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Asphalt pavement distresses are the major concern of underdeveloped and developed nations for the smooth running of daily life
commute. Among various pavement failures, numerous research can be found on pothole detection as they are injurious to
automobiles and passengers that may turn into an accident.�is work is intended to explore the potential of deep learning models
and deploy three superlative deep learningmodels on edge devices for pothole detection. In this work, we have exploited the AI kit
(OAK-D) on a single-board computer (Raspberry Pi) as an edge platform for pothole detection. Detailed real-time performance
comparison of state-of-the-art deep learning models and object detection frameworks (YOLOv1, YOLOv2, YOLOv3, YOLOv4,
Tiny-YOLOv4, YOLOv5, and SSD-mobilenetv2) for pothole detection is presented. �e experimentation is performed on an
image dataset with pothole in diverse road conditions and illumination variations as well as on real-time video captured through a
moving vehicle. �e Tiny-YOLOv4, YOLOv4, and YOLOv5 evince the highest mean average precision (mAP) of 80.04%, 85.48%,
and 95%, respectively, on the image set, thus proving the strength of the proposed approach for pothole detection and deployed on
OAK-D for real-time detection. �e study corroborated Tiny-YOLOv4 as the be�tted model for real-time pothole detection with
90% detection accuracy and 31.76 FPS.

1. Introduction

Roads are the essential means of transportation for a country
to provide commutation facilities nationwide. Road infra-
structure enables opportunities to connect people and
transport goods to enhance business opportunities, access to
jobs, economic growth, and health care system across the
country. As �rst-rated roads contribute to the country’s
GDP [1], the calamitous infrastructure of roads can become
fatal for passengers’ safety and vehicles’ condition.�e roads
are usually made up of asphalt pavement and are prone to
di£erent structural damages with the passage of time.

�e asphalt pavement distresses have been a concern of
authorities to avoid unwanted circumstances. �ese

pavements are vulnerable to scenarios such as tra¤c load,
weather conditions, age, poor material used for construc-
tion, and miserable drainage system, exhibiting two major
pavement failures such as cracks and potholes. Potholes are
essentially the concave-shaped depressions in the road
surface that requires attention as they induce awful cir-
cumstances such as accidents, unpleasant driving experi-
ences, and malfunctioning of vehicles, as shown in Figure 1.
Potholes should be dealt with on a priority basis to minimize
their contribution towards unfortunate scenarios. According
to the prediction made by WHO (World Health Organi-
zation), road accidents will become the �fth leading cause of
death in 2030 [3]. �e signi�cance of potholes created
conspicuous interest for the researchers of the civil
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community. +e developing nations use manual inspection
methods to recognize the potholes leading to inaccurate
estimation as it is highly dependent on individual experi-
ence. +ese manual inspection methods require human
interventions that are time consuming and costly. Many
technical solutions exist for pothole detection such as
scanning based with 3D reconstruction [4–6], vibration
sensor based [7–10], thermal imaging [11, 12], and computer
vision based [13–15].

A sensor-based network “BusNet” [9] is proposed for the
monitoring of road conditions whereas the camera was
mounted on the public transport buses. Several sensors and
GPS are used which are fast, sensitive, and cost efficient.
However, this system is not ideal for every case due to
weather conditions that may damage the sensor leading to
the performance degradation of the BusNet. Over the last
few years, the computer vision and image processing based
techniques acquired fame due to the accessibility of cameras
which are inexpensive and feasible, and have been proved to
be the replacement of old fashioned manual inspection
methods for pothole detection. However, the image pro-
cessing-based pothole detection is still a demanding job
because of the irregular pothole textures, pothole structures,
road bumps, manholes and shadows, etc. For this problem,
different computer-vision based approaches have been
studied for pothole detection and classification. In [16], the
authors proposed a cost-effective solution for pothole de-
tection and severity estimation based on image processing
techniques. As compared to the manual method, their study
achieved 88.4% accuracy with the automated method. +e
proposed system is less time consuming and can be done
without the committee; however, the lightweight camera can
be used to overcome shadow effects. Zhou et al. [17] pro-
posed a methodology to replace human intervention
methods with the image processing techniques based on the
discrete wavelet transform for pavement distress detection.
Another work [18] proposed discolorations, where potholes
are detected based on characteristics such as dark region,
globe shape, and rough texture. However, the discolorations
may not always be potholes as we have other reasons such as
road markings, shadows, wet roads, and manholes. Wang
et al. [19] proposed a method in which wavelet energy is
assembled via morphological processing initially for pothole
detection, and afterward, detected pothole images are seg-
mented using the Markov random field model so that the
pothole edge is extracted. +is methodology tested and
trained over 120 pavement images in MATLAB.+emethod

has attained an accuracy of 86.7%, with 83.3% precision, and
87.5% recall. +e overlap degree between the extracted
pothole region and the original pothole region is approxi-
mately above 85%, which accounts for 88.6% of the total
detected pavement pothole images.

