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In this article, we focused on predictive modeling for real data by means of a new statistical model and applying di�erent machine
learning algorithms.  e importance of statistical methods in various research �elds is modeling the real data and predicting the
future behavior of data. For modeling and predicting real-life data, a series of statistical models have been introduced and
successfully implemented.  is study introduces another novel method, namely, a new generalized exponential-X family for
generating new distributions.  is method is introduced by using the T-X approach with the exponential model. A special case of
the new method, namely, a new generalized exponential Weibull model, is introduced.  e applicability of the new method is
illustrated by means of a real application related to the alumina (Al2O3) data set. Acceptance sampling plans are developed for this
distribution using percentiles when the life test is truncated at the pre-assigned time.  e minimum sample size needed to make
sure that the required lifetime percentile is determined for a speci�ed customer’s risk and producer’s risk simultaneously.  e
operating characteristic value of the sampling plans is also provided.  e plan methodology is illustrated using Al2O3 fracture
toughness data. Using the same data set, we implement various machine learning approaches including the support vector
machine (SVR), group method of data handling (GMDH), and random forest (RF). To evaluate their forecasting performances,
three statistical measures of accuracy, namely, root-mean-square error (RMSE), mean absolute error (MAE), and Akaike in-
formation criterion (AIC) are computed.

1. Introduction

In the class of traditional/classical distributions, the Weibull
model is an interesting model. It has been frequently
implemented for dealing and modeling data in di�erent
sectors.  e DF (cumulative distribution function) V(x; ϕ)
of the two-parameter Weibull model is

V(x;ϕ) � 1 − e− σx
κ
, · · · · · · x≥ 0, (1)

where ϕ � (κ, σ), κ> 0, and σ > 0.

 e Weibull model and its di�erent generalized/modi-
�ed variants have been used by researchers for modeling
data in numerous sectors. For example, (i) Ghorbani et al. [1]
and Moreau [2] applied it to the medical science phe-
nomena; (ii) Zaindin and Sarhan [3], Lai [4], Almalki and
Yuan [5], and Singh [6] used it for reliability engineering
applications; and (iii) Ahmad et al. [7] studied its applica-
tions in the �nance sector.

 e probability density function (PDF) v(x; ϕ) of the
Weibull model is
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v(x;ϕ) � κσx
κ− 1

e
− σxκ

, · · · · · · x> 0, (2)

with hazard function (HF) h(x; ϕ) given by

h(x;ϕ) � κσx
κ− 1

, · · · · · · x> 0. (3)

From equation (3), we can see that the HF of theWeibull
model can be (i) constant for κ � 1 (in this case, the Weibull
captures the properties of the exponential model), (ii) in-
creasing for κ> 1 (in this case, the Weibull captures the
properties of the Rayleigh model), and (iii) decreasing for
κ< 1.

)e Weibull distribution provides impressive results
when the failure behavior of the data is either increasing,
decreasing, or constant (i.e., monotonic behavior). However,
in many cases, the HF of the data behaves nonmonotonically
[8]. In such scenarios, the Weibull model is not a popular
distribution to use. In the literature, numerous authors have
addressed different applications in various fields by devel-
oping a flexible version of the Weibull distribution with
additional parameters (see Pham and Lai [9]; Nadarajah
et al. [10]; and Wais [11]).

Here, we introduce a new method, namely, a new
generalized exponential-X (for short “NGExp-X”) family to
obtain modified versions of the existing distributions. )e
NGExp-X family is introduced by implementing the ex-
ponential distribution with PDF e− t and mixing it with the
T-X distribution approach [12].

If X has the NGExp-X family, then its DF F(x; φ, δ,ϕ) is
given by

F(x;φ, δ,ϕ) � 1 −
φ[1 − V(x;ϕ)]

φ + V(x;ϕ)
 

δ

, · · · · · · x ∈ R, (4)

where φ> 0, δ > 0 and V(x; ϕ) is a baseline DF with pa-
rameter vector ϕ.

In order to show that F(x; φ, δ, ϕ) is a compact DF, we
have the following two propositions.

Proposition 1. For the expression F(x;φ, δ, ϕ) in equation
(1), we must prove that limx⟶− ∞ F(x;φ, δ,ϕ) � 0 and
limx⟶∞ F(x;φ, δ, ϕ) � 1.

Proof.

lim
x⟶ − ∞

F(x; φ, δ,ϕ) � lim
x⟶ − ∞

1 −
φ[1 − V(x;ϕ)]

φ + V(x;ϕ)
 

δ⎧⎨

⎩

⎫⎬

⎭,

� 1 −
φ[1 − V(− ∞;ϕ)]

φ + V(− ∞;ϕ)
 

δ

,

� 1 −
φ[1 − 0]

φ + 0
 

δ

,

� 1 − 1,

� 0,

(5)

And

lim
x⟶∞

F(x;φ, δ,ϕ) � lim
x⟶∞

1 −
φ[1 − V(x;ϕ)]

φ + V(x;ϕ)
 

δ⎧⎨

⎩

⎫⎬

⎭ ,

� 1 −
φ[1 − V(∞;ϕ)]

φ + V(∞;ϕ)
 

δ

,

� 1 −
φ[1 − 1]

φ + 1
 

δ

,

� 1 − 0,

� 1.

