
seen from Figure 12, the dimensionless critical in-plane
instability load of parabolic arch decreases with the augment
of slenderness.
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Figure 10: Relationship between rise-span ratio and central bending moment. (a) Only considering the vertical uniformly distributed load
q. (b) Only considering the gradient temperature field.
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3.3. Finite Element Validation Analysis. Finite element
software ANSYS was employed to verify the accuracy of the
above theoretical research. A biaxially symmetric I-beam
section of the arch has a height h � 250mm, a width b

� 150mm, a span length L � 5000mm, a flange thickness tf

� 10mm, and a web thickness tw � 6mm, and the material
properties of Q235 steel were selected for modeling, which
can be shown in Figure 13.

0e beam188 element was chosen to build the parabolic
arch mode. According to the help file of the beam188 ele-
ment of ANSYS, the beam188 element can be used to specify
temperature gradients that vary linearly both over the cross
section and along the length of the element. 0e model is
built and solved numerically for critical loads and then
compared and analyzed with the theoretical solution.

0e comparison between the theoretical solution and the
finite element results for the dimensionless critical in-plane
instability load of the parabolic arch under linear gradient
temperature field coupled with vertical uniform load can be

seen from Figure 14. According to Figure 14, the theoretical
solutions agree well with the finite element consequence
data, indicating that (35) can accurately predict the insta-
bility critical load of the fixed parabolic steel arch under the
gradient temperature field coupled with the vertical uniform
load.

4. Conclusion

0is paper has presented a theoretical study on the internal
forces and critical in-plane instability loads for parabolic
arches with I section under the linear gradient temperature
field and vertical uniform load. 0e cross-sectional effective
centroid and effective stiffness for parabolic arches under the
linear temperature gradient field have been derived. 0e
axial and bending actions of the parabolic arch under linear
gradient temperature field coupled with vertical uniform
load have also been obtained. In addition, the precise an-
alytical solutions of the critical load for in-plane instability of
the parabolic arch under gradient temperature field coupled
with vertical uniform load have been obtained, and these
solutions have been verified by numerical simulations of
ANSYS.0e conclusions of this article can be summarized as
follows:

(1) For parabolic arches under the linear gradient
temperature field and vertical uniform load, the
central axial force and the central bending moment
decrease with the augment of slenderness.

(2) 0e central axial force of the arch first augments with
the augment of the rise-span ratio and then decreases
with the augment of the rise-span ratio while the
rise-span ratio reaches a certain value. 0e central
bending moment decreases with the augment of the
rise-span ratio.

(3) When the rise-span ratio is less than 0.15, the di-
mensionless critical in-plane instability load of
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Figure 12: 0e relationship between the critical load and rise-span
ratio for arches having different S/rx.
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Figure 13: Finite element model of parabolic arch under the linear
gradient temperature.
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parabolic arch is obviously influenced by the tem-
perature gradient field and decreases with the aug-
ment of gradient temperature difference; however,
when the rise-span ratio is larger than 0.15, the di-
mensionless critical in-plane instability load of
parabolic arch is slightly influenced by the gradient
temperature field.

(4) 0e dimensionless critical in-plane instability load of
parabolic arches decreases with the increasing rise-
span ratio.

(5) 0e dimensionless critical in-plane instability load of
parabolic arch decreases with the augment of
slenderness.
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