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Concerning autonomous driving, lane-changing (LC) is essential, particularly within complicated dynamic settings. It is a
challenging task to model LC since driving behavior is complicated and uncertain. (e present study adopts a dual-layer feed-
forward backpropagation neural network involving sigmoid hidden neurons and linear output neurons for evaluating intrinsic LC
complexity. Furthermore, the estimation and validation of the model were performed by large-scale trajectory data. Empirical LC
data were obtained from the Next Generation Simulation (NGSIM) project for training and testing the neural network-based LC
model. (e findings revealed that the introduced model could make precise LC predictions of vehicles under small trajectory
errors and satisfactory accuracy. (e present work assessed LC beginning/endpoints and velocity estimates by analyzing the
vehicles around. It was observed that the neural network model yielded almost the same predictions as the observational LC
trajectories as well as following vehicle trajectories on the original and target lanes. Furthermore, for LC behavior characteristic
validation, the neural network-produced LC gap distributions underwent comparisons to real-life data, demonstrating the
characteristics of LC gap distributions not to differ from the real-life LC behavior substantially. Eventually, the introduced neural
network-based LC model was compared to a support vector regression-based LC model. It was found that the trajectory
predictions of both models were adequately consistent with the observational data and could capture both lateral and longitudinal
vehicle movements. In turn, this demonstrates that the neural network and support vector regression models had satisfactory
performance. Also, the proposed models were evaluated using new inputs such as speed, gap, and position of the subject vehicle.
(e analysis findings indicated that the performance of the proposed NN and SVR models was higher than the model with
new inputs.

1. Introduction

It is expected that an interconnected environment con-
tributes to the solving of a large number of transportation
problems in association with mobility, efficiency, environ-
mental impacts, and safety. Connected environments help
drivers navigate the current and future driving conditions,
particularly information on likely but unobserved hazards.
Consequently, drivers can make lane-changing (LC) deci-
sions at higher safety and information levels within con-
nected environments [1]. Carelessly performed LC could be
a hazardous maneuver. LC is a complicated driving process,
for which it is required to match the speed in the present lane
with speed in the target lane and identify a proper gap within

the greatest lane to ensure the LC intention recognition of
the driver by the other drivers and good LC [2]. (e LC and
car-following (CF) models in traffic flow theory perform
lateral and longitudinal interaction analyses while driving
before the detailed description of LC and CF behavior. (e
CF model has been long and extensively studied. In com-
parison to the CF state, the pressure and workload of drivers
are substantially enhanced in an LC process, exposing the
driver to a high level of hazard and error [3–6]. Several
studies presented empirical evidence proposing LC and CF
behaviors to be majorly responsible for oscillation formation
and enhancement on freeways with multiple lanes [7–9].
Typically, traveling speed heterogeneity between various
lanes triggers the LC maneuvers of vehicles. LC behavior is
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involved in traffic congestion. LC occurring at the onset of
congestion might reduce the traffic capacity on account of
undesirable LC behavior, inducing and propagating stop-go
shockwaves. Earlier works demonstrated LC to induce
frequent changes in the speeds and gaps on the original and
target lanes. A complete lane-changing decision (CLACD)
modeling framework that explains both the mandatory and
discretionary lane-changing behaviors is developed. An
integrated approach is employed to model discretionary
lane-changing behavior by combining the target lane se-
lection using the utility theory approach and the gap ac-
ceptance behavior using a game theory approach. Results
reveal that the CLACD models can effectively capture the
observed DLC decisions with high accuracy. Furthermore,
the CLACDmodel shows a realistic prediction of traffic flow
patterns compared with the utility theory model [10]. (is
would add to the likelihood of collisions [11–14], distur-
bance in traffic flow [15, 16], and reduced capacity [17–19].
Compared to CF behavior investigation, the study of LC
behavior requires a larger amount of data for support.
Considering such negative LC effects on the safety and flow
of traffic, it remains an interesting context to model LC
behavior. LC modeling has recently been of higher interest
to researchers since the fabrication of connected automated
vehicles (CAVs) enables the easy acquisition of many
datasets through advanced sensing devices. Furthermore, it
is possible to transmit regular data (including velocity,
position, directly-unobtainable data such as the steering
angle, vehicle mass, and acceleration) among vehicles, be-
tween vehicles to road identities, and from vehicles to the
cloud technology [20]. In general, one can classify LC into
LC decisions (LCD) and LC implementation (LCI). In the
former, drivers have mental motivation for changing lanes
based on the around traffic, while the latter refers to a
physical procedure, in which vehicles move from a lane to a
target one [21]. It is possible to predict LC, such as any
driving behavior predictions, in a classification or regression
problem. (e former case is aimed at vehicle state dis-
cretization to allow quicker real-time vehicle behavior dis-
tinguishing, while the latter case seeks to make speed and
position predictions for vehicle road movement mapping
[22, 23]. Concerning self-driving vehicles, four phases exist,
i.e., (1) environment perception, (2) information processing,
(3) the behavior prediction of others in the same environ-
ment, and (4) driving decision-making [24]. A driver often
needs to respond to a lane-changing request of a lane-
changer, which is a function of their personality traits and
the current driving conditions. Drivers’ responses to lane-
changing requests were examined in a connected environ-
ment using the CARRS-Q Advanced Driving Simulator.
Additionally, drivers’ response times are modeled using a
random parameter accelerated failure time (AFT) hazard-
based duration model. Results revealed that drivers tend to
be more cooperative in response to a lane-changing request
in the connected environment compared with the baseline
condition whereby they tend to accelerate to avoid the lane-
changing request [25]. Hence, a large number of works were
conducted to focus on the two-dimensional prediction of
trajectories for the driving behavior mimicking of humans

[26–30]. LC modeling is among the most prominent areas of
transportation-related study. (us, earlier works developed
some LC models in recent decades. (ese models may be
classified into two groups: (1) analytical and (2) data-driven
models. (ere are a relatively small number of data-driven
and analytical works. (is could be attributed to difficult LCI
data collection at a large scale [31–34]. Also, earlier works
proved that data-driven models outperformed conventional
analytical ones in several characteristics, e.g., trajectory ac-
curacy and traffic flow characteristic replication [35–39]. Such
studies adopted the neural network (NN) approach in several
variants. Generally, the driving behavior of humans is of high
degrees of nonlinearity and complexity. (us, it cannot be
easily modeled using conventional shallow machine learning
or mathematical approaches [40]. Despite the introduction of
some LC models, numerous questions are yet to be answered
to realize LC behavior. For instance, analytical LC models
obtain an accuracy of 70–80% in prediction [41]. Also, a
significant degree of inconsistency exists between observa-
tions and modeled principles [42]. Indeed, it is expected that
models of higher accuracy are developed. A small number of
studies with careful examination of LCI can be found. An
analytical model cannot easily and accurately consider LC
uncertainty and diversity [32, 43, 44]. On the other hand, a
data-driven model can solely consider influential factors at a
particular time [31]. (e historical data shortly before the
rapid movement of a driver is an essential component [45].
Data-driven and analytical models mostly take into account
LCD or LCI separately. (is may not lead to complete LC
process reproduction consisting of LCI and LCD and their
influence on the traffic behavior.

NNs have enjoyed the highest popularity in data-driven
LCI and LCD works. Such popularity arises from (1) their
capability of dealing with noisy data estimating unlimited
complexity extents under nonlinearity and (2) their need for
no simplification or prior awareness of solving the problem,
unlike statistical approaches [46]. Hunt and Lyons [47]
modeled dual carriageway LCD through the BP-NN ap-
proach. (eir model estimated LCD on the grounds of the
busy traffic in the adjacency. (ey exploited empirical traffic
data and simulation results to demonstrate the competence
of their model. Li et al. [48] studied LCD prediction using
NN and BF. (ey incorporated steering wheel angle, and
lane line sensor parameters along with in-vehicle CAN bus
acquisition characteristics. Comparison of the results to
empirical data revealed an accuracy of up to 91.38%. Ke and
Wang [49] introduced an LCD approach for the training and
learning of connected automated vehicles (CAVs). (eir
approach included a microscale cellular automata-based
simulation model and a BP-NN model, which could make
rapid decisions on whether to perform an LC maneuver or
keep the lane.(eir approach was found to be efficient in the
LCD prediction of CAVs. Compared to data-driven LCD
approaches, a small number of works were identified to have
conducted NN-based LCI investigations. Ding et al. [31]
studied real-time LC trajectory prediction by using a dual-
layer feed-forward BP-NN approach. (e review of earlier
works suggested that the BP-NN model was valid for LCD
and LCI.
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To deal with the barriers of LC modeling, the present
work adopts a dual-layer feed-forward backpropagation NN
that contains hidden sigmoid neurons and linear output
neurons for evaluating the intrinsic LC complexity. Fur-
thermore, the model is estimated and validated using tra-
jectory data at a large scale. (e NN may automatically
identify essential characteristics that affect the entire LC
process by solely observing position data of four vehicles
around the intended vehicle, predicting vehicles’ behavior.
(is study mainly seems to develop a neural network ap-
proach for LC prediction based on vehicle position data.
Empirical vehicle trajectories of the next generation simu-
lation (NGSIM) project were exploited to derive delicate LC
data. (e NN model is trained, tested, and compared to the
field data.

