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Aiming to address the current shortcomings of the existing safety helmet wearing detection algorithms, including a slow reasoning
speed, a large model size, and high hardware requirements, this study proposes an improved safety helmet wearing detection
network named YOLOv5-SN, which is suitable for embedded deployment on Jetson Nano. First, the backbone of the YOLOv5
network is modifed using the model lightweight method introduced by ShufeNetV2. Next, the model size and number of
parameters in the trained model are reduced to about one-tenth of those of the YOLOv5 network, and the reasoning speed is
improved by 72ms/f when tested on Jetson Nano.Ten, the modifedmodel is optimized using the quantifcation and layer fusion
operations, further reducing the computing power and accelerating the reasoning speed. Finally, the YOLOv5-SN network is
obtained by improving the YOLOv5 model, and the optimized model is deployed on Jetson Nano for testing. Te average
reasoning speed of the YOLOv5s-SN network reaches 32.2ms/f, which is 84.7ms/f faster compared to that of the YOLOv5smodel.
Tis demonstrates an obvious advantage of the proposed model in reasoning speed compared to the existing YOLOv5 models.
Finally, the proposed model can perform real-time and efective target detection on the Jetson Nano embedded terminal.

1. Introduction

In the rapid development of the modern world, much in-
frastructure, including buildings, subways, and electric
power systems, has been constructed every year. However,
any accident at the construction site can be fatal and cat-
astrophic. According to 2020 Notice on Production Safety
Accidents of Municipal Housing Projects issued by the
Ministry of Housing and Urban-Rural Development of
China [1], a total of 689 safety accidents took place at the
construction sites of municipal housing projects across
China in 2020, resulting in 794 deaths. Among these fatal
accidents, 407 were caused by workers or objects falling from
a high height, accounting for 59.07% of the total. Tus,
a large portion of falling-related accidents could be attrib-
uted to falling objects. In these accidents, the protection
provided by a safety helmet is beyond doubt. In the study of
[2], it was concluded that among the workers who had fallen
victim to fatal injury in safety accidents, 47.3% of them were
not wearing a helmet at the moment of the accident. Te

existing manual supervision methods mainly include
viewing a monitoring video and patrolling. However, these
methods have the disadvantages of high labor cost, low
efciency, high probability of missing targets, and poor real-
time performance. Due to the rapidly increasing population
of construction workers and the lack of safety education for
workers, nonconforming behaviors related to helmet-
wearing have not been uncommon. Some of the workers
wear safety helmets only when a safety ofcer is present, and
some workers often inadvertently take of safety helmets
during work hours. Terefore, when an object falls from
a high position, it could infict irreparable injury to the
workers without a helmet. With the development of artifcial
intelligence (AI) technology, diferent helmet-wearing de-
tection systems have been deployed at construction sites and
have become an efective solution to the safety supervision
problem. A helmet-wearing detection system can be used to
detect workers entering the construction site efciently and
accurately without interruption. Once a worker without
a helmet appears in the monitoring area, the detection

Hindawi
Advances in Civil Engineering
Volume 2023, Article ID 1959962, 12 pages
https://doi.org/10.1155/2023/1959962

https://orcid.org/0009-0008-4660-2919
mailto:2012045@wtu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/1959962


system can immediately identify him/her and sends of an
alert. Upon receiving the alert, the safety ofcer at the site
can address the nonconforming behaviors regarding helmet
wearing timely, which can greatly reduce the casualties in
accidents of a falling object and is of great signifcance to the
green and safe development of the construction industry.

Recently, computer vision and deep learning technol-
ogies have advanced rapidly. Te detection algorithms can
be roughly divided into two types, namely, two-stage target
detection algorithms and one-stage target detection algo-
rithms. Te well-known two-stage target detection algo-
rithms include R-CNN [3], faster R-CNN [4], and mask
R-CNN [5]. Tese algorithms have high detection accuracy,
but their detection speed is relatively slow. Terefore, they
are not suitable to be deployed on embedded terminals and
perform real-time target detection tasks. On the contrary,
one-stage target detection algorithms can directly predict the
probability of the target category and the coordinates of the
target position using regression-based methods and obtain
the fnal result in one go. Tese algorithms have the ad-
vantage of high detection speed. Well-known one-stage
target detection algorithms include YOLO algorithms (the
latest version is YOLOv5) [6–8], single shot multibox de-
tector (SSD) algorithm [9], and RetinaNet [10].Te YOLOv5
algorithms can achieve higher detection accuracy than the
previous generations of YOLO algorithms while ensuring
high detection speed. Terefore, they are well qualifed for
real-time safety helmet-wearing detection in various in-
dustrial scenes.