(6)

□

Proposition 2. Be DF F(x;φ, δ,ϕ) is differentiable and RC
(right continuous).

Proof. By taking the differentiation of equation (1), we get

d
dx

F(x;φ, δ, ϕ) � f(x; φ, δ,ϕ). (7)

From the proofs of Propositions 1 and 2, it is obvious
that the function F(x;φ, δ, ϕ) provided in equation (4) is a
valid DF.

For x ∈ R,φ> 0, and δ > 0, the PDF f(x; φ, δ, ϕ) and HF
h(x; φ, δ, ϕ) � f(x; φ, δ, ϕ)/1 − F(x; φ, δ,ϕ) of the NGExp-
X family are given by

f(x; φ, δ,ϕ) �
δφδ

(φ + 1)v(x;ϕ)[1 − V(x;ϕ)]
δ− 1

[φ + V(x;ϕ)]
δ+1 , · · · · · · v ∈ R,

(8)

and

h(x; φ, δ,ϕ) �
δ(φ + 1)v(x;ϕ)[1 − V(x;ϕ)]

− 1

[φ + V(x;ϕ)]
, · · · · · · v ∈ R, (9)

respectively. □

2. A New Generalized Exponential-
Weibull Distribution

Let X be the proposed NGExp-Weibull distribution with
parameters φ> 0, σ > 0, δ > 0, and κ> 0, if its DF
F(x; φ, σ, δ, κ) and PDF f(x; φ, σ, δ, κ) are given by

F(x;φ, σ, δ, κ) � 1 −
φe− σxκ

φ + 1 − e− σxκ 

δ

, · · · · · · v≥ 0, (10)

and

f(x;φ, σ, δ, κ) �
δκσφδ

(φ + 1)x
κ− 1

e
− δσxκ

φ + 1 − e
− σxκ

 
δ+1 , · · · · · · v> 0, (11)

respectively.
Corresponding to F(x;φ, σ, δ, κ) and f(x; φ, σ, δ, κ), the

SF SF(x; φ, σ, δ, κ) � 1 − F(x; φ, σ, δ, κ), HF
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h(x;φ, σ, δ, κ) � f(x; φ, σ, δ, κ)/S(x; φ, σ, δ, κ), and CHF
H(x;φ, σ, δ, κ) � − log S(x; φ, σ, δ, κ) are given by

S(x;φ,σ,δ,κ) �
φe− σxκ

φ+1 − e− σxκ 

δ

, · · · · · ·x>0,

h(x;φ,σ,δ,κ) �
δκσ(φ+1)x

κ− 1

φ+1 − e
− σxκ

 
,x>0,

(12)

and

H(x; φ, σ, δ, κ) � − log
φe− σxκ

φ + 1 − e− σxκ 

δ

, · · · · · · x> 0, (13)

respectively.
Different visual behaviors of f(x; φ, σ, δ, κ) for (i) κ �

4.5, σ � 0.1, δ � 2.5,φ � 4.5 (gold curve), (ii) κ � 1.8, σ � 1,

δ � 1.2,φ � 0.5 (blue curve), (iii) κ � 3.5, σ � 0.4, δ � 1.8,φ
� 3.9 (red curve), and (iv) κ � 0.5, σ � 0.4, δ � 1.8,φ � 3.9
(green curve) are presented in Figure 1.

From the visual illustration of f(x; φ, σ, δ, κ) in Figure 1,
we can see that f(x; φ, σ, δ, κ) possess different behaviors.
For example, it takes (i) the left-skewed form (gold curve),
(ii) the right-skewed (blue curve), (iii) the symmetrical shape
(red curve), and (iv) the reverse-J shape (green curve).

3. Modeling the Al2O3 Data Set

)is section offers a practical illustration of the NGExp-
Weibull distribution by analyzing data from the engineering
sector. We implement the NGExp-Weibull distribution to
analyze the Al2O3 (in the units of MPa m1/2) data set (see
Nadarajah and Kotz) [13]. )e data set is given by 5.5, 5, 4.9,
6.4, 5.1, 5.2, 5.2, 5, 4.7, 4, 4.5, 4.2, 4.1, 4.56, 5.01, 4.7, 3.13, 3.12,
2.68, 2.77, 2.7, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61,
1.68, 2.04, 2.08, 2.13, 3.8, 3.73, 3.71, 3.28, 3.9, 4, 3.8, 4.1, 3.9,
4.05, 4, 3.95, 4, 4.5, 4.5, 4.2, 4.55, 4.65, 4.1, 4.25, 4.3, 4.5, 4.7,
5.15, 4.3, 4.5, 4.9, 5, 5.35, 5.15, 5.25, 5.8, 5.85, 5.9, 5.75, 6.25,
6.05, 5.9, 3.6, 4.1, 4.5, 5.3, 4.85, 5.3, 5.45, 5.1, 5.3, 5.2, 5.3, 5.25,
4.75, 4.5, 4.2, 4, 4.15, 4.25, 4.3, 3.75, 3.95, 3.51, 4.13, 5.4,5, 2.1,
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Figure 1: A visual behavior of f(x; φ, σ, δ, κ) for different values of φ, σ, δ > 0, and κ> 0.
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4.6, 3.2, 2.5, 4.1, 3.5, 3.2, 3.3, 4.6, 4.3, 4.3, 4.5, 5.5, 4.6, 4.9, 4.3,
3, 3.4, 3.7, 4.4, 4.9, 4.9, and 5.

