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Composite structures are extensively applied because of their high speci�c sti�ness-to-weight ratios and other advantages. In
various scenarios, composite structures are elastically coupled and usually exposed to a nonuniform thermal environment.  is
paper presents numerical simulation studies on the vibroacoustic characteristics of a composite laminated plate with elastic
supports subjected to local temperature.  e thermal sti�ness matrix and sti�ness matrix of the elastic boundary are �rst derived
based on the �nite elementmethod, and then a coupled vibroacoustic model is developed to calculate the acoustic properties of the
structure. A comprehensive study is performed to highlight the e�ect of the temperature loading position, temperature range, and
heated area on the acoustic radiation responses of composite laminated plates with di�erent elastic supports. e results show that
the existence of thermal stress has a great in�uence on the acoustic radiation of the structure at low frequencies, which is a�ected
by the boundary constraints and heated areas.

1. Introduction

To date, laminated composite plates have been widely
used in many areas, such as aeronautical, ocean, and civil
engineering applications because of their good perfor-
mance characteristics, such as high speci�c sti�ness to
weight and low maintenance cost.  ese structures are
often exposed to the thermal environment during their
service life, due to which thermal stresses may be induced;
then, these structures may experience buckling and dy-
namic instability.  erefore, the acoustic radiation be-
haviour of composite laminated plates in thermal
environments is of great technical importance in pre-
dicting structural performance.

A few studies on the vibration and sound radiation
characteristics of laminated composite shells subjected to
thermal environments have been reported in the literature.
Panda and Singh [1] carried out a nonlinear free vibration
analysis of shells considering postbuckling for a uniform
temperature �eld. Yang et al. [2] analytically investigated the
vibroacoustic responses of functionally graded (FG) plates

subjected to a thermal environment. Li et al. [3] employed
the mode superposition method to obtain a formulation for
the sound transmission loss of a simply supported composite
plate and studied in detail the e�ect of the thermal envi-
ronment, elevation angle, and azimuth angle of incident
sound on the sound transmission loss of composite plates.
To improve the acoustic characteristics of a four-edge
clamped bimaterial plate, Yang et al. [4] addressed the
optimization of radiated acoustic power in di�erent thermal
environments in nearby frequency bands, and they studied
the sum of the acoustic power at the �rst two resonance
frequencies. Li et al. [5] focused on the application of the
method of the piecewise shear deformation theory for the
analytical solution of a clamped rectangular sandwich panel
in a thermal environment and compiled an exhaustively
detailed summary of the dynamic and acoustic radiation
characteristics and sound transmission loss of a sandwich
plate in thermal environments. Zhou et al. [6] used a
simpli�ed closed-form method to investigate the dynamic
and acoustic responses of a rectangular plate subjected to
thermomechanical loads.  e advantage of this approach is
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that it can work with some combinations of classical
boundary conditions, such as simply supported and clamped
boundary conditions and a few cases involving free edges.
Huang et al. [7] developed a vibration-acoustic model of
simply supported shape memory alloy (SMA) composite
laminate plates considering the prestaining of SMA and the
thermal expansion force of graphite-epoxy resin. Li and Li
[8] derived theoretical formulations for the vibration and
sound radiation of a simply supported asymmetric lami-
nated plate considering the effects of thermal environments.
Sharma et al. [9] developed a general mathematical model
for computing the vibroacoustic behaviour of laminated
composite panels under the framework of higher-order
shear deformation theory, and the effects of different
structural parameters, several classical support conditions,
and various material properties on the acoustic radiation
response of laminated composite plates under harmonic
central and eccentric excitation were fully discussed. Fur-
thermore, these scholars [10] also reported the vibration and
acoustic responses of unbaffled laminated composite flat
panels excited by harmonic point loading under various
support conditions.

From a review of the literature, most previous studies on
composite laminated plates have been confined to the
classical boundary conditions, such as free, simply sup-
ported, clamped, and their combinations. However, a variety
of possible boundary supports encountered in practical
engineering applications may not always be classical in
nature, and there will always be some elasticity along the
supports. Moreover, in various realistic scenarios, the
temperature distribution on the composite laminated plate is
usually uneven. For example, as the hypersonic structure
accelerates in the atmosphere, the plate boundary acts as a
radiator when connected to the cooler substructure,
resulting in aerodynamic heat being generated on its surface
[11]. To the best of the authors’ knowledge, few scholars have
addressed the acoustic performance of composite laminated
plates with elastic boundaries subjected to local thermal
loads. Over the last several years, the rapid growth in the
design of structures and industrial processes has required the
development of computational models that reflect practical
engineering problems; therefore, it is highly significant to
study the acoustic radiation performance of composite
laminated plates with arbitrary elastic edge supports sub-
jected to local thermal loads. *e motivation of this study is
to solve the aforementioned problems.