(e remainder of the present article is organized as
follows: Section 2 reviews the LC modeling literature; Sec-
tion 3 addresses the research gap and highlights the con-
tributions of the present work; Section 4 represents the
examination sites and processed data; Section 5 introduces
an NN model before introducing the inputs and outputs;
Section 6 provides a detailed assessment of the introduced
models through empirical data of LC; and Section 7 con-
cludes the study.

2. Literature Review

LC has recently been as interesting as CF; however, a small
number of studies can be found on LC in the literature [50].
A large rate of advancements was seen in connected, au-
tonomous vehicles [51, 52] and enhanced insights into the
impacts of LC on traffic operations, e.g., traffic build-up,
safety, and emissions [53] necessary to construct models
with larger advancements. A review of the available LC
approaches suggests that LC trajectory estimation has a high
improvement potential. In general, LC maneuvers are di-
vided into mandatory and discretionary LC. (e former
refers to LC required to achieve a predefined route (on
account of diverging, merging, or a lane drop, for example),
while the latter refers to pursuing LC speed advantages or
driving comfort. Most of such models focus on LC intention
and circumstances. (ey believed LC behavior to occur
when LC conditions were judged based on the LC intention.
(ey majorly focused on three safe distance components,
including (1) the distance from the leading vehicle of the
target lane, (2) the distance from the following vehicle of the
target lane, and (3) the distance from the leading vehicle of
the current lane. Mahajan et al. [54] proposed an end-to-end
machine learning framework to make LC maneuver pre-
dictions using unlabeled data and a small number of
characteristics. (ey employed density-based clusters for the
identification of LC and lane-keeping maneuvers.(en, they
trained a support vector machine (SVM) for learning
clustered label boundaries and the automatic labeling of new
raw datasets. Subsequently, they introduced the labeled data
to a long short-term memory (LSTM) framework for ma-
neuver category prediction. Xie et al. [55] modeled in data-
driven settings by using deep learning techniques. (ey
applied an LSTM NN and a deep belief network (DBN) for

LC modeling by incorporating LCI and LCD. (eir data-
driven model was found to be capable of accurate vehicle LC
prediction. A sensitivity analysis was performed, indicating
the relative leading vehicle position on the target lane to be
the most prominent LC-related factor. Lee et al. [56] in-
troduced an integrated multilane stochastic continuous car-
following framework. (ey exploited deep learning for the
likelihood estimation of LC maneuvers. Particularly, they
introduced an LC maneuver-derived stochastic volatility
within a multilane stochastic optimal velocity model
(SOVM). Furthermore, they employed a convolutional NN
(CNN) for LC maneuver likelihood estimation in their in-
tegrated stochastic continuous car-following framework.
(e findings revealed that the integrated SOVM yielded
almost the same predictions as the LC trajectory observa-
tions and the following vehicles’ trajectories on both the
original and target lanes. Zhang et al. [40] employed deep
learning and LSTM NN for the simultaneous modeling of
LC and CF behaviors. Also, a hybrid retraining constrained
(HRC) technique was introduced for further LSTM opti-
mization.(eHRC-LSTMmodel was observed to be capable
of accurate LC and CF behavior estimation at the same time
under small longitudinal trajectory errors and significant
accuracy of LC prediction in comparison to classical
techniques.

A review of data-driven LC researches indicates that
NNs have been the most exciting instruments. For instance,
Tomar et al. [57] adopted amultilayer perceptron (MLP) and
introduced an accurate LC trajectory prediction of discrete
paths. (e MLP was a simple model with a single input, a
single hidden layer, and a single output. It was employed to
train, test, and predict vehicle trajectories. A detailed ef-
fectiveness discussion of backpropagation (BP) NNs was
provided by Ding et al. [31] concerning LC trajectory
prediction through vehicle records. (e BP NN was com-
pared to the Elman network model in terms of the accuracy
and training time results. According to the test results, the
BP NN was capable of accurately predicting the LC behavior
of drivers in traffic flow within urban areas. Also, it was
verified that the collected data affected vehicle trajectories.
Zheng et al. [46] proposed an NN for the complexity
evaluation of LC. (ey exploited trajectory data at a large
scale to estimate and validate their model. Also, they
employed a multinomial logit (MNL) model, which was
most commonly regarded as an LC framework in earlier
studies to make comparisons. (e NN was found to have a
prediction accuracy of 94.58% and 73.33% for the left and
right LC samples, respectively, during model estimation.
However, the MNL model can correctly predict solely
13.25% of the right LC samples and 3.33% of the left LC
samples. Despite the substantial accuracy reduction of the
two models in the model’s validation, the NN predictions
were still satisfactory. Dou et al. [35] employed an NN
coupled with an SVM to develop a model for mandatory LC
prediction at the lane drops of highways. (ey achieved an
accuracy of 78% and 94% for merging and nonmerging
behaviors via the positions, vehicle gaps, and speed differ-
ences as inputs. However, they provided no explicit dis-
cussion of the NN structure. Tang et al. [58, 59] introduced
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an LC prediction framework by using an adaptive fuzzy NN
to judge LC circumstances and perform steering angle
prediction during LC. (ey incorporated the visual search
and vehicle operation behaviors of drivers, driving cir-
cumstances, and the motion states of vehicles to build a
prediction index system of left LCs. Peng et al. [60] proposed
a BP NN for LC behavior prediction. (eir model could
make accurate LC behavior predictions of drivers at least 1.5
seconds earlier than the LC.

Despite the development of some LCI and LCD-based
NN approaches, a large number of questions remain yet to
be answered so that LC behavior could be understood. (e
closely associated problems include the following:

(i) A small number of works were found in the liter-
ature on the detailed investigation of LCI. Con-
cerning analytical frameworks, LC uncertainty and
diversity cannot be easily taken into account [44].
Concerning data-driven models, earlier works have
included solely impact factors at a given time [31].

(ii) To model LC, typically, vehicle speeds and gaps in
two lanes (i.e., the current lane and the target lane)
at a given time are incorporated into the simulation,
whereas the LCD of a driver would depend on the
previous traffic states and driving behavior history.

(iii) Earlier works on LC behavior incorporated a large
number of parameters, including the space gap,
time gap, speed, and acceleration. However, the
vehicle positions in the adjacency of the subject
vehicle were exploited as the NN input.

3. Research Gaps and Contributions

Earlier NN studies mostly identified temporal information,
explored current states, or performed action detection after
its onset. However, they did not carry out the prediction of
future states. Such studies employed offline data processing
to analyze the behavior of drivers on account of limited data.
Also, several studies can perform training and make future
position predictions of LC vehicles in specific discrete path
sections rather than throughout the LC path [31]. A review
of LC-based NN model indicates that prediction of subject
vehicle position with position inputs has not been evaluated
yet. For instance, neural network for prediction of lane-
changing trajectory based on the past vehicle data is in-
troduced, and inputs like speed and gap are used for NN
model [31]. A backpropagation neural network model was
developed to predict lane-changing behavior. Lane changing
intent time window is determined via visual characteristics
extraction of rear-view mirrors [60]. A neural network
model to capture the complexity of lane changing is de-
veloped, and large-scale trajectory data are employed for
model estimation and validation [46]. (e present study
primarily seeks to propose an NN model for the bold
prediction of complete vehicle trajectories through LC be-
havior.(e Levenberg-Marquardt BP algorithm is employed
for the training of the NN. However, in the case of impaired
memory, the present study uses scaled conjugate gradient
BP.