Altogether, machine learning and deep learning tech-
niques have reduced complexity and cost for pothole detection.
Arbawa et al. [20] proposed a method for detecting road
potholes using the gray-level co-occurrence matrix (GLCM)
feature extractor and support vector machine (SVM) as a
classifier. +ey analyzed three features such as contrast, cor-
relation, and dissimilarity. +e results have shown that a
combination of contrast and dissimilarity features exhibits
better results with an accuracy of 92.033% and computing time
of 0.0704 seconds per frame. Oche et al. [21] used five binary
classification models (Näıve Bayes, Logistic regression, SVM,
K-Nearest Neighbors (KNN), and Random Forest Tree) and
presented a comparison of various machine learning ap-
proaches on data collected through smartphones and car
routes. +e Random Forest Tree and KNN achieved the
highest accuracy of 0.8889 on the test set. To improve the
accuracy of the Random Forest Tree, they tuned hyper-
parameters and increased accuracy up to 0.9444. +e model
has shown promising results on different routes and out of
sample data. Ping et al. [22] presented techniques based on the
combination of machine learning and deep learning models to
detect potholes. A pothole detection system uses YOLOv3,
HOG, SSD, SVM, and Faster R-CNN, trained on their dataset
collected by mounting smartphone on vehicle dashboard.
After machine learning and deep learning models trained on
each of the mentioned techniques, YOLOv3 outperformed
others in detecting potholes and estimating the size of the
pothole with an accuracy of 82% on 1,500 images. However,
their performance on out-of-sample data is unsatisfactory as
they have not tested real-world scenarios. Ye et al. [23] pro-
posed a method for the inspection of road defects and potholes
based on two convolutional neural networks, conventional
CNN, and prepooling CNN. +e model is trained on 96,000
digital pavement images and achieved higher recognition
precision of 98.95% with optimized prepooling CNN. +ey
concluded optimized prepooling CNN with higher stability
and robustness for real-world scenarios against traditional
image processing techniques. K-means and Sobel edge de-
tection algorithms did not detect and localize potholes accu-
rately as CNN did. In [24], three different datasets are used to
classify three different road types such as paved, unpaved, and
asphalt for the further classification of the pothole in each road
type. Finally, the CNNmodel uses 7,000 images of datasets that
are RTK, KITTI, and caRINA for training. Moreover, they
proposed an application that notifies pedestrians and drivers of
upcoming potholes on the route. YOLOv3 and CNN models
were used to detect the potholes and classify road types. Zhang
et al. [25] proposed an embedded system integrated with CNN
for pavement distress detection using the Montreal Pavement
dataset. +e model exhibits a true-positive rate for a pothole,
patch, marking, crack linear, and crack network as 75.7%,
84.1%, 76.3%, 79.4%, and 83.1%, respectively.

It is crucial to assess the condition of road surfaces for
public safety and usability. Hassan et al. [26] provided a

Figure 1: Road image having potholes [2].