*e paper is arranged in four sections. Following this
introduction, Section 2 provides the theoretical background
of a composite laminated plate and elastic boundary, and the
corresponding matrix representation is given. In Section 3,
the effects of the temperature loading position, temperature
range, and heated area on the acoustic performance of
composite laminated plates subjected to local thermal
loading are discussed.*e final section summarizes the main
results of the paper.

2. Theory

2.1. Governing Equations. As shown in Figure 1, the con-
stitutive equation of a composite laminated plate subjected
to thermal loading can be expressed as [12]

F{ } � [D] ε{ } − F
N

􏽮 􏽯, (1)

where F{ } is the thermal stress of the laminated plate, [D] is
the stiffness matrix of the laminated plate, ε{ } is the total
strain vector, and FN􏼈 􏼉 is the thermal internal force vector.
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, (5)

where Nx, Ny, and Nxy are the resultant forces of internal
stress in the laminated plate and Mx, My, and Mxy are the
moments at the middle surface of the laminated plate. For
convenient expression, (5) is simplified as

[D] �

Aij Bij 0

Bij Dij 0

0 0 Hij
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, (6)

where Aij, Bij, Dij, and Hij are the tensile stiffness, cou-
pling stiffness, bending stiffness, and thickness shear
stiffness of the laminated plate, respectively, which can be
expressed as
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n
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(7)

where k0 is the shear correction coefficient, with a value of 5/
6. [Qij]k is the reduced stiffness coefficient matrix in the
direction of the fibre layer of the laminated plate, which can
be expressed as

2 Advances in Civil Engineering



Qij􏽨 􏽩
k

�

Q11 Q12 0

Q12 Q22 0

0 0 Q66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i, j � 1, 2, 6,

Qij􏽨 􏽩
k

�

Q44 0

0 Q55

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, i, j � 4, 5,

Q11 �
E11

1 − v12v21
,

Q12 �
v12E22

1 − v12v21
,

Q22 �
E22

1 − v12v21
,

Q66 � G12,

Q44 � G13,

Q55 � G23.

(8)

*e thermal force vector and thermal torque are
expressed, respectively, as
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where e{ }k is the thermal strain of the kth layer and can be
expressed as

e{ }k � ex, ey, exy􏽮 􏽯
T

� [A] α1, α2􏼈 􏼉
T

k TE − T0( 􏼁, (10)

where TE is the actual temperature, T0 is the reference
temperature, α1, α2􏼈 􏼉 is the thermal expansion coefficient, and
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. (11)

*e shape function of the element displacement field is

U{ } � [N] d
e

􏼈 􏼉,

[N] � N1 N2 N3 N4􏼂 􏼃.
(12)

*e total potential energy is the sum of the bending
strain energy of the laminated plate and the potential
energy of the laminated plate under the action of in-plane
forces due to the thermal load, which can be expressed as
[13]

Π � V + P, (13)

where V is the bending strain energy of the laminated plate
and P is the potential energy of the laminated plate. *ese
equations can be written as
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(14)

*e derivative of this function with respect to the degree
of freedom vector can be obtained for the composite plate

structure, giving the stiffness matrix and the stress matrix
caused by thermal load.

z y

xt
Figure 1: Schematic diagram of a composite laminated plate.
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2.2. Radiated Acoustic Power Forecast Model. As shown in
Figure 2, the general equation of motion for a composite
laminated plate with elastic supports subjected to the local
temperature is

−ω2
[M] + iω[C] +[K]􏽮 􏽯U(ω) � F{ }, (15)

where [M] and [K] � [KS] + [Kb] + [Kσ] are the global
mass matrices and global stiffness matrices of a composite
laminated plate, respectively, where [Ks] is the stiffness
matrix of the stiffened plate and [Kb] is the stiffness matrix
of the boundary element of the stiffened plate, including the
elastic support boundary kt and rotation boundary kr. *e
derivation of boundary rotational stiffness and boundary
support stiffness can be found in our previous work [14]. ω
represents the vibration frequency, U{ } represents the
generalized displacement vector of the finite locally resonant
plate, and F{ } is an external harmonic excitation.