Corresponding to the Al2O3 data, the summary mea-
sures are as follows: minimum� 1.680, 1st quartile� 3.850,
median� 4.380, mean� 4.325, 1st quartile� 5.000,
maximum� 6.810, variance� 1.037332, range� 5.13, stan-
dard deviation� 1.018495, skewness� − 0.4167136, and
kurtosis� 5.13.

)e box plot and histogram of the Al2O3 data are
sketched in Figure 2. Additionally, the corresponding curve
of the TTT (total test time) is also displayed in Figure 2.

)e NGExp-Weibull model is applied to the Al2O3 data,
and its results are compared with (i) the exponentiated
Weibull (Exp-Weibull) model with DF given by
F(x; κ, σ, η1) � (1 − e− σxκ

)η1 , v≥ 0, and (ii) Kumaraswamy
Weibull (Kum-Weibull) model with DF given by
F(x; κ, σ, η1, η2) � 1 − [1 − (1 − e− σxκ

)η1]η2 , v≥ 0.
Furthermore, to figure out a suitable model for the Al2O3

data, three statistical tests with p-value are considered.)ese
tests are given by (i) AD (Anderson–Darling) test given by
AD � − k − 1/k 

k
a�1(2a − 1)[logV(xa) +

log 1 − V(xk− a+1) ], (ii) CM (Cramer–von Mises) test
expressed by CM � 1/12k + 

k
a�1 [2a − 1/2p − M(xa)]2,

and (iii) Kolmogorov–Smirnov (KS) test obtained as
KS � supv [Vk(x) − V(x)].

Corresponding to the Al2O3 data, the values of
κ, σ, φ, δ, η1, and η2 are provided in Table 1. In the same table,
the standard errors (SEs) (numerical values in the paren-
theses) of κ, σ, φ, δ, η1, and η2 are also presented.

Corresponding to the Al2O3 data, the p-value along with
the selected tests CM, AD, and KS of the fitted models is
provided in Table 2. Based on the results of CM, AD, KS, and
p value in Table 2, it is clear that the NGExp-Weibull model
has the smallest values of CM, AD, and KS, and largest
p-value. )e values of these statistics show that the NGExp-
Weibull model is the best competitor. In addition to the

numerical illustration, a visual display of the performances
of the NGExp-Weibull model is provided in Figure 3.

4. A New Acceptance Sampling Plans

In the usual practice of life testing experiment, the test will be
terminated by the pre-assigned time t0 and the number of
failures observed. To establish a lower confidence limit on
the mean life/percentile lifetime is the aim of the experi-
ments. To protect the consumer’s risk, the test has to es-
tablish the definite mean life with a certain probability.)ere
are various methods for testing in the literature of accep-
tance sampling. Epstein [14] was first considered truncated
life tests in the exponential distribution. Several authors
described about truncated life tests for various distributions,
for example, Soble and Tischendrof [15]; Gupta and Groll
[16]; Gupta [17]; Baklizi and El-Masri [18]; Tsai andWu [19];
Balakrishnan et al. [20]; and Kantam et al. [21].

In fact for life distributions, percentiles furnish more
information than the mean life does. When the given life
distribution is symmetric, the mean life, the median, and the
50th percentile are alike. )us, developing acceptance
sampling plans based on the mean life is a generalized case of
developing the acceptance sampling plans based on per-
centiles of life distribution. Balakrishnan et al. [20] suggested
that the acceptance sampling plans could be used for the
quantiles and derived the formulae, whereas Lio et al.
[22, 23] established for the acceptance sampling plans for
any other percentiles of the Birnbaum–Saunders (BS) and
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Figure 2: A visual sketching of the Al2O3 data.

Table 1: )e numerical values of κ, σ, φ, δ, η1, η2, and their SEs.

Model κ σ φ δ η1 η2
NGExp-Weibull 4.99058 (0.32556) 0.01412 (0.01143) 0.030667 (0.02670) 5.59645 (NaN) — —
Exp-Weibull 3.47923 (0.18832) 0.00696 (0.00236) — — 1.76624 (0.26376) —
Kum-Weibull 2.25647 (0.39147) 0.01436 (0.00793) — — 2.64266 (0.49563) 12.99694 (14.37373)

Table 2: )e analytical measures of the fitted models for the Al2O3
data.
Model CM AD KS p-value
NGExp-Weibull 0.08555 0.52371 0.07204 0.56730
Exp-Weibull 0.16151 1.00382 0.09560 0.22600
Kum-Weibull 0.12816 0.79910 0.08058 0.42220
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Burr type XII models. )ey have developed the acceptance
sampling plans for percentile by replacing the scale pa-
rameter by the 100qth percentile.