(e novelty of the study contains introduced NN model
to predict future position of subject vehicle, and the present
work exploits the positions of both the subject and adjacent
vehicles as the model input. (ese inputs would maximize
the detection capability flexibility of the target by realizing
how autonomous vehicles could be implemented in the
future. More importantly, the trajectory history is employed
rather than instantaneous information at a given time in the
NN-LC model. (is study can pioneer comprehensive LC
behavior simulation through vehicle positions in the adja-
cency of the subject vehicle based on an NN. (e desired
trained network output was selected to be the future LC
trajectory. (e data of various path sections were mixed in
inputs for network training and extending the application
range of the model. In particular, the contributions of the
present work include the following:

(i) Proposing an NN model for perfectly incorporating
the effects of the surrounding vehicles on an LC
(subject) vehicle

(ii) Introducing the positions of both the subject and
adjacent vehicles as the model input

(iii) (e NN model is capable of trajectory prediction of
LC vehicles while LC is occurring

(iv) Real-life high-resolution data of vehicle trajectories
are employed to calibrate and validate the model

(v) Comparison of the introduced neural network-
based LC model with a support vector regression-
based LC model

(vi) Comparison of proposed models with new input
variables

4. LC Trajectory

4.1. Dataset. (e data of the NGSIM project of FHWA
(FHWA, 2008) were exploited in the present work. (e
NGSIM dataset involves the entire vehicle trajectory dataset
of surveillance road sections, i.e., position, acceleration, and
speed, at a time interval of 0.1 seconds, along with longi-
tudinal and lateral locations that could be utilized for LC
maneuver identification. (ree vehicle types, including
trucks, cars, and motorcycles, were incorporated. (ese
high-fidelity trajectory data have been extensively utilized in
traffic flow research in the recent decade [61–68]. Many LC
models have undergone calibration and validation via the
NGSIM trajectory dataset [2, 35, 55, 56, 69]. (e present
work employed the I-80 and US-101 datasets for the con-
struction of LC prediction models. A schematic of the case
study sites is demonstrated in Figure 1. As can be seen, an
exciting order was applied to perform the left-to-right
numbering of lanes. Each of the sites involves an off-ramp
and an on-ramp, with expected significant LC activities. In
general, LC maneuvers are divided into mandatory and
discretionary LC [70]. (e present paper incorporated solely
cars and selected LC maneuver cases with no following and
leading vehicle LC maneuvers relative to an LC vehicle. Due
to the discussion of solely discretionary LC, the present work
excluded mandatory LC vehicles with on-ramp freeway
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entering and off-ramp freeway exiting from the trajectory
dataset. Furthermore, this study discarded vehicles with
more than LC activities or more than one crosses. Conse-
quently, the trajectories of 2000 vehicles (i.e., 400 complete
LC vehicles) were derived.(is study defined the duration of
LC as the required time for continuous lateral LC move-
ment. A summary of the statistical LC duration results of the
vehicles is provided in Table 1. According to Table 1, the
mean LC duration was calculated to be 6.95 seconds. (e LC
durations of the vehicles were found to be in the range of
1.6–13.8 seconds. Approximately 95% of the vehicles had an
LC duration of shorter than 10 seconds. Hence, the tra-
jectory data of vehicles with an LC duration of below 10
seconds were utilized to eliminate irregular behavior and any
noise. Subsequently, the included trajectory dataset involved
100 time-frames (10 s) LC maneuvers on the targeted sec-
tions’ entire lanes in the I-80 and US-101 freeways.

4.2. LC Prediction Variables. In LC, vehicles perform a two-
dimensional planar movement instead of a one-dimensional

CF movement. LC maneuvers include several vehicle in-
teractions. It is required to carefully determine the variables
that could impact the LC decisions of drivers and LC
implementation. In general, an LC model incorporates the
acceleration and speed data of vehicles on the neighboring
lanes and the leading-lagging vehicle gap on the neighboring
lanes. (ese variables pose various impacts on LC behavior
modeling [50, 71]. (e extraction of information on two-

503 m

128 m 375 m

Lane1

Lane2

Lane3

Lane4

Lane5

Lane6

Powell St. Ashby Ave.
I-80

640m
176m 213m 251m

Lane1
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Lane3

Lane4

Lane5

Lane6

Ventura Blvd.
Cahuenga Blvd.US-101

Figure 1: (e case study sites.

Table 1: Statistical LC trajectory results of the NGISM dataset.

Duration (s) Total number of vehicles Proportion (%)
<2 5 1.25
2–4 24 6
4–6 88 22
6–8 179 44.75
8–10 79 19.75
10–12 19 4.75
>12 6 1.5
Total 400 100
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dimensional lateral and longitudinal positions of adjacent
vehicles for predicting the target vehicle position via an NN
is a direct LC behavior modeling technique. (erefore, it is
possible to extract further and examine the characteristics of
LC behavior. To this end, five vehicles, involving the LC one,
that were directly associated with a usual LC process were
incorporated, as shown in Figure 2. On the original lane, a
vehicle (FC) follows the LC vehicle (SV), and another vehicle
(PC) is leading.(e same definition was applied to the target
lane; a vehicle (FT) follows the LC vehicle, and another
vehicle (PT) is leading. According to Figure 2, the beginning
of LC behavior is considered to be a position in which the
heading of the subject vehicle leaves the present lane di-
rection, while the end of LC is a position in which the
heading of the subject vehicle converges to the target lane
direction.

5. Methodology

5.1. NNModel. An artificial neural network (ANN) refers to
a massive parallel network with simple nonlinear compu-
tational components known as neurons. Neurons model
several human nervous system functionalities to exploit the
human nervous system [72]. ANNs have been often used to
approximate nonlinear functions, exhibiting significant
benefits for prediction, signal processing, optimization, and
pattern identification purposes, in light of their valid and
flexible nonlinear self-organization characteristics. ANNs
are employed to model a wide range of problems [73–75]
and have yielded more significant outcomes than conven-
tional models in several cases. (e present work adopted a
typical feed-forward BP NN that had sigmoid hidden
neurons along with linear output neurons, as shown in
Figure 3.

An NN is composed of an input layer, one or more
hidden layers, and an output layer. (e Levenberg-Mar-
quardt backpropagation algorithm was employed for NN
training. However, in the case of impaired memory, scaled
conjugate gradient BP would be adopted. Once inputs and
the desired output have been introduced to the model, the
transferred value propagation is performed from the input
layer to the output one through the hidden layers. An NN
attempts to learn the relationship between the inputs and
output through the free parameters’ adaption. A BP NN is
mathematically expressed as

Yj � f 
n

i�1
wjixi − bj

⎛⎝ ⎞⎠ � f nj , (1)

in which column vector x denotes the input vector, row
vector wj represents the connection weight vector of neuron
j, bj stands for the output threshold, nj is the neuron input,
and f is the transfer function.

In order to avoid overtraining and overfitting, various
datasets were applied to NN training. It was observed that
NN had the smallest error when it was trained by 70% of the
data, as shown in Figure 4.

Generally, a rise in the number of hidden layer neurons
improves NN estimation accuracy. However, the increased

hidden layer neurons would raise the estimation cost and
overfitting issue [76]. To bring a more satisfactory trade-off
between accuracy and model cost and overfitting, the mean
squared error (MSE) is employed to evaluate NNs with
different neuron counts in terms of performance, as shown
in Figure 4. (e present work utilized the Neural Network
Toolbox of MATLAB to construct and implement the NN.
During learning, 70% of the inputs were employed as the
training dataset, while the remaining 30% were exploited as
the testing (validation) dataset. (is study selected a min-
imum performance gradient of 10−5. (e NN model was
trained and tested using a personal computer with a
1.78GHz CPU. To obtain optimal performance, NN re-
quired a computational time of 76 s. (e training and testing
of NN lasted for 7584 s. Concerning the hidden layer, the
minimum MSE was obtained at a neuron count of eight, as
shown in Figure 5. (erefore, the number of hidden layer
neurons was selected to be eight in the developed model.