We denote [B] � −ω2[M] + iω[C] + [K], and the nodal
velocity vector at each of the nodes in the finite locally
resonant plate can be expressed by

v � iωU(ω) � i[B]
− 1

F{ }. (16)

By using the transformation matrix method, the fol-
lowing expression of the normal velocity on the finite locally
resonant plate can be used as the boundary condition for the
Rayleigh integral:

vn(ω) � iω[D][B]
− 1

F{ }, (17)

where [D] is a transformation matrix.
As shown in Figure 3, when the surface normal velocity

of a planar rectangular plate is known, the generated ra-
diated acoustic pressure can be calculated using the Rayleigh
integral on the assumption that the plate is surrounded by an
infinite, coplanar baffle [15]:

p r
→

s′( 􏼁 �
iωρa

2π
􏽚

s1

]n r
→

s( 􏼁
e

− ikR

R
ds, (18)

where rs′ and rs represent the position of the observation
point and elemental surface δs with the normal velocity
vn(rs

→
), respectively. R � |rs′ − rs|, k is the acoustic wave-

number, and ρa is the density of the fluid.
In the far field, the time averaged acoustic intensity of the

structure is given by the following expression:

I �
|P( r

→
)|
2

2ρc
. (19)

Hence, if the radius of the hemisphere is twenty times the
largest dimension of the vibrating structure, the sound power
W radiated into the semi-infinite space above the plate is the
integral of the sound intensity and can be written as

W � 􏽚
2π

0
􏽚
π/2

0
I · R

2 sin θdθdφ. (20)

With the numerical discrete method, the radiated
acoustic power can be evaluated over each of the total surface
elements [16]:

w � 􏽘

Nθ

i�1
􏽘
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2

2ρc
R
2 sin 􏽥θi􏼐 􏼑δθδϕ, (21)

where δθ � (π/2Nθ); δφ � (2π/Nφ); 􏽥θi � iδθ; 􏽥θj � jδφ.
*e mean square velocity of the stiffened plate can be

calculated from the following formulas:

v
2
n �

1
s

􏽚
s
v
2
nds,

σ �
W

(1/2)ρacaab〈v2n〉
,

(22)

where ρa is the fluid density, ca is the sound velocity, a is the
plate length, and b is the plate width.

3. Numerical Results and Discussion

A schematic diagram of the composite laminated plate
subjected to local thermal loading and the coordinate system
is shown in Figure 2. *e composite laminated plate is made
of carbon/epoxy with the following material and geometric
properties (unless otherwise stated). *e physical material
parameters and structural dimensions of the laminated plate
are as follows: density ρ � 1520(kg/m3), E1 � 133.86GPa,
E2 � 7.706GPa, G12 � 4.302GPa, ]12 � 0.301, α1 � 0.32E

−6oC− 1, α2 � 25.89E − 6oC− 1, and α3 � 0K− 1. *e layer of
the alternately composite laminated plate is [0/90/0/90/90/0/
90/0]; the length, width, and thickness of the laminated plate
are represented by a, b, and t, respectively; the size of the
heated area is in the form of a0 and b0; and the distances
between the centre of the heated area and the border of the
laminated plates are denoted by d1 and d2. *e boundary
support stiffness and boundary rotational stiffness are un-
changed along the boundary of the composite laminated
plate, all boundary support stiffnesses are denoted by kt, and
the boundary rotational stiffness can be denoted by Kr. *e
modal damping ratio of the structure is 0.01.

3.1. Model Validation. To verify the accuracy of the model,
the sound pressure levels of a laminated plate are calculated
and compared with those in the literature [11]. *e geo-
metric dimensions and physical parameters are as follows:
a � 0.15m, b � 0.15m, ρ � 1420.05 kg/m3, and t � 0.002m.
*e layer of the alternately composite laminated plate is [0/
90/0/90/0/90], E1 � 7.205GPa, E2 � 6.327GPa, G12 � 2.8
GPa, G13 � 2.8GPa, G23 � 1.4GPa, ]12 � 0.17, and
α3 � 0K− 1. *e initial temperature is T0 � 293.15K− 1, the
grid is 48 × 48, and the sound pressure levels of a laminated
plate under CFFF boundary conditions are shown in Fig-
ure 4 (F represents a free boundary, and c represents a rigid
fixed boundary). *e support stiffness and rotation stiffness
are assumed to be infinite to represent the rigid fixed
boundary. Similarly, the support stiffness and rotation
stiffness are taken to be small values to represent the free
boundary. From Figure 4, the computed result is in good
agreement with the results in the literature [10], except in the
frequency range of 250Hz to 350Hz, and the deviation is
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caused by the limitation of displacement boundary condi-
tions applied to the structure in the experiment.

3.2. Acoustic Performance of a Composite Laminated Plate
under Local ­ermal Loading

3.2.1. In�uence of the Temperature Loading Position.  e
size of the laminated plate is set as a � 0.5m, b � 0.5m,
t � a/80, kr � 0(N/rad), a0 � 0.4a, and b0 � 0.4b, and the
unit harmonic excitation point is selected at location
(x, y) � (0.21m, 0.25m) (the same below) with reference to
Figure 2.  e heated area is sixteen percent of the total area
of the laminated plate, the position of the temperature load

varies from d1 � 0.2a to d1 � 0.4a, and the temperature load
is the critical temperature of the laminate structure when
d1 � 0.5a.  e mean square velocity, sound radiation e�-
ciency, and sound power level curves are shown
inFigure 5–7, respectively.  e �rst peak of the mean square
velocity curve moves little to low frequency when the
boundary constraint is small (kt � 4e5N/m2), the second
peak decreases and moves in the high frequency direction
owing to the uneven distribution of thermal stress generated
by the local temperature in the laminated plate, and the
thermal stress sti�ness is smaller than that of the laminated
plate. When the boundary constraint is enhanced
(kt � 1e15N/m2), the �rst and third peak values of the mean

observation point
A

R

y

baffle

x

z

a

bθ

ϕ
rs

rs′

S1

Figure 3: Rayleigh integral coordinate.