Rao and Kantam [24] developed acceptance sampling
plans from truncated life tests based on the log-logistic and
inverse Rayleigh distributions for percentiles. Balamurali
et al. [25] developed acceptance sampling plans based on
median life for exponentiated half logistic distribution. Rao
et al. [26] developed a new acceptance sampling plans based
on percentiles for odds exponential log logistic distribution.
)is persuades to develop the acceptance sampling plans
(ASP) based on the percentiles for NGExp-Weibull distri-
bution, and it is a skewed distribution.

)is section deals with study of new acceptance sampling
plans (ASP) based on new distribution proposed in Section
2. )e 100p-th percentile of NGExp-Weibull distribution is
given by

t
k
p � −

1
σ
log

(1 − p)
1/δ

(1 + φ)

φ +(1 − p)
1/δ

⎛⎝ ⎞⎠. (14)

)e expression in equation (14) can also be written as

t
k
p �

τp

σ
, (15)

where

τk
p � − log

(1 − p)
1/δ

(1 + φ)

φ +(1 − p)
1/δ

⎛⎝ ⎞⎠. (16)

Hence, the quantile tp given in equation (16) at a specified
value of φ � φ0, δ � δ0, and k � k0, the quantile tp is a
function of the scale parameter σ, and at a prespecified value
of tp, which say t0p, we may obtain the value of σ, which say σ0
as σ � τp/tk

p. It is remarkable that σ0 could rely on φ0, δ0, and
k0 to develop ASP for the NGExp-Weibull distribution
determine that tp exceeds t0p equivalently σ exceeds σ0.

At this juncture, the aim of the study was to obtain the
minimum sample size needed to acquire percentile life if the
life test ended at predestined time t0p and if the amount of
nonconformities noticed does not go beyond agreed ac-
ceptance number c. )e judgment method is to accept a lot
only if the given percentile of the lifetime is recognized with
a pre-assigned high probability α that furnishes security to
the consumer. )e life testing arrives ended at the time at
which (c + 1)th failure is observed or at quantile of time tp,
whatsoever is prior.

)e chance of accepting lot based on the number of
failures is given by

L(q) � 
c

i�0

n

i
 q

i
(1 − q)

n− i
, (17)
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Figure 3: Visual performances of the NGExp-Weibull model for the Al2O3 data.
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where n is the sample size, c is the acceptance number, and q

is the chance of receiving a failure within the life test
schedule time t0. If the product lifetime follows an NGExp-
Weibull distribution, then q � F(t0). Frequently, it would be
suitable to define the testing conclusion time t0 as t0 � ς0pt0p
for a constant t0p and the targeted 100p-th lifetime percentile,
t0p. Suppose tp is the true 100p-th lifetime percentile. )en, q

can be transliterated as:

q � 1 −
φ exp − τp ς0p 

k
/ tp/t0p 

k
  

φ + 1 − exp − τp ς0p 
k
/ tp/t0p 

k
  

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ

. (18)

In this study, we adopt two points on the OC curve
methodology by means of taking into account the both
consumer’s and producer’s risks to obtain the design pa-
rameters of the proposed ASP. In this plan, the ratio of
percentile lifetime to the lifetime, (tp/t0p), is measured the
quality intensity of the product. From producer’s opinion,
the chance of lot acceptance must be at least 1 − α at the
acceptable reliability level (ARL), that is, q1. Hence, the
producer requires that a lot must be accepted at different
levels, say tp/t0p � 2, 4, 6, 8, 10 in equation (18). On the other
hand, from consumer’s point of view, the chance of rejection
of a lot must be at most β at the lot of tolerance reliability
level (LTRL), q2. )us, the consumer believes that a lot must
be rejected when tp/t0p � 1.

)erefore, from equation (18), we get

L q1(  � 
c

i�0

n

i
 q

i
1 1 − q1( 

n− i ≥ 1 − α, (19)

and

L q2(  � 
c

i�0

n

i
 q

i
2 1 − q2( 

n− i ≤ β, (20)

where q1 and q2 are given, respectively, by

q1 � 1 −
φ exp − τp ς0p 

k
/ tp/t0p 

k
  

φ + 1 − exp − τp ς0p 
k
/ tp/t0p 

k
  

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ

, (21)

and

q2 � 1 −
φ exp − τp ς0p 

k
 

φ + 1 − exp − τp ς0p 
k

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ

, (22)

where

τp � − log
(1 − p)

1/δ0 1 + φ0( 

φ0 +(1 − p)
1/δ0

⎛⎝ ⎞⎠. (23)

)e design parametric measures for different values of
parameters φ � 2, δ � 2, and k � 2 are constructed. )e
parameter of the suggested sampling design under the
truncated life test at the pre-assigned time t0 with
φ � 2, δ � 2, and k � 2 is attained for the given producer’s

risk α � 0.05 and test termination scheduled time t0 with
ς0p � 1.0, 1.5, 2.0, 2.5, 3.0 according to the consumer’s con-
fidence levels β � 0.25, 0.10, 0.05, 0.01 for 50th percentile,
and the OC values are determined, and the results are given
in Tables 1–3. )e design parameter value is tabulated in
Tables 3 and 4, for φ � 2, δ � 2, k � 2 and φ � 0.5, δ � 1.5,

k � 1.5 with 50th percentiles, while Table 5 displays the
design parameter for φ � 0.0307, δ � 5.59645 and
k � 4.9906 is the maximum-likelihood estimates from the
Al2O3 fracture toughness data set at 50th percentile. It is
noticed that from Tables 3–5 that the (a) when parametric
values are increases the sample size decreases and (b) when
the percentile ratio increases the sample size decreases.