5.2. Inputs and Output. It must incorporate historical mo-
tions right before the present as LC is a continuous process
while driving. (e present study focused solely on the two-
dimensional prediction of trajectories. Hence, it was re-
quired to determine the initial LC states and not dis-
tinguishing LC types [77]. Concerning each of the vehicles,
the two-dimensional lateral and longitudinal positions of the
nearest following and leading vehicles on the present and
target lanes were derived through the NGSIM data. (e LC
model inputs included the time-sequence historical position
data of the subject and four adjacent vehicles (Figure 2).
Also, the two-dimensional position prediction of the subject
vehicle was performed in the following time steps. As
mentioned in Subsection 4.1, a total of four hundred
complete-LC samples were obtained through the NGSIM
data. Two hundred and eighty samples (i.e., 70% of the
dataset) were employed as the training dataset, 60 samples
(i.e., 15% of the data) were used as the validation dataset, and
the remaining 60 samples (15%) were exploited as the testing
dataset. Each sample had 10-s LC trajectory data at time
intervals of 0.1 seconds. (erefore, each of the samples
consisted of a hundred data points. As a result, 28000 and
6000 data points were derived for training and testing,
respectively.

Variable xt involves the subject’s positions and adjacent
vehicles in the detection area, as shown in Figure 2. It is
possible to detect the closest leading and following vehicles
on the present and target lanes, and the future vector xt in
time step t is represented as

xt � P
t
sv, P

t
pc, P

t
fc, P

t
pt, P

t
ft , (2)

where Pt is the vehicle position in time step t. It involves
local Y (i.e., lateral) and local X (i.e., longitudinal) positions.
(e positions of k leading time steps are utilized as the inputs
of the model. (ese variables are defined as

X � xt−Δt, xt−2Δt, . . . , xt−kΔt ,

Y � yt−Δt, yt−2Δt, . . . , yt−kΔt .
(3)
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Such inputs can ensure the maximum detection flexi-
bility of the subject vehicle by considering implementation
for future autonomous vehicles. (e LC outputs include the
lateral and longitudinal subject vehicle positions in the next
time step t + Δt (that is, [yt+Δt andxt+Δt]).

An NN contains a large number of parameters that could
impact model performance. Table 2 provides the ultimate
parameters.

MSEwas employed as a performancemeasure of the NN.
It is calculated as

MSE �


T
i�1 xi − xi

′( 
2

+ yi − yi
′( 
2

 

T
. (4)

T denotes the LC discretization time, xi is the observed
longitudinal position, xi

′ is the simulated longitudinal po-
sition, yi is the observed lateral position, and yi

′ is the
simulated lateral position in time step k. (e preprocessed
data were subjected to normalization before training and
testing. (e z-score technique was employed as

x
∗

�
x − μ
σ

, (5)

in which x∗ represents the normalized quantity, μ is the
mean, and σ denotes the standard deviation.

5.3. Evaluation Indexes of Model Performance. To model LC
behavior, it must perform a separate in-depth analysis of
longitudinal and lateral behaviors. Hence, the present work
employed several evaluation indexes from three viewpoints.
MSE somewhat intuitively judges the prediction accuracy of
a model. Concerning the overall accuracy, the model error
was employed as an extended longitudinal error variant. It
calculates the lateral and longitudinal location and speed
errors by using the observational data and simulated results.

Subject vehicle (SV) PCFC

PTFT SV

Current Lane

Target Lane

X

Start point 

End point

Y

Figure 2: Typical lane-changing process.

Network inputs Network output

Input Layer

Hidden Layer

Output Layer

Feed-forward

Back-propagation

Figure 3: Typical feed-forward back propagation neural network.
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Figure 4: Different training datasets for the NN model.
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Concerning longitudinal accuracy, two standard metrics
were adopted, including the longitudinal error and mixed
gap error. (e longitudinal error incorporates both the

vertical coordinates and speed. On the other hand, themixed
gap error accounts for the gap errors. (e model error,
longitudinal error, and mixed gap error are defined as [40]
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where x is the observed local longitudinal position, x′ is the
simulated local longitudinal position, y is the observed local
lateral position, y′ is the simulated local lateral position, v is
the observed speed, v′ is the simulated speed, G is the ob-
served gap, G′ is the simulated gap, and t is the frame
number (0.1 seconds).

6. Analysis of Results

6.1. NN-Based LCModel Training. (e training convergence
rate of NN is depicted in Figure 6. According to Figure 6,
MSE underwent a sharp decline as the iterations increased in
number. However, a further rise in the number of iterations
did not raise the error when the iterations were adequate.
Hence, 100 iterations were applied to the NN training phase,
fitting the cross-validation criterion.

6.2.NN-BasedLCModel Testing. Table 2 reports the training
and testing descriptions of the NN-based LC model for
performance evaluation. Figure 7 compares the NN model
errors by the training, validation, and testing datasets. A
comparison of the training and testing datasets demon-
strates the overfitting elimination capability of the model.
According to Figure 7, the NN model had rationally satis-
factory overall predictive accuracy. For instance, the model
error of trajectory predictions varied in the range of 0.02.
Likewise, the longitudinal and mixed gap errors were found

to be reasonable. It should be noted that the validation
dataset had lower errors than those of the training and
testing data in LC prediction, probably due to the smaller LC
variance range of the validation dataset than those of the
training and testing datasets.

Numerical tests were performed via the NN-based LC
model for the trajectory prediction of sixty test-subjected
vehicles. MSE was utilized as the index of performance
throughout LC. Table 3 shows LC trajectory prediction MSE
values of testing data.

Figure 8 depicts the LC trajectory prediction MSE values
of twenty vehicles selected randomly (i.e., testing data). (e
mean MSE value of the tested vehicles was calculated to be
nearly 0.0284. As can be seen, MSE is low, suggesting that the
developed LC model is capable of adequately capturing the
entire LC process. Figure 9 compares trajectory observations
and predictions for the twenty randomly selected vehicles.
(e results suggest the important consistency of the tra-
jectory predictions and observations. (us, the model could
capture both lateral and longitudinal vehicle motions, and
the model is demonstrated to perform properly.

Figure 10 illustrates the LC trajectory predictions and
observations of five vehicles. (ey were selected from the
twenty vehicles selected randomly (i.e., testing data). As
can be seen, Vehicle 1 had the lowest MSE (Figure 10(a)),
whereas Vehicle 155 yielded the highest MSE
(Figure 10(c)). (e remaining three vehicles were selected
randomly. Figures 10(a), 10(b), and 10(d) depict left LC

Table 2: NN parameters.

Parameter Value
Input dimension 10
Output dimension 2
Historical length (0.1 s) 100
Neurons in the hidden layer 8
Training function Levenberg-Marquardt BP
Adaption learning function Gradient descent with momentum weight and bias
Activation function Sigmoid
Performance function MSE
Transfer function Hyperbolic tangent sigmoid

8 Advances in Civil Engineering
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Table 3: LC trajectory prediction MSE values of testing data.

Vehicle ID MSE Vehicle ID MSE Vehicle ID MSE Vehicle ID MSE
1 0.002856 116 0.028738 227 0.038079 303 0.008232
5 0.038951 127 0.015417 229 0.024462 305 0.010341
9 0.016114 132 0.032765 231 0.032455 308 0.009231
14 0.015715 138 0.005665 235 0.013674 318 0.006383
17 0.016722 155 0.053034 245 0.0128 332 0.009371
41 0.004317 169 0.005756 251 0.109571 341 0.020761
48 0.001693 171 0.010034 261 0.032929 350 0.006996
67 0.016677 175 0.011424 269 0.013852 353 0.073539
82 0.063285 191 0.021472 279 0.013526 362 0.016257
84 0.015718 199 0.006295 283 0.026079 373 0.012606
89 0.016327 204 0.00577 288 0.085814 378 0.019155
97 0.023275 206 0.010235 289 0.020792 381 0.032565
102 0.031238 211 0.029085 293 0.351535 388 0.092071
111 0.007692 215 0.018323 298 0.006679 393 0.011971
113 0.006326 218 0.00904 301 0.005626 397 0.047062
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instances, while Figures 10(c) and 10(e) represent right LC
instances.

For further performance evaluation of the NN-based LC
model, the LC of the vehicles was divided into three LC
stages, including

(i) Stage 1: pre-LC: LC preparation before the con-
tinuous lateral movement.

(ii) Stage 2: LC: continuous lateral movement.
(iii) Stage 3: adjustment: vehicle speed and direction

adjustment of the LC driver after the continuous
lateral movement.