2 Advances in Civil Engineering



summary and detailed insight of factors that affect the
generalizability of any model for automated pavement as-
sessment by investigating some common issues such as the
distance of pothole from camera angle and lighting, and
variations of images in terms of image size. +ey used the
Kaggle pothole dataset and tested Faster RCNN with in-
ception V2 as a backbone. +e model achieved an accuracy
of 90% as they performed the first experiment on the
negative image. Later, the second experiment is performed
on the Cranfield dataset, which results in 80% precision and
92% recall. In the third experiment, images are captured by
stereocamera, the and model results in 95% precision and
84% recall. +e fourth experiment is performed on images
collected across Dublin city center in daylight and the model
gives precision 78% and 68% recall in normal light, and 78%
precision and 73% recall in low light. Kavitha et al. [27]
proposed a method for self-driving vehicles and used the
YOLO algorithm to detect objects and the training. PASCAL
VOC dataset with XML format is collected and then
implemented the method on Raspberry pi. Chen et al. [28]
proposed a novel location-aware convolutional neural
network and trained on a public pothole dataset that consists
of 4,026 images as training samples and 1,650 images as test
samples. +e proposed model is based on 2D-vision tech-
niques and location-aware convolutional networks. CNN
networks consist of two main subnetworks; the first local-
ization subnetwork (LCNN) finds as many candidate regions
as possible by employing a high recall network model, and
the second part-based subnetwork (PCNN) performs clas-
sification on the candidates on which the network is ex-
pected to focus. +e proposed method achieved high
precision 95.2% and recall 92.0%. Rani et al. [29] detected
potholes and road bumps for an advance driver assistance
system (ADAS) using SSD-MobileNet for detection which is
trained on their self-made dataset collected from Malaysian
roads. +e model was able to detect potholes and road
bumps with the limitations of accuracy and confidence
however they suggested it for real-time detection as FPS
(frame per second) was 22. Lately, deep convolutional neural
networks (DCNNs) have become well known for problems
like object classification [30], object detection, and recog-
nition [31, 32] as they automatically extract themain features
from images with basically no interventions. Furthermore,
DCNNs have various applications in domains such as
natural language processing (NLP) [33] and speech and
audio processing (SAP) [34].

+e literature shows that the sensor-based pothole
detections are vulnerable to weather conditions. Further-
more, the pothole is not detected unless a vehicle or sensor
is above the pothole. +e sensor-based detection system is
prone to failure if potholes contain pebbles or sand. A 3D
reconstruction-based system detects potholes with size
estimation. +is system has a limitation of close-range
detection with costly equipment. Sensor-based and 3D
reconstruction-based systems are less feasible for real-time
applications as they require complex hardware. Vision-
based systems that incorporate intelligent and low-cost
cameras have gained attention from researchers. +ese

systems are proven robust and feasible but with limitations
of false detection, illumination, and the texture of road
potholes. Machine-learning-based systems are the superior
version of the above-discussed techniques and require
prior knowledge and time to develop a feature extractor for
the dedicated problem.+erefore, deep learning techniques
are more suitable for pothole detection with edge devices
mounted on vehicles.

In this work, our contributions are as follows:

(i) We have presented a comprehensive experimental
and comparative study of whole YOLO family and
SSD-Mobilenetv2 on pothole detection in terms of
accuracy and speed

(ii) We have introduced a thorough methodology to
deploy custom-trained CNNs on edge devices for
pothole detection.

(iii) We have proposed a real-time and AI-on-the-edge
solution for pothole detection using an OAK-D
camera on a single-board computer (Raspberry Pi)
as host by deploying the top three models based on
performance metrics

In further proceedings of this article, we shall discuss in
Section 2 our proposed methodology for a real-time pothole
detection system. Similarly, Section 3 discusses the experi-
mental results thoroughly. We discussed the conclusion and
a few comments on future work in the Section 4 of this
article.

2. Proposed Methodology

For a real-time pothole detection system, the block diagram
of the proposed methodology is shown in Figure 2. An-
notation for each image is performed explicitly after the
collection of the dataset. +e annotated data are split into
training and testing data before passing it to deep learning
models such as the YOLO family and SSD for custom model
training. +e weights obtained after training contribute to
model performance evaluation on testing data. +e custom
weights are then converted into the OpenVino IR format to
perform real-time detection on OAK-D and Raspberry pi as
host computer.+e methodology is discussed in detail in the
following sections.

2.1. Dataset Acquisition. +e performance and reliability of
the models depend upon the dataset used for training. +e
dataset must contain realistic pothole images. Hence, the
latest publicly available pothole image dataset is used [2] that
consists of 665 images, with effects of shadows, moving
vehicles, and illumination variations that incorporate real-
world scenarios around potholes. +e dataset images are
collected from online sources making noisy and low-quality
images. Each image of a dataset contains at least three
potholes. So, 8,000 potholes are available in the whole
dataset approximately. Some samples from the pothole
image dataset are shown in Figure 3.
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2.2. Pothole Detection Using Deep Learning Models. �e
potholes are considered as the objects to be detected. Deep
convolutional neural networks (DCNNs) have proven their
abilities for many object detection tasks. �ese object de-
tectors can be one-stage object detectors or two-state object
detectors. Several object detection models such as region-
based convolutional neural network family (R-CNN) [31],
YOLO family [35], and SSD family [36], are available in deep
learning for training. However, the R-CNN family is
computationally expensive result in low latency. Conversely,
YOLO and SSD are under study to supplement the

responsiveness issues of the R-CNN family. Hence, we had
focused on YOLO and SSD family for this problem.