4.1.Descriptionof theProposedPlan. To ensure that, the 50th
percentile life of products under inspection is at least 1000
hours β � 0.25 under the assumption that the producer
wants to enforce a single sampling plan at the percentile ratio
(tp/t0p). Researcher needs to run this life test for 1000 hours.
If the lifetime of the product follows NGExp-Weibull dis-
tribution observed from the previous data with φ � 2, δ � 2,
and k � 2. )e best plan from Table 3 for stated demands
such as β � 0.25,φ � 2, δ � 2, k � 2, (tp/t0p), and ς0p � 1.0 is
attained as n � 12 and c � 4 with the probability of accep-
tance, which is 0.9651. Most of the researchers are studied
earlier based on one point on the operating characteristic
curve method for assuringmean or percentile life time under
various life distributions. )e present study is deal with
sampling plans based on two-point approach on the oper-
ating characteristic curve approach for ensuring percentile
lifetime of the products under NGExp-Weibull distribution.

4.2. Real Data Illustration. Here, we consider the suggested
ASP application for NGExp-Weibull distribution using
Al2O3 fracture toughness (in the units of MPa m1/2) data
set. )e goodness of fit for the given model is shown in
Table 2, and to emphasize the goodness of fit, we have proved
the visuals in Figure 3. )e MLEs of the parameters of
NGExp-Weibull distribution for the Al2O3 fracture
toughness data set are φ � 0.0307, δ � 5.59645, k � 4.9906,
and v � 1.7443 and the Kolmogorov–Smirnov test we found
that the maximum distance between the data and the fitted
of the NGExp-Weibull distribution is 0.07204 with p-value
0.56730.)is shows that Al2O3 fracture toughness data set is
well fitted for NGExp-Weibull distribution with estimated
parameters, and the plan parameters for these estimated
parameters are given in Table 3.

Let us fix that the consumer’s risk is at 25% when the true
50th percentile is fracture toughness 2 units ofMPam1/2 and
the producer’s risk is 5% when the true 50th percentile is
fracture toughness 4 units of MPa m1/2. For φ � 0.0307,
δ � 5.59645, k � 4.9906, the consumer’s risk is 25%, ς0p � 1,
and (tp/t0p) � 2. )e minimum sample size n � 5 and ac-
ceptance number c � 1 are given from Table 3. )us, the
design can be implemented as follows: we select a sample of 5
fracture toughness units, and we will accept the lot when no
more than 1 fracture toughness 2 units. Hence, by applying
the proposed sampling plan, the fracture toughness lot has
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been rejected because there is more than one unit before the
termination fracture toughness 4 units.

5. Data and Modeling Procedures

)e Al2O3 forecasting is very crucial and attributes re-
markable growth to the country’s economy. Knowing its
future trajectory is beneficial for the government and pol-
icymakers. )erefore, this section provides the multistep
ahead forecast of Al2O3 by applying different machine

learning algorithms, namely, support vector machine
(SVM), group method of data handling (GMDH) neural
network, and random forest (RF).

5.1. Support Vector Regression. )e SVR method was first
introduced by Cortes and Vapnik [27], and to date, it is
frequently used for regression and classification problems.
)e SVR is based on statistical theory and structured risk
minimization principle, due to which it circumvents the

Table 3: )e plan parameters and OC values for NGExp-Weibull distribution for φ � 2, δ � 2, and k � 2.

β (tp/t0p)
ς0p � 1.0 ς0p � 1.5 ς0p � 2 ς0p � 2.5 ς0p � 3

c n L(q1) c n L(q1) c n L(q1) c n L(q1) c n L(q1)

0.25

2 4 12 0.9651 4 7 0.9573 6 8 0.9648 7 8 0.9673 11 12 0.9549
4 1 5 0.9819 1 3 0.9736 1 2 0.9728 2 3 0.9855 2 3 0.9645
6 1 5 0.9961 0 1 0.9555 1 2 0.9940 1 2 0.9860 1 2 0.9728
8 0 3 0.9663 0 1 0.9747 2 1 0.9555 1 2 0.9953 1 2 0.9906
10 0 3 0.9783 0 1 0.9837 2 2 0.9712 0 1 0.9555 1 2 0.9960

0.10

2 5 17 0.9518 6 11 0.9642 6 11 0.9673 10 13 0.9562 11 12 0.9549
4 1 7 0.9641 1 4 0.9506 2 4 0.9843 2 2 0.9855 2 3 0.9645
6 1 7 0.9921 1 4 0.9888 1 3 0.9829 1 2 0.9860 1 2 0.9728
8 0 4 0.9554 1 4 0.9963 0 2 0.9555 1 2 0.9953 1 2 0.9906
10 0 4 0.9712 0 2 0.9677 0 2 0.9712 0 1 0.9555 1 2 0.9960