Figure 11 depicts MSE values in these stages for the five
vehicles. As can be seen, the MSE values of the vehicles were
low in Stage 2. (is suggests that the developed NN-based
LC model is capable of LC trajectory prediction in the LC

stage. (e errors of prediction, however, are relatively more
significant and unstable in the first and third stages—for
Vehicle 111 in Stage 1, Vehicle 155 in Stage 3, and Vehicle
298 in Stages 1 and 3. Mainly, Stages 1 and 3 proceed and
follow LC implementation, respectively. In these stages,
complex impact factors (i.e., the adjacent traffic states) could
induce significant driving behavior uncertainty. Also,
driving behavior heterogeneity adds to the uncertainty.
(erefore, MSE somewhat fluctuates in the first and third
stages, as shown in Figure 11. (is suggests that a larger
number of random impact factors exist in the adjustment
stages before LC. As a result, the prediction has a greater
difficulty.

According to Figure 2, the beginning of LC behavior is
considered to be a position in which the heading of the
subject vehicle leaves the present lane direction, while the
end of LC is a position in which the heading of the subject
vehicle converges to the target lane direction. (us, Fig-
ure 12 and Table 4 show the beginning/end prediction of the
five vehicles’ testing data. Figure 12 illustrates some LC
trajectories (in gray dots) of the testing data. (e beginning
points are shown in blue, while the endpoints are remarked
in red. (e beginning/end predictions are close to the ob-
servations. (is implies that the beginning/endpoint pre-
dictions correspond to feasible LC behavior.

6.3. LC Trajectory Predictive Performance. Figure 13 depicts
the selected LC driving behavior results of the testing data.
(e cases with properly estimated LC trajectories and di-
verse speed variations were selected one by one to fulfill the
proposed framework’s performance validation for various
driving circumstances. Figures 13(a)–13(h) show the speed
fluctuations of eight representative LC vehicles for LC
maneuvers lasting ten seconds. (e black lines represent the
average speed prediction of each vehicle, while the red ones
stand for the speed observations. (ese vehicles have no
significantly large average speeds since the typical peak hour
was utilized for validation. (e introduced framework made
proper trajectory estimates of all LC vehicles concerning the
observed LC speed fluctuations. For the vehicles, the speed
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Figure 8: LC trajectory prediction MSE values of 20 randomly selected vehicles (testing data).
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prediction MSE was utilized as a performance index
throughout the LC process. Vehicles 1 and 298 had the
lowest and highest MSE values, as shown in Figures 13(a)
and 13(e), respectively. Concerning acceleration, the

proposed model exhibited desirable performance in
Figures 13(a), 13(c), and 13(f). Also, the LC trajectory es-
timates were found to be significantly close to the trajectory
observations of the vehicles with large speed fluctuations for
ten seconds in the LC maneuvers, as shown in Figures 13(b),
13(g), 13(d), and 13(h). For instance, complex impact factors
(i.e., the adjacent traffic states) could induce significant
driving behavior uncertainty before LC implementation.
Also, driving behavior heterogeneity adds to the uncertainty.
Consequently, there are large speed fluctuations in
Figures 13(g) and 13(d).

Additionally, for the characteristic validation of LC
behavior, Figure 14 compares the NN-reproduced LC gap
distributions to the real-life data. Also, Welch’s t-test was
employed to evaluate the differences between the NN-
reproduced distributions and the real-life data. Eventually,
the p-value was found to be 0.998. A significantly higher
p-value than 0.05 suggests a confidence level of 95% for
assuming no significant difference between the prediction
and real-life LC results. According to the results, the NN
framework is capable of LC prediction and a decent indi-
cation of LC characteristics.
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Figure 10: Comparisons of observed and predicted trajectories of vehicles. (a) Vehicle ID: 1. (b) Vehicle ID: 111. (c) Vehicle ID: 155.
(d) Vehicle ID: 298. (e) Vehicle ID: 318.
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Figure 12: (e beginning/endpoint predictions of five vehicles. (a) Vehicle ID: 1. (b) Vehicle ID: 111. (c) Vehicle ID: 155. (d) Vehicle ID:
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Table 4: Comparison of the beginning/end predictions and observations of five vehicles selected randomly from the testing dataset.

Beginning point observation Beginning point prediction End point observation End point prediction

Vehicle
ID

Lateral
position
(m)

Longitudinal position
(m)

Lateral
position
(m)

Longitudinal position
(m)

Lateral
position
(m)

Longitudinal position
(m)

Lateral
position
(m)

Longitudinal position
(m)

1 8.8285 121.166 8.8231 121.114 5.70311 164.55 5.71682 164.559
111 16.9454 182.208 16.9071 182.093 12.8458 268.693 12.7861 268.629
155 0.88392 286.225 0.89471 286.33 5.44982 349.878 5.47811 349.71
298 15.8755 215.317 15.8763 215.227 12.2636 287.894 12.2182 287.848
318 6.51967 354.62 6.53608 354.638 8.64931 383.141 8.66336 383.134
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Figure 13: Continued.
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6.4. Comparison of SVR- and NN-Based LC Models

6.4.1. Supporting Vector Regression. Researchers have suc-
cessfully developed and employed machine learning-based
CF models in recent years, attempting to learn CF ma-
neuvers through a massive amount of human driving CF
data [44, 78]. Machine learning techniques may derive the
CF behavior of drivers and capture the possible connections
between different variables that could affect CF behavior.
(e present study adopted a machine learning framework
for LC maneuver analysis and comparison to the introduced
NN-based model. Concerning machine learning ap-
proaches, SVMs have been increasingly attractive in light of
their high predictive performance. Several studies demon-
strated SVMs to yield more satisfactory outcomes as com-
pared to the results of statistical and other machine learning

techniques [79, 80]. One can divide SVMs into classification
SVMs and SVR machines. (e former is employed for
classification problems, while the latter is utilized for pre-
dicting continuous variables. SVR has proper generaliz-
ability and can deal with nonlinear problems. It has been
successfully used for several real-life problems. SVR per-
forms regularization error minimization and empirical risk
minimization simultaneously with a proper penalty factor
[81–83]. Consequently, the present work adopted SVR for
LC trajectory prediction.

(e two-dimensional lateral and longitudinal positions
of each vehicle concerning the following and leading vehicles
on the present and target lanes were derived from the
NGSIM data. (e SVR model inputs included the time
sequence historical position data of the subject and four
adjacent vehicles, as shown in Figure 2. (e same training
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Figure 13:(e velocity results of the NNmodel for lane-changers. (a) Vehicle ID: 1. (b) Vehicle ID: 111. (c) Vehicle ID: 199. (d) Vehicle ID:
218. (e) Vehicle ID: 298. (f ) Vehicle ID: 303. (g) Vehicle ID: 308. (h) Vehicle ID: 318.
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and testing datasets were applied to the NN and SVRmodels.
Similar to the NN model, the two-dimensional subject ve-
hicle positions were predicted in the following time steps. Let
[(Xi, yi), . . . , (Xn, yn)], in which Xi is the input and yi is the
target, be the training dataset. (e objective of ε-SVR is
determining function f(X) for which (a) has a maximum
deviation of ε from the target, and (b) has the highest
possible flatness [84]. Particularly, the present study applied
ε-SVR with radial basis functions:

f(X, W) � 
n

j�1
Wj exp −c X − Xj

�����

�����
2

 . (7)

c is a variable, and vectors Xj are inputs from the training
dataset. Tominimize the function, it is required to determine
the unknown parameter vector W:

Min
1
2

‖W‖ + C 
n

i�1
Max yi − f Xi, W( 


 − ε, 0 , (8)

in which C> 0 controls the trade-off between the flatness of
f(0) and the quantity up to which deviations above ε are
tolerated. Convex programming methods were employed to
solve the dual of this optimization problem [84]. (e nor-
malization of the preprocessed data was carried out before
training and testing (5). (en, the parameters ε, c, and C
were incorporated into the ε-SVR. (e objective was to find
values for these parameters for the predictive power max-
imization of the models. Eventually, the process was per-
formed by combining grid-search and cross-validation
methods [83].

(e SVR model was trained and tested using a personal
computer with a 1.78GHz CPU. To obtain optimal per-
formance, SVR required a computational time of 4.0 s. (e
training and testing of SVR lasted for 540 s.