y

Kr kt

a
d2d1

a0
b0

b

z

x

Figure 2: Locally heated laminated plate with elastic boundary subjected to local thermal load.
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square velocity curve move to low frequency, and the mean
square velocity decreases at the first-order frequency, while
there is no significant change at other order frequencies.*is
is because the thermal stress of laminated plates generated by
the local temperature load is negative when the boundary
constraints are large. *e acoustic radiation efficiency of the
laminated plate changes little when the temperature loading

position is different, regardless of the small boundary re-
straint or larger boundary constraints. *e temperature
loading position has a great influence on the radiated sound
power level in the low frequency range. For example, the
radiation sound power at the first-order frequency decreases
significantly in laminated plates and moves to a low fre-
quency when kt � 1e15N/m2 because the thermal stress is
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Figure 4: Experimental validation study of sound pressure levels for the laminated plate.
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Figure 5: Mean square velocity of laminated plates with different heating positions. (a) kt � 4e5N/m2. (b) kt � 1e15N/m2.
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higher if the temperature loading location is close to the
centre position of laminated plates when the boundary
constraints are large.

3.2.2. 7e Influence of Temperature. *e heating range is the
entire laminate area, Tcr is the critical temperature, and the

boundary conditions are kt � 1e8N/m2 and kr � 1e6N/rad.
*e mean square velocity, sound radiation efficiency, and
sound power level curves are shown inFigure 8–10, re-
spectively. From the figures, the mean square velocity curve
of the laminated plate moves to low frequency, and the peak
value of the mean square velocity increases. Additionally, the
sound radiation efficiency of the laminated plates decreases
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Figure 6: Sound radiation efficiency of laminated plates with different heating positions. (a) kt � 4e5N/m2. (b) kt � 1e15N/m2.
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Figure 7: Sound power level of laminated plates with different heating positions. (a) kt � 4e5N/m2. (b) kt � 1e15N/m2.
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and moves to the low frequency. *is happens because the
temperature “softens” the integral stiffness of the laminated
plates, and the radiated acoustic power level curve of the
laminated plates moves to a low frequency. However, the
peak of the radiated acoustic power level curve demonstrates
no obvious change.

3.2.3. Heated Area. *e average temperature of the
laminate is kept constant, and the boundary conditions
are kt � 1e8N/m2 and kr � 1e6N/rad. *e heated area is
A � a × b and A � 0.4a × 0.4b. *e temperature loads are
T � 0.11Tcr and T � 0.69Tcr. *e mean square velocity,
sound radiation efficiency, and sound power level curves
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Figure 8: Sound radiation efficiency of laminated plates in different thermal environments.
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Figure 9: Mean square velocity of laminated plates in different thermal environments.
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are shown inFigure 11–13, respectively. From the figures,
the mean square velocity curve moves to low frequency,
and the sound radiation efficiency decreases and moves
to low frequency when the heated area decreases. *e
radiation sound power curve integral moves to low

frequency. In other words, the smaller the heated area,
the greater the influence of the temperature load on the
acoustic radiation performance of the laminated plate
when the laminated plate is averaged at constant
temperature.
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Figure 10: Sound power level of laminated plates in different thermal environments.
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Figure 11: Mean square velocity of laminated plates with different heating areas.
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4. Summary

In this paper, the calculation model of vibration and acoustic
radiation of a laminated structure under arbitrary boundary
conditions under local thermal loading is established, and
the influence of boundary conditions, heating location, and
heating area on the acoustic radiation performance of the
laminated structure is studied. *e main conclusions are as
follows:

(1) *e presence of thermal stress has a great influence
on structural acoustic radiation, especially at low
frequencies.

(2) *e stronger the boundary constraint, the more
significant the influence of thermal stress on struc-
tural acoustic radiation.

(3) *e smaller the heated area, the greater the influence
of the temperature load on the acoustic radiation
performance of the laminated plate when the lam-
inated plate is averaged at constant temperature.

Data Availability

All data generated or analysed during this study are included
within the article.
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Figure 12: Sound radiation efficiency of laminated plates with different heating areas.
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Figure 13: Sound power level of laminated plates with different heating areas.
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