0.05

2 6 21 0.9544 8 15 0.9719 9 13 0.9539 10 12 0.9562 17 19 0.9511
4 1 8 0.9536 1 4 0.9506 2 4 0.9843 2 4 0.9527 2 3 0.9645
6 1 8 0.9896 1 4 0.9888 1 3 0.9829 1 2 0.9860 1 2 0.9728
8 0 8 0.9966 1 4 0.9963 1 3 0.9942 1 2 0.9953 1 2 0.9906
10 0 5 0.9641 0 3 0.9519 1 3 0.9976 0 1 0.9555 1 2 0.9960

0.01

2 8 30 0.9523 10 20 0.9660 11 16 0.9616 13 16 0.9532 17 19 0.9511
4 2 14 0.9778 2 7 0.9763 2 5 0.9655 2 4 0.9527 3 5 0.9570
6 1 11 0.9803 1 6 0.9736 1 3 0.9675 1 3 0.9614 2 4 0.9843
8 1 11 0.9934 1 6 0.9910 1 3 0.9888 1 3 0.9865 1 3 0.9736
10 0 7 0.9501 1 6 0.9962 1 3 0.9952 1 3 0.9942 1 3 0.9885

Table 4: )e plan parameters and OC values for NGExp-Weibull distribution for φ � 0.5, δ � 1.5, and k � 1.5.

β (tp/t0p)
ς0p � 1.0 ς0p � 1.5 ς0p � 2 ς0p � 2.5 ς0p � 3

c n L(q1) c n L(q1) c n L(q1) c n L(q1) c n L(q1)

0.25

2 7 18 0.9589 9 16 0.9618 9 13 0.9539 11 14 0.9582 5 18 0.9529
4 2 7 0.9784 2 5 0.9667 2 4 0.9571 3 5 0.9664 4 6 0.9690
6 1 5 0.9751 1 3 0.9753 2 4 0.9904 1 2 0.9651 2 3 0.9870
8 1 5 0.9888 1 3 0.9888 1 3 0.9753 1 2 0.9837 1 2 0.9735
10 0 2 0.9507 3 3 0.9941 1 3 0.9866 1 2 0.9912 1 2 0.9855

0.10

2 10 28 0.9540 13 24 0.9685 14 21 0.9608 18 24 0.9573 19 23 0.9593
4 2 9 0.9551 3 8 0.9717 3 6 0.9697 4 7 0.9681 4 6 0.9690
6 1 7 0.9512 1 4 0.9536 2 5 0.9784 2 4 0.9776 2 4 0.9571
8 1 7 0.9775 1 4 0.9786 1 3 0.9753 1 3 0.9554 2 4 0.9849
10 1 7 0.9879 1 4 0.9885 1 3 0.9866 1 3 0.9753 1 3 0.9599

0.05

2 12 35 0.9505 15 29 0.9591 18 28 0.9564 — — — — — —
4 3 13 0.9724 3 9 0.9555 4 9 0.9617 4 7 0.9681 5 8 0.9635
6 2 11 0.9825 2 7 0.9784 2 6 0.9612 2 5 0.9517 2 4 0.9571
8 1 8 0.9707 1 5 0.9657 1 4 0.9536 1 3 0.9554 2 3 0.9849
10 1 8 0.9842 1 5 0.9813 1 4 0.9744 1 3 0.9753 1 3 0.9599

0.01

2 17 52 0.9533 — — — — — — — — — — — —
4 4 19 0.9725 4 13 0.9532 5 12 0.9586 6 11 0.9753 6 10 0.9610
6 2 14 0.9895 2 9 0.9551 3 8 0.9836 3 7 0.9737 3 6 0.9697
8 2 14 0.9886 2 7 0.9847 2 7 0.9784 2 6 0.9693 2 5 0.9667
10 1 11 0.9704 1 7 0.9631 1 5 0.9593 1 4 0.9536 2 5 0.9855

Note. (—) indicates that the parameters cannot be found to satisfy conditions.
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problem of overfitting, and produces an accurate forecast. In
practice, it can precisely approximate the linear and non-
linear problems in the real world [28]. )e performance of
SVR is based on the kernel function to be utilized. Kernel
functions are utilized to carry out operations in the input
space instead of higher-dimensional space. Various kernel
functions are appeared in past studies, namely, linear,
polynomial, splines, and sigmoid radial basis functions [29].
RBF has achieved great attention due to its outstanding
performance in capturing nonlinear association [30, 31].)e
SVR helps to disclose the margin of error, which is ac-
ceptable in a model [32, 33]. Let we have a set of training
data, having output and input variables. Mathematically, the
SVR seeks to find a function that fitted the data more ap-
propriately. In other words, it minimizes the error between
output variable and predicted values in the following way:

f(δ) � (Ω, (δ)) + β, (24)

where Ω is a weight parameter, (δ) represents the nonlinear
function, and β is a constant parameter. In equation (25), the
loss functions demonstrate the ε-insensitive model, where
the loss tends to 0, if the difference between actual values and
predicted values is less than c, and is illustrated by the
Vapnik’s e-insensitive loss function

Rε(f(δ), P) �
|f(δ) − P| − ε if |f(δ) − P|≥ ε

0 otherwise
 . (25)

)e problem of SVR is then constructed as the following
optimization problem.

minΩ,β,ℵj,ℵ∗j
1
2
Ω + D 

h

j�1
ℵj + ℵ∗j , (26)

whereℵ∗j andℵj represent the slack variables describing the
lower and upper training errors subject to the error tolerance
ε, and D is a positive constant that discovers the extent of
penalized loss when a training error occurs. In our case, we
set the values of D and E are 1 and 0.01, respectively.