6.4.2. Comparison Results. As sufficient information on NN
models was unavailable, we chose to adopt an NN-based LC
model. In fact, NN success was a motivation of the work.
Furthermore, CF approaches have recently been developed
and applied based on machine learning. However, LC
modeling has not been considered as frequently as CF
modeling. To compare the proposed LC model, we adopted
an SVR approach (machine learning) in order to analyze LC
maneuvers. It was a challenging task to apply the SVRmodel
with the same inputs as those of the NN. However, they both
properly predicted trajectories with sufficient accuracy,
capturing the longitudinal and lateral motions of the ve-
hicles. Other models could be used for lane changing, but a
review of data-driven LC researches indicates that NNs have
been the most exciting instruments. Despite the develop-
ment of some LCI and LCD-based NN approaches, a large
number of questions remain yet to be answered, so that LC
behavior could be understood. For example, long short-term
memory (LSTM) could be a choice. According to the model
inputs, which are spatial information in two dimensions (the
lateral and longitudinal positions of the subject and four
surrounding vehicles), we decided to use NN for LC pre-
diction. As mentioned, NN success was a motivation of the

authors. In fact, the use of the longitudinal and lateral vehicle
positions as the NN inputs is the innovation of our work.
Furthermore, LSTM takes more longer to train than NN,
and LSTM is easy to overfit. (us, the SVR and NN ap-
proaches can be said to have good performance. (e NN-
based and SVR-based LC models were compared. (e same
number of trajectories was employed for making compar-
isons. Also, the same set of data was utilized to train and test
the SVR model in the form of an NN model. 15% of the data
(i.e., sixty samples) were exploited in the testing phase, while
70% and 15% of the data were used for training and vali-
dation, respectively. Table 5 provides the MSE results of the
two models. According to Table 5, the NN and SVR models
yielded very close results.

Numerical tests were performed using the SVR model
for the trajectory prediction of the sixty testing vehicles. MSE
was utilized as an index of performance throughout the LC
process. Figure 15 depicts the LC trajectory predictions of
the testing vehicles (from the testing dataset).

Figure 16 shows the MSE values of the SVR and NN
models for five vehicles. Also, Figure 17 demonstrates the
trajectory observations and predictions of the same vehicles.
As can be seen, the two models’ trajectory predictions agree
well with the observations and are capable of capturing
lateral and longitudinal vehicle movements and SVR shows
better performance than NN model. (is, in turn, proves
that the SVR and NN models have desirable performance.
Furthermore, the results show that the SVR model is sig-
nificantly similar to the NNmodel in trajectory prediction. A
comparison of these models may demonstrate their ability to
cope with overfitting.

Additionally, the model’s predictive capability in
reproducing macroscopic patterns can result from this
study. (e introduced models could make precise LC pre-
dictions of vehicles under small trajectory errors and sat-
isfactory accuracy. In fact, NN and SVR models predict LC
trajectories at time steps with the positions of both the
subject and adjacent vehicles as the model input. After that,
the effects of LC trajectory prediction can be seen in
macroscopic patterns. For instance, the effect of LC tra-
jectories on traffic flow at each time step predicted by
proposed models can be determined and compared with the
real data.

6.4.3. Comparison of Proposed Models with New Input
Variables. (e main innovative contribution is the pa-
rameters chosen for the model inputs. Finally, the proposed
models were compared under various variables. To estimate
LC behavior, it is required to select variables that could be
measured using in-vehicle sensors. At the same time, it is
important that multicollinearity is avoided by the traffic
variables. For instance, since they have strong correlations,
individual vehicle speeds and speed differences between
different vehicles cannot be selected at the same time.
Likewise, the vehicle type and gap are substantially inter-
correlated and should not be simultaneously incorporated
into the model. Eventually, a total of 11 variables were in-
corporated, as reported in Table 6.
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(e MSE results of both the proposed models and the
new ones with different variables are shown in Table 7. As
can be seen, the proposed models yielded a lower MSE than
the ones with new inputs, and there is significant difference
between models with position and new inputs.

Table 8 shows theMSE values of the SVR andNNmodels
for five vehicles under both the position inputs and new
inputs. As can be seen, the two models’ trajectory predic-
tions agree well with the observations and are capable of
capturing lateral and longitudinal vehicle movements. (is,

in turn, proves that the SVR and NN models have desirable
performance with position inputs. For instance, the ob-
served and predicted trajectories of a vehicle under both the
position inputs and new inputs are plotted in Figure 18. As
can be seen, the trajectory predictions of the proposed
models have greater consistency than the one with new
inputs with the observed trajectories. Hence, the proposed
models have higher performance than the newmodels. It can
be said that information extraction from the lateral and
longitudinal positions of the adjacent vehicles would yield

Table 5: MSE results of NN and SVR models.

Model MSE
NN 0.023943
SVR 0.022643
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Figure 15: LC trajectory predictions of the testing vehicles of the SVR model.
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Figure 16: MSE of the predicted LC trajectories in NN and SVR models for 5 same vehicles.
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Figure 17: LC trajectories comparison between the SVR- and NN-based LC models.
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much better outcomes than using new inputs for the pre-
diction of the subject vehicle position by the NN and SVR
models.

7. Conclusion and Future Works

Neural networks (NNs) are employed primarily in light of
their learning capability and incorporating uncertainties of
real-life driving data. After learning from driving behavior
data, an NN can produce vehicle states for reproducing
driving styles. (e present work developed an NNmodel for
LC behavior modeling. (e NGSIM database was employed
to extract accurate LC records of two freeway sections, i.e.,
I-80 and US-101, in the United States. (e developed model
requires the position data of the adjacent vehicles solely to
make vehicle trajectory predictions. In particular, the NN
model incorporates the historical data right before LC
implementation. (e most important results of the present
study include the following:

(i) (e modeled results of the empirical data of vehicle
trajectories revealed that the developed NN LC
model could make accurate LC predictions of
vehicles.

(ii) (e experimental results suggested that the pro-
posed technique could make accurate LC begin-
ning/end estimates, demonstrating the beginning/

Table 6: New input variables of the NN and SVR models.

Variables

Inputs

V(t)
d1(t)
d2(t)
d3(t)
d4(t)
V1(t)
V2(t)
V3(t)
V4(t)

X(t): lateral position of the subject vehicle
Y(t): longitudinal position of the subject vehicle

Outputs X(t+∆t): lateral position of the subject vehicle at next time step
Y(t+∆t): longitudinal position of the subject vehicle at next time step

Table 7: MSE under different variables.

NN and SVR models input MSE (NN model) MSE (SVR model)
Position variables 0.023943 0.022643
New variables 2.42 1.26

Table 8: MSE of the predicted LC trajectories in NN and SVR models for 5 same vehicles under both the position inputs and new inputs.

Vehicle ID NN model-position inputs SVR model-position inputs NN model-new inputs SVR model-new inputs
341 0.0207 0.0379 1.807 0.32
350 0.00699 0.0037 0.403 0.86
362 0.0162 0.01 0.372 2.91
378 0.0191 0.0052 1.011 1.532
393 0.0119 0.0165 0.185 2.468

Vehicle ID:341
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Predicted (NN model-position inputs)
Predicted (SVR model-position inputs)
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Predicted (SVR model-new inputs)
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Figure 18: A comparison of the observed and predicted trajectories
under position inputs and new inputs.
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end predictions corresponding to feasible LC
behavior.

(iii) (e performance evaluation of the NN model was
performed through several trajectory data points of
LC and adjacent vehicles, i.e., the following and
leading vehicles, on the present and target lanes.(e
proposed model was found to yield proper LC
trajectory estimates of all vehicles concerning LC
speed observation fluctuations.

(iv) For the characteristic validation of LC behavior, the
comparison of the NN-reproduced LC gap distri-
butions to the real-life data was carried out. (e
characteristics of the LC gap distributions showed
no statistically significant difference from real-life
LC behavior.

(v) It was found that the SVR model was significantly
similar to the NNmodel in LC trajectory prediction.
A comparison of the twomodels demonstrated their
capability of coping with overfitting.

(vi) (e MSE results of both proposed models and the
new ones with different variables have shown that
the proposed models yielded a lower MSE than the
ones with new inputs, and there is a significant
difference between models with position and new
inputs.

As future works, state-of-the-art models like game
theory models would be considered for lane-changing
modeling. Although the game theory approach has been
used for modeling lane-changing decisions in the literature
[1], lane-changing trajectory prediction can be tested with
the game theory approach.