2.2.1. YOLO Family. YOLO (you only look once) was �rst
introduced in 2016 by Redmon [35]. It divides the input
image into SxS grid cells where each cell is responsible for
detecting an object and predicting its bounding box coor-
dinates. Each object bounding box shows the X, Y coordi-
nates, height (h), width (w), and con�dence score with the
class label. �e con�dence score is the matching percentage
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Figure 2: Proposed methodology block diagram of real-time pothole detection.

Figure 3: Sample of pothole images from the dataset.
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of the actual labeled object bounding box with the predicted
bounding box and tells the accuracy of prediction of the
bounding box. It can detect, classify, and localize multiple
objects in one step, whereas other algorithms require
multiple scanning of an input image. �is algorithm was the
milestone for real-time object detection known as YOLOv1.
YOLOv1 exhibits some limitations when small and cluttered
objects are detected. �ese drawbacks were removed in 2016
and presented as YOLO900 or YOLOv2 [37]. �e improved
version o£ered signi�cant features such as better speed,
performance, and accuracy. �is version included advanced
techniques such as batch normalization and anchor boxes.
In 2018, “YOLOV3: an incremental improvement,” another
improved version was proposed [38] which was even better
and stronger than previous versions. Figure 4 shows that
YOLOv3 outperforms state-of-the-art detectors such as
RetinaNet, SSD, and its variants. It made a signi�cant im-
provement in terms of speed over other detection models, as
shown in Figure 4.

YOLOv4 [39] was developed by Alexey Bochkovskiy,
Chien-Yao Wang, and Hong-Yuan Mark Liao on April 23,
2020, claiming up to 10% improvement in mean average
precision as well as 12% in frames per second as compared to
YOLOv3. In addition, Tiny YOLOv4 is a compressed version
of the original YOLOv4 that is simpler and faster real-time
object detector [40]. After the YOLOv4 release, a company
named “Ultralytics” came up with the YOLOv5 by Glenn
Jocher [41]. It is di£erent from previous YOLO releases as its
implementation is in the PyTorch framework keeping in
mind the v5 is not a fork of the original, unlike Alexey’s
repository. �ey claim it to be extremely lightweight and
speedy than the YOLOv4. However, the accuracy is com-
paratively equal to YOLOv4.

2.2.2. Architectures. YOLOv2 uses Darknet19 composed of
19 convolutional layers, �ve max-pooling layers, and a
softmax layer at the end for assigning class labels.�e overall
mAP of YOLOv2 increased up to 4% by taking the input
image of size 448× 448 from 224× 224. In YOLOv2, anchor
boxes perform the prediction and localization and are re-
sponsible for predicting the bounding box. �e �ne-grained
features of YOLOv2 enhance the quality to detect small
objects. YOLOv3 uses logistic regression instead of the
softmax layer for predicting class probabilities and objec-
tiveness scores. YOLOv3 can detect objects at di£erent scales
using the feature pyramid network (FPN). It uses Darknet-
53 deeper than Darknet-19 as it contains 53 convolutional
layers of feature extractor comparatively. �e standard input
image size of YOLOv3 architecture is 416× 416. �e
YOLOv4 architecture combines three main blocks starting
with the CSPDarknet53 as the backbone, following the neck
block that adds layers between the head and the backbone
CSPDarknet53. A path aggregation network (PANet) is used
for feature aggregation to improve the overall accuracy
within YOLOv4. It also uses the spatial pyramid pooling
(SPP) block to segregate essential features from the back-
bone. As in YOLOv3, the head performs the detection along
with other techniques like bag of freebies and bag of specials

which helps in training and minimizing inference time. It
takes an input image of resolution 608× 608. On the other
hand, Tiny-YOLOv4 takes input images of resolution
416× 416. Experimentation proved YOLOv4 as the best real-
time object detector without compromising accuracy and
outperformed the e¤cient detection model, E¤cientDET.
YOLOv5 is the latest version with the same architecture
(backbone, neck, and output block) as YOLOv4 but
implemented in a PyTorch framework. YOLOv5 passes
640× 640 resolution images to the backbone, and features
are extracted using BottleneckCSP. Four models (YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x) are created by
adjusting the height and the width of BottleneckCSP.
YOLOv4 surpassed YOLOv5 in mAP when tested on COCO
benchmark despite claiming an improvement of YOLOv4, as
shown in Figure 5.