Ω � 
h

m�1
θm − θ∗m( Q δm, δ( . (27)

)e set of Lagrange multipliers including θm and θ∗m is
utilized for optimization problem solution. )us, the ap-
proximate function is illustrated as follows:

Pt � 
h

m�1
θm − θ∗m( Q δm, δ(  + ω, (28)

where δm represents the support vector, h represents the size
of support vector, Q(δm, δ) represents the kernel function,
and ω represents the threshold value. Herein, the radial basis
function (RBF) with a parameter π2 is expressed as follows:

Q δm, δn(  � exp −
δm − δn

����
����
2

2π2
⎛⎝ ⎞⎠, (29)

where ‖δm − δn‖2 indicates the Euclidean distance between
the two predictors in squared form, and π2 indicates the
width of RBF [34]. Hence, in this study, we focus on the RBF
kernel function for SVR.

5.2. Random Forest. Breiman [35] developed a nonpara-
metric approach known as random forest (RF). )e de-
velopment of the RF approach is based on decision tree
algorithms; however, this is the modified form of classifi-
cation and regression trees (CART). )e RF is, therefore, to

Table 5: )e plan parameters and OC values for NGExp-Weibull distribution for φ � 0.0307, δ � 5.59645, and k � 4.9906.

β (tp/t0p)
ς0p � 1.0 ς0p � 1.5 ς0p � 2 ς0p � 2.5 ς0p � 3

c n L(q1) c n L(q1) c n L(q1) c n L(q1) c n L(q1)

0.25

2 1 5 0.9950 1 2 0.9749 4 5 0.9688 18 19 0.9546 — — —
4 0 3 0.9978 1 2 1.0000 0 1 0.9771 1 2 0.9954 1 2 0.9749
6 0 3 0.9997 1 2 1.0000 0 1 0.9969 0 1 0.9907 0 1 0.9771
8 0 3 0.9999 1 2 1.0000 0 1 0.9993 0 1 0.9978 0 1 0.9945
10 0 3 1.0000 1 2 1.0000 0 1 0.9998 0 1 0.9993 0 1 0.9982

0.10

2 1 7 0.9898 1 2 0.9749 4 5 0.9688 18 19 0.9546 — — —
4 0 4 0.9971 0 1 0.9945 0 1 0.9771 1 2 0.9954 1 2 0.9749
6 0 4 0.9996 0 1 0.9993 0 1 0.9969 0 1 0.9907 0 1 0.9771
8 0 4 0.9999 0 1 0.9998 0 1 0.9993 0 1 0.9978 0 1 0.9945
10 0 4 1.0000 0 1 0.9999 0 1 0.9998 0 1 0.9993 0 1 0.9982

0.05

2 1 8 0.9867 1 2 0.9749 4 5 0.9688 18 19 0.9546 — — —
4 0 5 0.9964 0 1 0.9945 0 1 0.9771 1 2 0.9954 1 2 0.9749
6 0 5 0.9995 0 1 0.9993 0 1 0.9969 0 1 0.9907 0 1 0.9771
8 0 5 0.9999 0 1 0.9998 0 1 0.9993 0 1 0.9978 0 1 0.9945
10 0 5 1.0000 0 1 0.9999 0 1 0.9998 0 1 0.9993 0 1 0.9982

0.01

2 1 11 0.9750 2 4 0.9860 4 5 0.9688 — — — — — —
4 0 7 0.9949 0 2 0.9890 0 1 0.9771 1 2 0.9954 1 2 0.9749
6 0 7 0.9993 0 2 0.9985 0 1 0.9969 0 1 0.9907 0 1 0.9771
8 0 7 0.9998 0 2 0.9997 0 1 0.9993 0 1 0.9978 0 1 0.9945
10 0 7 0.9999 0 2 0.9999 0 1 0.9998 0 1 0.9993 0 1 0.9982
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be utilized for handling both types of issues, classification,
and regression. In general, the RF is a part of the supervised
learning class and its output is based on decision trees’ forest.
)e forecast for the RF approach is basically obtained by
taking the mean of various trees. A large number of trees in
the forest can help to improve the forecasting accuracy and
prevent the problem of overfitting.)e RF algorithm utilizes
the popular procedure of bagging, also known as bootstrap
aggregation, in order to train the tree learners. )e random
sample is taken repeatedly (M time) with replacement of the
training set and estimates the trees to each repeated sample
[32]. To estimate the RF, we utilize three hyperparameters
including number of tress, number of nodes, and sample
repetition. )e number of tress and nodes is used as 500 and
3, respectively.