Also, the proposed model would be integrated in nu-
merical simulations like AIMSUN. To integrate NN model
in numerical simulations like AIMSUN, the output of NN
model is used for calculating two local parameters (distance
zones 1 and 2 [85]) that have the greatest influence on lane
changing in AIMSUN. (en, these two local parameters are
used in AIMSUN, and the average flows and speeds of all
vehicles on the section are predicted by simulation model.

Data Availability

(e original NGSIM data is open to download at https://ops.
fhwa.dot.gov/trafficanalysistools/ngsim.htm.
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[22] F. Altché and A. de La Fortelle, “An LSTM network for
highway trajectory prediction,” in Proceedings of the 2017
IEEE 20th International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 353–359, IEEE, Yokohama,
Japan, October 2017.

[23] A. Zyner, S. Worrall, J. Ward, and E. Nebot, “Long short term
memory for driver intent prediction,” in Proceedings of the
2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1484–1489,
IEEE, Los Angeles, CA, USA, June 2017.

[24] L. Waymo, “On the road to fully self-driving,” pp. 1–43,
Waymo Safety Report, 2017, https://www.auto-mat.ch/
wAssets/docs/171019_waymo-safety-report-2017-10.pdf.

[25] Y. Ali, M. C. Bliemer, Z. Zheng, andM.M. Haque, “Cooperate
or not? Exploring drivers’ interactions and response times to a
lane-changing request in a connected environment,” Trans-
portation Research Part C: Emerging Technologies, vol. 120,
Article ID 102816, 2020.

[26] A. Cosgun, L. Ma, J. Chiu et al., “Towards full automated drive
in urban environments: a demonstration in gomentum sta-
tion, California,” in Proceedings of the 2017 IEEE Intelligent
Vehicles Symposium (IV), pp. 1811–1818, IEEE, Los Angeles,
CA, USA, June 2017.

[27] J. Li, B. Dai, X. Li, C. Li, and Y. Di, “A real-time and predictive
trajectory-generation motion planner for autonomous
ground vehicles,” in Proceedings of the 2017 9th International
Conference on Intelligent Human-Machine Systems and Cy-
bernetics (IHMSC), pp. 108–113, IEEE, Hangzhou, China,
August 2017.

[28] H.Woo, Y. Ji, H. Kono et al., “Lane-change detection based on
vehicle-trajectory prediction,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 1109–1116, 2017.

[29] R. Zhang, L. Cao, S. Bao, and J. Tan, “A method for connected
vehicle trajectory prediction and collision warning algorithm
based on V2V communication,” International Journal of
Crashworthiness, vol. 22, no. 1, pp. 15–25, 2017.

[30] N. Djuric, V. Radosavljevic, H. Cui et al., “Short-term motion
prediction of traffic actors for autonomous driving using deep
convolutional networks,” 2018, https://www.arxiv-vanity.
com/papers/1808.05819/.

[31] C. Ding, W. Wang, X. Wang, and M. Baumann, “A neural
network model for driver’s lane-changing trajectory predic-
tion in urban traffic flow,” Mathematical Problems in Engi-
neering, vol. 2013, 2013.

[32] T. Shamir, “How should an autonomous vehicle overtake a
slower moving vehicle: design and analysis of an optimal

trajectory,” IEEE Transactions on Automatic Control, vol. 49,
no. 4, pp. 607–610, 2004.

[33] W. Yao, H. Zhao, P. Bonnifait, and H. Zha, “Lane change
trajectory prediction by using recorded human driving data,”
in Proceedings of the 2013 IEEE Intelligent Vehicles Symposium
(IV), pp. 430–436, IEEE, Gold Coast, QLD, Australia, June
2013.

[34] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM
network: a deep learning approach for short-term traffic
forecast,” IET Intelligent Transport Systems, vol. 11, no. 2,
pp. 68–75, 2017.

[35] Y. Dou, F. Yan, and D. Feng, “Lane changing prediction at
highway lane drops using support vector machine and arti-
ficial neural network classifiers,” in Proceedings of the 2016
IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), pp. 901–906, IEEE, Banff, AB, Canada,
July 2016.

[36] J. Gao, Y. L. Murphey, and H. Zhu, “Multivariate time series
prediction of lane changing behavior using deep neural
network,” Applied Intelligence, vol. 48, no. 10, pp. 3523–3537,
2018.

[37] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-
based approach for online lane change intention prediction,”
in Proceedings of the 2013 IEEE Intelligent Vehicles Symposium
(IV), pp. 797–802, IEEE, Gold Coast, QLD, Australia, June
2013.

[38] K. Li, X. Wang, Y. Xu, and J. Wang, “Lane changing intention
recognition based on speech recognition models,” Trans-
portation Research Part C: Emerging Technologies, vol. 69,
pp. 497–514, 2016.

[39] L. Li, M. Zhang, and R. Liu, “(e application of Bayesian filter
and neural networks in lane changing prediction,” in Pro-
ceedings of the 5th International Conference on Civil Engi-
neering and Transportation, Seoul, Korea, July 2015.

[40] X. Zhang, J. Sun, X. Qi, and J. Sun, “Simultaneous modeling of
car-following and lane-changing behaviors using deep
learning,” Transportation Research Part C: Emerging Tech-
nologies, vol. 104, pp. 287–304, 2019.

[41] E. C. B. Olsen, “Modeling slow lead vehicle lane changing,”
Virginia Tech, 2003, https://www.researchgate.net/
publication/279681796_Modeling_Slow_Lead_Vehicle_
Lane_Changing.

[42] V. L. Knoop, S. P. Hoogendoorn, Y. Shiomi, and C. Buisson,
“Quantifying the number of lane changes in traffic,” Trans-
portation Research Record: Journal of the Transportation Re-
search Board, vol. 2278, no. 1, pp. 31–41, 2012.

[43] J. Chovan, L. Tijerina, G. Alexander, and D. Hendricks,
“Examination of lane change crashes and potential IVHS
countermeasures,” 1994, https://ntlrepository.blob.core.
windows.net/lib/16000/16600/16677/PB2000104485.pdf.

[44] B. Zhou, Y. Wang, G. Yu, and X. Wu, “A lane-change tra-
jectory model from drivers’ vision view,” Transportation
Research Part C: Emerging Technologies, vol. 85, pp. 609–627,
2017.

[45] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. H. Lee, “Enhancing
transportation systems via deep learning: a survey,” Trans-
portation Research Part C: Emerging Technologies, vol. 99,
pp. 144–163, 2019.

[46] J. Zheng, K. Suzuki, and M. Fujita, “Predicting driver’s lane-
changing decisions using a neural network model,” Simula-
tion Modelling Practice and ;eory, vol. 42, pp. 73–83, 2014.

[47] J. G. Hunt and G. D. Lyons, “Modelling dual carriageway lane
changing using neural networks,” Transportation Research
Part C: Emerging Technologies, vol. 2, no. 4, pp. 231–245, 1994.

20 Advances in Civil Engineering

https://patentimages.storage.googleapis.com/7e/19/46/1d647d09326de3/US10380886.pdf
https://patentimages.storage.googleapis.com/7e/19/46/1d647d09326de3/US10380886.pdf
https://www.auto-mat.ch/wAssets/docs/171019_waymo-safety-report-2017-10.pdf
https://www.auto-mat.ch/wAssets/docs/171019_waymo-safety-report-2017-10.pdf
https://www.arxiv-vanity.com/papers/1808.05819/
https://www.arxiv-vanity.com/papers/1808.05819/
https://www.researchgate.net/publication/279681796_Modeling_Slow_Lead_Vehicle_Lane_Changing
https://www.researchgate.net/publication/279681796_Modeling_Slow_Lead_Vehicle_Lane_Changing
https://www.researchgate.net/publication/279681796_Modeling_Slow_Lead_Vehicle_Lane_Changing
https://ntlrepository.blob.core.windows.net/lib/16000/16600/16677/PB2000104485.pdf
https://ntlrepository.blob.core.windows.net/lib/16000/16600/16677/PB2000104485.pdf


[48] L. Li, M. Zhang, and R. Liu, “(e application of Bayesian filter
and neural networks in lane changing prediction,” in Pro-
ceedings of the 5th International Conference on Civil Engi-
neering and Transportation, pp. 2004–2007, Seoul, Korea, July
2015.