2.2.3. SSD-Mobilenetv2. Mobilenetv2 is a single-shot object
detector created using the TensorFlow object detection. API
was released by Google researchers in 2018 as an improved
version of Mobilenetv1. It generates bounding boxes and
class probabilities in a single step. MobileNet is integrated
with SSD as designed for mobile and embedded applications.
Mobilenetv2 contains two blocks with three layers. �e basic
building block of Mobilenetv2 is a bottleneck depth-sepa-
rable convolution with residual block. �e second block is
for downsizing with the stride of two.Mobilenetv2 is suitable
for real-time applications as its speed is high along with
shorter inference time but with compromised accuracy.
However, Mobilenetv2 is 35% faster than the Mobilenetv1.

2.2.4. AI-on-the-Edge Implementation. We have mentioned
that we have opted OAK-D camera on Raspberry Pi for real-
time implementation of the proposed approach. To make
our OAK-D computational, we need a host computer that
has a USB port to plug in OAK-D; for this, we used both
windows and raspbian. �e next step is to install DepthAI
that is a computer vision library provided by Luxonis to get
our model running; and after installing DepthAI require-
ments, we were able to run over a custommodel on OAK-D.
OAK-D sensor has been chosen because it is a SpatialAI tool,
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capable of running complex neural networks while pro-
viding depth through its left and right stereo cameras and
detection from the 4K RGB middle camera.

However, the darknet framework is not optimized to run
on the Myriad X VPU hardware in Luxonis OAK-D. To run
our custom model on OAK-D for real-time detection, we
�rst need to translate our darknet YOLO weights to
OpenVino format. We �rst need to convert to Tensor-
Flow.pb weights and then to OpenVino as we do not have
any direct conversion method for darknet weights. After the
conversion, we get the.blob �le to deploy on the OAK-D kit.
For YOLOv5 to deploy on OAK-D, we have converted the
YOLOv5 best.pt PyTorch weights to the ONNX frame-
work,.xml and.bin �le, and the.blob �le, respectively. SSD-
Mobilenetv2 weights are also converted to OpenVino.blob
�le by converting Tensor°ow.pb to.xml and.bin �le to
OpenVino IR representation that is.blob �le.

3. Experimentation and Results

3.1. Frameworks Used

3.1.1. Darknet Framework. We used YOLOv1, YOLOv2,
YOLOv3, YOLOv4, and Tiny-YOLOv4 for training. YOLO
is trained using an opensource neural network framework
which is fast due to CUDA and C language providing the
real-time attribute for our detection.

3.1.2. PyTorch Framework. An opensource deep learning
framework reduces the gap between research and practical
application. It is used for the training of YOLOv5 as the
darknet framework does not support YOLOv5.

3.1.3. TensorFlow Framework. TensorFlow is an opensource
deep learning and machine learning framework by Google
that provides researchers with a wide range of tools and

libraries for di£erent machine learning and deep learning
development and deploy applications. We used the Ten-
sorFlow framework for the training of SSD-Mobilenetv2.

3.2. Dataset Annotation. After the collection of a dataset,
the next step was to manually annotate them; so, for the
annotation, we have used labeling. It is a free graphical
image annotation tool that generates labels in YOLO
darknet format. For training the YOLO model, the anno-
tations should be in YOLO format as < object-
class> < x> < y> <width> < height> , where object class is
an integer value starting from 0 up to the number of classes
de�ned; in our case, the object class will be 0 as we have only
one class, i.e., pothole and the remaining parameters are the
coordinates, height, and width of the labeled object
bounding box.