In the feld of target detection, including safety helmet
wearing detection, many methods have been proposed for
improving the YOLO algorithms’ performances. Benjumea
et al. [11] improved the YOLOv5 model to address the
problem of low performance of the YOLO model in
detecting small targets. By modifying the model structure,
the authors obtained a series of models with diferent scales
(YOLO-Z series). Te YOLO-Z series algorithms had good
performance in small target detection, thus suiting well the
task of safety helmet wearing detection. However, the im-
provement in the mean average precision (mAP) was
achieved at the cost of inference speed. Kaushal [12] added
additional detection and convolution layers to the original
YOLO model to design the Rapid-YOLO algorithm and
introduced an improved loss function to increase the de-
tection accuracy of the proposed model. Jin et al. [13] im-
proved the YOLOv5 algorithm in terms of the efciency of
helmet-wearing detection and prevention of the error ac-
cumulation efect on the detection accuracy. Te authors
frst used the k-means++ algorithm to improve the size-
matching degree of the prior anchor box and then in-
troduced the depthwise coordinate attention mechanism in
the backbone network to enable the model to learn the
weight of each channel independently. Tese improvements
strengthened the information dissemination between fea-
tures, improving the model’s ability to distinguish the
foreground from the background. In this way, the average
detection accuracy of the improved model surpassed that of
the original YOLOv5 algorithm. Han et al. [14] proposed
a target detection algorithm based on the SSD to improve the

detection accuracy of the existing helmet wearing detection
methods. Tis algorithm used a spatial attention mechanism
for low-level features and a channel attention mechanism for
high-level features, which further refned the feature in-
formation of the target area. In addition, a feature pyramid
and a multi-scale sensing module are adopted to improve
algorithm robustness for targets of diferent scales, and
a method for achieving an adaptive adjustment of the scale
distribution between the layers of the anchor box based on
the feature map size was developed.

However, fewer studies have proposed improved
helmet-wearing detection models with a faster reasoning
speed. Amudhan and Sudheer [15] proposed a convolution
neural network model with low computational complexity,
which can extract low-level features from the shallow layer
and transfer them to the deep layer, thus improving small-
target detection accuracy and reasoning speed. When
deployed on Jetson Nano, this model can outperform the
YOLOv3-tiny, YOLOX, and some other models. Zhao et al.
[16] proposed an improved YOLO-S model, where model
complexity was reduced bymodifying the backbone network
and removing redundant channels, thus improving the
reasoning speed.

If the existing detection models are used in real-time
monitoring, it is typically necessary to transfer the moni-
toring video to a GPU that can provide the necessary
computing power for object detection. However, the
hardware cost of such a monitoring system is very high, and
a severe network delay might occur during video transfer.
Still, if object detection could be carried out directly at the
embedded terminal, the deployment cost would be signif-
cantly reduced. In addition, such a monitoring system could
be easily expanded, and the video transfer delay could be
avoided. Terefore, it is of great importance to study how to
deploy a helmet-wearing detection model on embedded
terminals. Namely, deployment of the existing models on
embedded terminals for helmet-wearing detection has been
limited by several problems. First, the existing detection
models are usually based on a large and complex detection
network with a large number of parameters and thus have
a slow reasoning speed. Terefore, it will be impossible to
realize real-time monitoring by deploying such detection
models on embedded platforms with low computing power.
As an excellent frst-stage model, the YOLOv5 model has
high detection accuracy, but its performance is limited when
deployed on platforms with low computing power. Even the
YOLOv5s model, which is currently the fastest model in the
YOLOv5 family, can achieve a speed of only 116ms/f (about
9 fps) on Jetson Nano. Moreover, the YOLOv5m model,
which has higher complexity than the YOLOv5s models, can
only operate at a speed of lower than 5 fps; the YOLOv5l
model is too complex to be deployed on platforms with low
computing power. Terefore, it is necessary to develop
a lightweight YOLOv5 model to meet the current de-
ployment requirements of platforms with low
computing power.