[49] M. Ke and H. Wang, “Lane-changing decision model for
connected and automated vehicle based on back-propagation
neural network,” in Proceedings of the International Confer-
ence on Transportation and Development 2020, pp. 163–173,
American Society of Civil Engineers, Reston, VA, November
2020.

[50] Z. Zheng, “Recent developments and research needs in
modeling lane changing,” Transportation Research Part B:
Methodological, vol. 60, pp. 16–32, 2014.

[51] D. Yang, S. Zheng, C. Wen, P. J. Jin, and B. Ran, “A dynamic
lane-changing trajectory planning model for automated ve-
hicles,” Transportation Research Part C: Emerging Technolo-
gies, vol. 95, pp. 228–247, 2018.

[52] H. Yu, H. E. Tseng, and R. Langari, “A human-like game
theory-based controller for automatic lane changing,”
Transportation Research Part C: Emerging Technologies,
vol. 88, pp. 140–158, 2018.

[53] T. Awal, M. Murshed, and M. Ali, “An efficient cooperative
lane-changing algorithm for sensor-and communication-
enabled automated vehicles,” in Proceedings of the 2015 IEEE
Intelligent Vehicles Symposium (IV), pp. 1328–1333, IEEE,
Seoul, Korea, July 2015.

[54] V. Mahajan, C. Katrakazas, and C. Antoniou, “Prediction of
lane-changing maneuvers with automatic labeling and deep
learning,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2674, no. 7, pp. 336–347,
Article ID 0361198120922210, 2020.

[55] D.-F. Xie, Z.-Z. Fang, B. Jia, and Z. He, “A data-driven lane-
changing model based on deep learning,” Transportation
Research Part C: Emerging Technologies, vol. 106, pp. 41–60,
2019.

[56] S. Lee, D. Ngoduy, andM. Keyvan-Ekbatani, “Integrated deep
learning and stochastic car-following model for traffic dy-
namics on multi-lane freeways,” Transportation Research Part
C: Emerging Technologies, vol. 106, pp. 360–377, 2019.

[57] R. S. Tomar, S. Verma, and G. S. Tomar, “Prediction of lane
change trajectories through neural network,” in Proceedings of
the 2010 International Conference on Computational Intelli-
gence and Communication Networks, IEEE, pp. 249–253,
Bhopal, India, November 2010.

[58] J. Tang, F. Liu, W. Zhang, R. Ke, and Y. Zou, “Lane-changes
prediction based on adaptive fuzzy neural network,” Expert
Systems with Applications, vol. 91, pp. 452–463, 2018.

[59] J. Tang, S. Yu, F. Liu, X. Chen, and H. Huang, “A hierarchical
prediction model for lane-changes based on combination of
fuzzy C-means and adaptive neural network,” Expert Systems
with Applications, vol. 130, pp. 265–275, 2019.

[60] J. Peng, Y. Guo, R. Fu, W. Yuan, and C. Wang, “Multi-pa-
rameter prediction of drivers’ lane-changing behaviour with
neural network model,” Applied Ergonomics, vol. 50,
pp. 207–217, 2015.

[61] C. F. Choudhury and M. E. Ben-Akiva, “Modelling driving
decisions: a latent plan approach,” Transportmetrica: Trans-
portation Science, vol. 9, no. 6, pp. 546–566, 2013.

[62] Z. He, Y. Lv, L. Lu, and W. Guan, “Constructing spatio-
temporal speed contour diagrams: using rectangular or non-
rectangular parallelogram cells?” Transportation Business:
Transport Dynamics, vol. 7, no. 1, pp. 44–60, 2019.

[63] Z. He, W. Zhang, and N. Jia, “Estimating carbon dioxide
emissions of freeway traffic: a spatiotemporal cell-based
model,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, pp. 1976–1986, 2019.

[64] Z. He, L. Zheng, and W. Guan, “A simple nonparametric car-
following model driven by field data,” Transportation Re-
search Part B: Methodological, vol. 80, pp. 185–201, 2015.

[65] C. (iemann, M. Treiber, and A. Kesting, “Estimating ac-
celeration and lane-changing dynamics from next generation
simulation trajectory data,” Transportation Research Record:
Journal of the Transportation Research Board, vol. 2088, no. 1,
pp. 90–101, 2008.

[66] X. Wang, R. Jiang, L. Li, Y. Lin, X. Zheng, and F.-Y. Wang,
“Capturing car-following behaviors by deep learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19,
pp. 910–920, 2017.

[67] J. Zheng, K. Suzuki, and M. Fujita, “Car-following behavior
with instantaneous driver-vehicle reaction delay: a neural-
network-based methodology,” Transportation Research Part
C: Emerging Technologies, vol. 36, pp. 339–351, 2013.

[68] Z. Zheng, S. Ahn, D. Chen, and J. Laval, “(e effects of lane-
changing on the immediate follower: anticipation, relaxation,
and change in driver characteristics,” Transportation Research
Part C: Emerging Technologies, vol. 26, pp. 367–379, 2013.

[69] M. Li, Z. Li, C. Xu, and T. Liu, “Short-term prediction of safety
and operation impacts of lane changes in oscillations with
empirical vehicle trajectories,” Accident Analysis & Preven-
tion, vol. 135, p. 105345, Article ID 105345, 2020.

[70] Y. Ali, M. C. J. Bliemer, Z. Zheng, and M. M. Haque,
“Comparing the usefulness of real-time driving aids in a
connected environment during mandatory and discretionary
lane-changing manoeuvres,” Transportation Research Part C:
Emerging Technologies, vol. 121, Article ID 102871, 2020.

[71] J. Sun, J. Ouyang, and J. Yang, “Modeling and analysis of
merging behavior at expressway on-ramp bottlenecks,”
Transportation Research Record: Journal of the Transportation
Research Board, vol. 2421, no. 1, pp. 74–81, 2014.

[72] T. Kohonen, “An introduction to neural computing,” Neural
Networks, vol. 1, no. 1, pp. 3–16, 1988.

[73] P. S. Gowrishankar and P. S. Satyanarayana, “Neural network
based traffic prediction for wireless data networks,” Inter-
national Journal of Computational Intelligence Systems, vol. 1,
no. 4, pp. 379–389, 2008.

[74] E. G. Tsionas, P. G. Michaelides, and A. T. Vouldis, “Global
approximations to cost and production functions using ar-
tificial neural networks,” International Journal of Computa-
tional Intelligence Systems, vol. 2, no. 2, pp. 132–139, 2009.

[75] E. Zio, “Neural networks simulation of the transport of
contaminants in groundwater,” International Journal of
Computational Intelligence Systems, vol. 2, no. 3, pp. 267–276,
2009.

[76] C. Yin, L. Rosendahl, and Z. Luo, “Methods to improve
prediction performance of ANN models,” Simulation Mod-
elling Practice and ;eory, vol. 11, no. 3-4, pp. 211–222, 2003.

[77] L. Li, C. Lv, D. Cao, and J. Zhang, “Retrieving common
discretionary lane changing characteristics from trajectories,”
IEEE Transactions on Vehicular Technology, vol. 67,
pp. 2014–2024, 2017.

[78] D. Yang, L. Zhu, Y. Liu, D. Wu, and B. Ran, “A novel car-
following control model combining machine learning and
kinematics models for automated vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 20, pp. 1991–2000,
2018.

Advances in Civil Engineering 21



[79] A. Iranitalab and A. Khattak, “Comparison of four statistical
and machine learning methods for crash severity prediction,”
Accident Analysis & Prevention, vol. 108, pp. 27–36, 2017.

[80] J. Zhang, Z. Li, Z. Pu, and C. Xu, “Comparing prediction
performance for crash injury severity among various machine
learning and statistical methods,” IEEE Access, vol. 6,
pp. 60079–60087, 2018.

[81] I. O. Alade, A. Bagudu, T. A. Oyehan, M. A. A. Rahman,
T. A. Saleh, and S. O. Olatunji, “Estimating the refractive
index of oxygenated and deoxygenated hemoglobin using
genetic algorithm - support vector regression model,” Com-
puter Methods and Programs in Biomedicine, vol. 163,
pp. 135–142, 2018.

[82] K. Cheng, Z. Lu, Y. Wei, Y. Shi, and Y. Zhou, “Mixed kernel
function support vector regression for global sensitivity
analysis,” Mechanical Systems and Signal Processing, vol. 96,
pp. 201–214, 2017.
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