�e YOLOv5 annotation format is a bit di£erent from
the YOLO darknet format, so the conversion is needed here.
As YOLOv5 implementation is in PyTorch, its annotation
format is < class_id > < center_x > < center_y > < width
> < height > , where the class id is normalized to 1 from 0
and remaining parameters are same as YOLO darknet.txt
annotation format. �e other thing needed for dataset
preparation is ‘data.ymal’ �le which contains the number of
classes, a path to train and validation folder, and lastly the
class names. After annotation, the dataset is split into train
and test folders with a ratio of 80% for training and 20% for
testing. Each folder contained the images corresponding to
its annotation.txt �le having identical �le names.

�e SSD-Mobilenetv2 implementation is in the Ten-
sorFlow object detection, so the dataset annotations must be
converted to the Tensor°owTF record from Darknet txt for
custom object training. �e annotation format used for this
model is a CSV �le that contains the �lename, width, and
height of image, class name, and xmin, ymin, xmax, ymax co-
ordinates of the labeled pothole. �e dataset split ratio has
been kept the same as YOLOv5 and YOLO Darknet. �e
train and test folder contains the images with the CSV
annotation �le each. �e labelmap.pbtxt for train and test is
written which contains the class name and id of the labeled
objects in each folder.

3.3. Experimentation Protocols. �e training of the YOLO
and its variants are carried out on a system having Intel (R)
Xeon (R) CPU at 3.0GHz, RAM of 64GB, and NVIDIA Titan
Xp GPU. �e dataset is split into 80% (1,066 images) training
of the model and 20% (264 images) for the testing with labels
of each image. �e �les needed for training are obj.names
(names of the classes), obj.data (the number of classes), a path
to train, test, and a backup folder. �e backup folder saves the
weights after every 100th iteration.�emajor �le required for
training is the con�guration �le which changes according to
the model requirements. In our case, eachmodel is trained for
20,000 max iterations with the batch size of 64 having sub-
divisions of 32 and a learning rate of 0.001 enclosed in the .cfg
con�guration �le. �e �lters are set to 18 according to the
formula �lter size� (class+5)∗ 3 where class� 1 in a .cfg �le.
For the training of YOLOv5, same parameters are used.
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According to the model and performance, we used pretrained
weights from Google. Here, pretrained weights of YOLO v1,
v2, v3, v4, v5, and Tiny-YOLOv4 were downloaded for
training and used as transfer learning. YOLOv5 has less
training time as compared to the rest of the YOLOmodels as 1
hour max, as shown in Figure 6(a). For the training of SSD-
Mobilentv2, we used 20,000 training steps, 50 evaluation
steps, and an initial learning rate of 0.004 for better accuracy
in the con�guration �le. �e TensorFlow object detection
pretrained model was used for training. �e overall training
time for SSD-Mobilenetv2 taken was 3-hours 8-min ap-
proximately for 20,000 training steps, as shown in Figure 6(b).

3.4. Performance Criteria. �e performance of each model
has been evaluated with performance metrics (mAP, preci-
sion, recall, F1-score, and average inference time per image)
for all the trained deep learningmodels, as shown in equations
(1) to (5). By adjusting a threshold and observing the precision
and recall values, the model is evaluated. N thresholds are
assumed for the precision and recall calculations, with each
threshold consisting of a pair of precision (Pn) and recall (Rn)
(n� 1, 2, . . ., N). Average precision (AP) is de�ned by
equation (4), and mean average precision (mAP) de�ned by
(1) is the average of AP of each class. In our case, the AP and
mAP will be same as we have only one class. �e measure of
overlapping area between the predicted bounding box and the
ground truth bounding box is compared with the de�ned
threshold called Intersection over Union (IOU). For this
work, we have set the threshold to 0.3. �erefore, a prediction
is correct if IOU score is greater than or equal to the threshold
of 0.3 (30%). �e precision, recall, and F1-score of YOLOv2
and YOLOv3 are nearly same, but the mAP@0.5 for YOLOv2
is 81.21% and 83.60%. However, the inference time of
YOLOv2 is 33.7ms which is quite good, as shown in Table 1.
YOLOv4 and Tiny-YOLOv4 have achieved mAP@0.5 of
85.48% and 80.04%, respectively, whereas the inference time
of Tiny-YOLOv4 is 4.8ms which is very low as compared to

the pure YOLOv4. YOLOv5 showed the highest mAP@0.5 of
95% with an inference time of 10ms per image. �e inference
time of Tiny-YOLOv4 is the lowest to deploy on edge devices
such as Raspberry Pi, Google Coral, and NVIDIA Jetson
Nano. We found out SSD-Mobilentv2 can be run for real-
time detection but did not perform for our problem asmAP is
47.4%which is not even close to themAP of the YOLO family.
Table 1 presents the overall evaluation parameters of other
deep learning models.