5.3. Group Method of Data Handling (GMDH). )e GMDH
neural network (GMDH-NN) was initially introduced by
Ivakhnenko [36] in analyzing complex systems, which in-
corporates an output and a set of inputs. )e core aim of
GMDH-NN is simply to formulate a function in a feed-
forward network based on second degree transfer function.
)e productive input variables, the set of neurons and layers
within a hidden variable, and the optimal model framework
are established automatically in the GDMH algorithm [37].
In our study, we select these parameters through error and
trial approach, followed by Peng et al. [38]. )e mapping
amid target and input variables is carried out via GMDH-
NN, and a nonlinear function is so-called Volterra series,
given in equation (30) as follows:

P � θo + 
h

m�1
θmym + 

h

m�1


h

n�1
θm,nymyn

+ 
h

m�1


h

n�1


h

s�1
θm,n,symynys + . . . .

(30)

For two variables, the Volterra series can be described in
terms of second-degree polynomial in equation (31) as

M ym,yn(  � θo +θ1y1 +θ2y2 +θ3y
2
1 +θ4y

2
4 +θ5y1y2, (31)

where M(ym, yn) denotes an output of the model, yi(i �

1, 2) denotes the input variables, and the corresponding
weight is shown by θ.

)e network neurons are recursively connected to each
other through the partial quadratic equation, which reveals
the nexus while estimating the unknown parameters using
the training data. )e key aim of GMDH is to find out the
unknown coefficients provided in equation (31), as they
demonstrate the least difference amid the actual data and
forecasted values. )e unknown parameters are computed
utilizing the regression tool [39, 40]. )us, under the rule of
principle of least square error, the parameters of each
quadratic equation are optimized in the following way:

E �


N
j�1 Pj − Wj 

2

N
. (32)

We seek to reduce the squared difference (E) between
predicted valued and actual values; in order to achieve an
accurate forecast, we have

P � Bθ, (33)

where P is the response variable, θ is the vector of unknown
parameters to be estimated from the data at hand, and B is
computed as follows:

B �

1 θ1p θ1q θ21p θ212 θ1pθ1q

1 θ2p θ2q θ22p θ212 θ2pθ2q

1 θ3p θ3q θ23p θ21q θ3pθ3q

. . . . . .

. . . . . .

1 θNp θNq θ2Np θ2NQ θNpθNq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)
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Figure 4: Histogram and line chart of Al2O3 data.
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5.4. Out-of-Sample Al2O3 Forecasting. )e Al2O3 data are
utilized in this work to assess the predictive capability of
different ML algorithms. )e data consist of 119 observa-
tions. For estimation and prediction, the data set is
decomposed into two parts: for model estimation, we use the
data points from 1 to 95, and 96 to 119 for evaluating the
models’ multistep ahead out-of-sample predictive accuracy
utilizing the expanding window methods. )is study adopts
popular three statistical measures, namely, root-mean-
square error (RMSE), mean absolute error (MAE), and
Akaike information criterion (AIC) to evaluate the fore-
casting accuracy of ML algorithms. )e smaller the values of
RMSE, MAE, and AIC, the better the forecast. Mathemat-
ically, they can be, respectively, illustrated as

MAE � mean Pt − Pt


 , RMSE �

��������������

mean Pt − Pt 
2
,



AIC � n log
sse

n
  + n∗ k,

(35)

where n shows the number of observations, sse indicates the
sum of squared error, k indicates the number of parameters,
Pt represents actual value of Al2O3, and Pt represents the
predicted values of Al2O3.

Figure 4 indicates the Al2O3 data trend, which does not
follow any particular pattern and is highly uncertain. )e
Al2O3 data are plotted in Figure 4 where the vertical blue
dotted line separates the estimation (80 percent) and out-of-
sample forecasting (20 percent) parts. )e accuracy mea-
sures for the Al2O3 data are reported in Table 6.

)e accuracy measures for the Al2O3 data are reported in
Table 6. )e RMSE and MAE values for ML algorithms
include GMDH, SVR, and RF. It can be observed that SVR
beats the rival counterparts. )e RMSE and MAE values
associated with SVR are 0.07 and 0.031, the RF resulted in
0.09 and 0.064, and the GMDH resulted in 0.233 and 0.159,
respectively. In addition, according to AIC, the best model is
SVR among the all.

6. Concluding Remarks

In this piece of study, a new generalized exponential-X
family of distributions is well thought-out as a real-life data
model. )e attempts in this paper lead to another approach
to developing a new statistical model. Employing the pro-
posed model, a new modification of the Weibull model
called a new generalized exponential Weibull model is
studied.)e effectiveness of the new generalized exponential
Weibull model is shown by considering the fracture
toughness of the Al2O3 data set. A statistical product control
application of the developed model is also studied by de-
veloping the new single acceptance sampling plan based on

the NGExp-Weibull distribution. )e plan parameters are
determined such that both consumer’s risk and producer’s
risk satisfy simultaneously. Some tables are given for in-
dustrial application purposes. )e developed plan is ex-
emplified by the Al2O3 fracture toughness data set, which is
well fitted for the proposed NGExp-Weibull. Furthermore,
using the same data set, we implemented several ML al-
gorithms including SVR, GMDH, and RF. )e out-of-
sample forecast accuracy was assessed using three statistical
measures of accuracy, namely, the RMSE, MAE, and AIC.
After the analysis, we found that the SVR produces a more
efficient forecast than the competitor counterparts. )e
findings clearly reveal that the predictive power of the SVR
method is superior in a class of ML algorithms while pre-
dicting the Al2O3 data.
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