Most of the above-mentioned improvement measures
aim to improve model accuracy by increasing detection
network complexity, which afects the reasoning speed.
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Although recent research has developed much efort to
improve the reasoning speed, the proposed models still
cannot meet the requirements of real-time monitoring when
deployed on embedded terminals. Currently, there have
been fewer studies on lightweight YOLOv5 models, but this
topic should be further researched to deploy a detection
network on embedded terminals.

In order to solve the aforementioned problems, this
paper proposes a lightweight helmet wearing detection
model named YOLOv5-SN, which is suitable for embedded
terminal deployment on Jetson Nano.

Te main contributions of this study are as follows:

(1) Images from safety helmet wearing datasets
(SHWDs) are used, which is a standard dataset for
helmet-wearing target detection. Tese images are
resized to make their size uniform and are used to
train the YOLOv5 and YOLOv5-SN models to
achieve the performance levels of the YOLOv5 series
models on the experimental dataset and quantify the
improvement achieved by the proposed YOLOv5-
SN models.

(2) Te YOLOv5 series models are improved using the
ShufeNetV2 method, thus signifcantly reducing
the parameter number and model complexity. Te
experimental results show that the parameter
number and model size of the YOLOv5-SN models
are approximately one-tenth of those of the YOLO
models. Te improved models are tested on the
Jetson Nano embedded terminal, and the results
show that the YOLOv5-SN model can process
a single frame with a reasoning speed of 72ms/f,
which is faster than that of YOLOv5s.

(3) Optimization operations, including quantization
and layer fusion, are performed on the trained YOLO
models and YOLOv5-SN model to deploy them
efectively on Jetson Nano.Te optimized models are
tested on Jetson Nano embedded terminal. Te test
results show that after model optimization, the
reasoning speed of the YOLOv5-SN model is
84.7ms/f faster than that of the YOLOv5s model,
indicating that the YOLOv5-SN model can achieve
better performance than the YOLOv5s in processing
real monitoring images. Terefore, this model is
suitable to be deployed on embedded terminals for
real-time helmet-wearing detection.

2. Dataset and Preprocessing

Te dataset used in the experiment of this study was SHWD.
It contained a large amount of data for helmet-wearing
detection and head detection, namely, 7,581 images were
obtained from Google and Baidu. Te software tool
LabelImg was used to label objects in images. Te label
format was PASCAL VOC. Te images included 9,044
marked helmet-wearing targets and 111,515 marked normal
head targets. Te SHWD helmet dataset contained large-,
medium-, and small-sized helmet-wearing targets acquired
under diferent values of density (including multiple scales),

illumination, and occlusion; also, some targets were cap-
tured with blur background. Before model training, the
dataset was randomly divided into training, verifcation, and
test sets according to the ratio of 7 : 2 :1.

Te SHWD images were preprocessed before model
training; particularly, all images were resized to 640× 640 pixels.
Figure 1 shows several preprocessed images in the dataset.

3. Optimization and Deployment of Safety
Helmet Wearing Detection Model

3.1. Algorithm-Related Work

3.1.1. YOLOv5 Algorithm. Te construction sites are char-
acterized by a complex environment and a multitude of
diferent obstacles. In addition, during the night, the lighting
is poor, and shadows increase the difculty of visual de-
tection. As a result, performing helmet-wearing detection at
construction sites requires high detection accuracy. If
a hardware platform of a detection system is the Jetson Nano
embedded terminal, the reasoning speed of the detection
algorithm must satisfy certain requirements. Terefore, the
requirements for accuracy and speed should be considered
comprehensively in the feld of helmet-wearing detection.

Te one-stage target detection algorithms extract data
features directly from image data to predict types and positions
of targets, and bounding boxes can be predicted right after the
image data are input in a detection model. Terefore, these
algorithms have a relatively high processing speed and are
suitable for helmet-wearing detection tasks. As well-known
one-stage target detection algorithms, the YOLO series algo-
rithms have high performance in terms of reasoning speed and
accuracy. Compared to the early YOLO models, such as the
YOLOv3 and YOLOv4 models, the YOLOv5 model has much
higher detection speed and accuracy.Terefore, this study uses
the YOLOv5 model to develop the YOLOv5-SN detection
algorithm, which can achieve excellent performance when
deployed on Jetson Nano embedded terminal.

Te overall structure of the YOLOv5 model is presented
in Figure 2. Te YOLOv5 model consists of the input
module, backbone, neck module, and output module. Te
basic units of these modules include Focus, CBL, CSP, and
SPP. Te focus performs slicing operations; CBL includes
convolution, batch normalization, and Leaky ReLU acti-
vation functions, and CSP includes residual unit (Resunit)
and CBL component.