Precision � TP

TP + FP
, (1)

Recall �
TP

TP + FN
, (2)

F1 �
2∗ Precision∗Recall
Precision + Recall

, (3)

AP � ∑
N

n�1
Rn − Rn−1( )Pn, (4)

mAP �
1
N
∑
N

i�1
APi. (5)

After looking into the pothole detection result using
SSD-Mobilenetv2, we concluded that SSD-Mobilenetv2 does
not detect objects that rely upon the appearance of envi-
ronment like potholes because it does not consider its
neighboring pixels, unlike YOLO. YOLO divides an image
into grid cells of equal size. Each cell is to detect the object
that lies in the center. Furthermore, SSD-Mobilenetv2 fails
small pothole detection as our dataset contained small
bounding boxes as well.

Figure 7 shows the detection results obtained from each
trained model. �e red circled pothole is not detected by
YOLOv5 and SSD-Mobilentv2 in Figure 7. In contrast, the
YOLOv4 even detected the small potholes, as well as long-
distance potholes with a considerable con�dence threshold
of 0.67, encircled red in Figure 7.
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Figure 6: Accuracy graphs of (a) YOLOv5 when trained for 100 epochs and (b) SSD-Mobilenetv2 when trained for 16,000 batches.
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3.5. Accuracy Graphs. Figure 6(a) shows 95% as the best
mean average precision for YOLOv5 for the present case.
Similarly, the training loss is nearly equal to zero that is 0.02.
Figure 6(b) shows the mAP and the total number of iteration

set. Initially, iteration set to train SSD-Mobilenetv2 was
20000. After the 14,000th iteration, mAP started decreasing
and became constant at the 16,000th iteration. �us, the
training is stopped at the 16,000th iteration, with an average

YOLOv1 YOLOv2 YOLOv3 YOLOv4 YOLOv5Tiny-YOLOv4SSD-MobileNetv2

Figure 7: Prediction of potholes by YOLO family and SSD-Mobilnetv2.

Table 1: Performance evaluation of each model on test subset of pothole image dataset (PID)

Model Precision Recall F1-score mAP@0.5 (%) Inference time (ms)
SSD-Mobilenetv2 0.42 0.56 0.479 47.4 7
YOLOv1 0.82 0.69 0.74 79.55 340
YOLOv2 0.81 0.76 0.78 81.21 33.7
YOLOv3 0.77 0.78 0.78 83.60 70.57
Tiny-YOLOv4 0.76 0.75 0.76 80.04 4.86
YOLOv4 0.81 0.83 0.82 85.48 52.51
YOLOv5 0.93 0.83 0.87 95.00 10
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Figure 8: Average loss vs. iterations and mAP graph of YOLOv4 when trained for 10,000 iterations.
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loss up to 4.5 at the end of training. Figure 8 shows average
loss vs. no. of iterations as well as mAP of Tiny-YOLOv4.
�e loss and mAP became constant at the 4,000th iteration,

so we continued training for 10,000 iterations. At last, 71%
mAP@0.5 has been achieved with an average iteration loss of
0.237.

Table 2: Qualitative analysis on test images.

Image ID No. of Labelled
potholes Detected by YOLOv4 Detected by SSD-Mobilenetv2 Detected by

YOLOv5
False detection by

YOLOv5
a 7 7 3 6 0
b 11 11 0 9 0
c 6 6 1 3 1
d 9 9 3 9 3
e 8 8 1 4 0
Average detection — 100% 21% 73% —
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Figure 9: Qualitative analysis of SSD-Mobilenetv2, YOLOv5, and YOLOv4 on test images.
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3.6. Qualitative Analysis. Table 2 presents the qualitative
analysis of �ve test images. YOLOv4 performed well as
compared to YOLOv5, while SSD-Mobilentv2 showed un-
satisfactory results. As shown in Figure 9 Image ID c,
YOLOv5 misclassi�ed objects as potholes and does not
detect potholes despite being visible. In Figure 9 Image ID b,
SSD-Mobilenetv2 shows no detection of potholes provided
many potholes are in the scene. YOLOv5 and SSD-Mobi-
lenetv2 could not detect potholes with long distances from
the camera. However, based on these analyses, YOLOv4
performed 100% accurately. �e detections done by SSD-
Mobilenetv2, YOLOv5, and YOLOv4 are present in Figure 9.
Average detection is measured using (2).

Average Detection �
Detected Potholes
Total Potholes

( )∗ 100. (6)

3.7. Real-TimeDetection of Potholes by Our System. We have
conducted real-time pothole detection using OAK-D and
Raspberry Pi on three di£erent locations and distance ranges
(Long-Range � 10m,Mid-Range � 5m, Close-Range � 2m).
In Figure 10, YOLOv5 and SSD-Mobilentv2 did not detect
the potholes located on the long-distance range and even
missed the potholes in mid range and close range. However,
Tiny-YOLOv4 detects all the potholes with the highest
con�dence score up to 96% in all de�ned distance ranges.

For real-time testing on vehicles, OpenCV AI Kit (OAK-
D) has beenmounted at the center of the vehicle dashboard to
capture themaximum road area possible for better evaluation.
However, the speed is constant at 65 km/h throughout the
experiment. Raspberry Pi acted as a host computer for OAK-
D.�e Tiny-Yolov4 detects potholes at a distance of 10meters
from the dashboard with a high FPS of 31.76.

Table 3: Real-time detection performance evaluation of each model.

Model No. of potholes Detected Potholes Accuracy (%) FPS
SSD-Mobilenetv2 10 4 40 26.65
YOLOv5 10 5 50 18.25
YOLOv2 10 8 80 3.20
YOLOv3 10 9 90 2.39
YOLOv4 10 10 100 1.98
Tiny-YOLOv4 10 9 90 31.76
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Figure 10: Real-time detection of potholes using OAK-D and Raspberry Pi on di£erent distance ranges.
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Tiny-YOLOv4 is considered the best model to imple-
ment for real-time pothole detection systems as it has
maximum FPS with the highest detection accuracy com-
pared to YOLOv2, YOLOv3, and YOLOv4. SSD-Mobile-
netv2 has shown low performance as it only detects when the
confidence threshold is 30% or less having false and no
detection. YOLOv5 has 18.25 FPS andmisses a large number
of potholes during real-time inference. However, it is fruitful
for real-time pothole detection systems with high FPS but
lower accuracy.+e real-time detection results are present in
Table 3. +e testing is done in a completely unknown en-
vironment as we trained our models on the Pothole image
Dataset.

3.8. Comparison. We have compared our results with other
state-of-the-art techniques, showing that our YOLOv4
trained model has performed better in detection with
minimum inference time. Shaghouri et al. [44] used a
pothole image dataset with 75.63% mAP using YOLOv4; the
trained YOLOv4 has achieved 85.48%, which is 9.85% more
accurate; whereas [45] used self-collected dataset and
achieved mAP@0.5 of 18.5% with higher inference time
using SSD-Mobilentv2. Researchers in [46] used YOLOv5
on the PID and achieved the mAP@0.5 of 74.48% which is in
difference of 20.52% as compared to our trained YOLOv5.
Table 4 presents the comparison with other state-of-the-art
techniques.

4. Conclusion

+is work presented the state-of-the-art deep learning
models (YOLO family and SSD-mobilenetv2) for real-
time pothole detection leading towards the deployment
on edge devices. Although, YOLOv5 showed the highest
mAP@0.5 of 95% among other models but exhibits miss-
classification and no detection potholes at long distances.
+erefore, we concluded the YOLOv4 as the best-fit
pothole detection model for accuracy and Tiny-YOLOv4
as the best-fit pothole detection model for real-time
pothole detection with 90% detection accuracy and 31.76
FPS. +e proposed approach can help road maintenance
authorities to formulate rapid and optimized actions for
road infrastructure repairs. A more sophisticated solution
with the help of the global position system (GPS) can
detect and point out the location of pavement failures.
+is work can contribute to self-driving applications and
the automation industry. +is work can further be

extended to detect other pavement distresses, road de-
pressions, classify roads as per quality, and depth esti-
mation of potholes. +e accuracy limitations can also be
resolved in the future by further modification and ex-
tension in the real-time deployment.
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