3.1.2. ShufeNetV2 Algorithm. Te ShufeNet [17] is an
efcient convolutional neural network model proposed by
Megvii Technology. Tis model aims to reduce the com-
putational complexity of deep networks so that they can be
deployed and operated on mobile devices.

Ma et al. [18] proposed the ShufeNetV2 for lightweight
networks adopting four criteria, which are as follows: equal
channel width minimizes the memory access cost (MAC),
excessive group convolution operations increase the MAC
value, network fragmentation reduces the parallelism de-
gree, and the element-wise operations are non-negligible.
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Te group convolution mentioned in the lightweight
network criterion adopts the sparse channel connection
mode, which reduces the parameter quantity and compu-
tational complexity compared to the conventional convo-
lution. Te group convolution process is shown in Figure 3.

In conventional convolution, channels are densely
connected, so the entire input data (i.e., all channels) un-
dergo the convolution operation together to generate
a feature map. Suppose the number of convolution kernels is
N, and the number of channels at the output is also N; then,
the following equation can be obtained:

P � K2
× C × N, (1)

where P is the parameter quantity, K is the convolution
kernel size, and C is the number of input feature channels.

In group convolution, C input feature channels are
divided into G groups, and the convolution kernels are
divided into G groups accordingly, so each convolution
kernel has C/G channels. Ten, group convolution is per-
formed, and the output data of G groups are merged to
obtain a feature map of N channels, which can be expressed
as follows:

P � K2
×
C
G

× N, (2)

where G is the number of groups.

Figure 1: Examples of safety helmet wearing images after data preprocessing.
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Figure 2: Te overall structure of the YOLOv5 model.
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Based on (1) and (2), the number of parameters and
computational complexity of group convolution are 1/G of
those of conventional convolution, indicating that the group
convolution operation can signifcantly reduce both the
parameter quantity and the computational complexity. In
addition, group convolution can address the overftting
problem to a certain extent. However, the feature extraction
capability of group convolution is comparatively lower than
that of conventional convolution due to a lack of in-
formation exchange between diferent groups.

To solve this problem, the channel shufe operation has
been introduced in the ShufeNet model. Te principle of
channel shufe operation is shown in Figure 4.

Te channel shufe operation shufes features extracted
in groups, mixing the information obtained from diferent
groups and realizing information exchange between dif-
ferent channels, thus ensuring sufcient information fusion
of all channels. Tis operation addresses the lack of in-
formation exchange in group convolution without in-
creasing computational complexity.

Te workfow of the ShufeNetV2 model is shown in
Figure 5. As shown in Figure 5, after the feature mapping
data are input into the ShufeNetV2 model, the channel
segmentation operation is performed on the input features.
Considering that too many branches can result in an overly
fragmented network structure, thus reducing the network
speed, the features are divided into two branches by the
channel split operation. Te left branch remains intact,
serving as a fag group, and the right branch is composed of
three convolutions with equal channel widths, which can
minimize the memory access cost. Unlike the ShufeNetV1
model, where excessive group convolution can increase the
memory access cost, the ShufeNetV2 model does not adopt
group convolution for these three convolutions; instead,
a simple 1× 1 convolution is used in the ShufeNetV2
model. After the convolution operation is completed, the
Concat operation is performed to concatenate the two

branches’ output data, which ensures that the number of
channels remains unchanged. Finally, the channel shufe
operation is performed before outputting the data to enable
information exchange between the two branches.

3.1.3. Improved YOLOv5-SN Algorithms. Te YOLOv5 al-
gorithm has certain defciencies, including a large number of
parameters, a long reasoning time, a bulky model, and
difcult deployment. In this study, the backbone of the
ShufeNetV2 model is used as a backbone in the improved
YOLOv5-SN algorithm to achieve the goal of a lightweight
network structure without afecting the feature extraction
capability signifcantly. Tis design reduces the model size
while ensuring a certain level of accuracy, thus meeting the
lightweight network criterion of the ShufeNet model.

Te structure of the YOLOv5-SN model is shown in Fig-
ure 6, where it can be seen that it is mainly composed of four
parts: input module, backbone, neck module, and prediction
module.Te inputmodule is responsible for inputting the image
data of helmet-wearing targets into the model; the backbone
extracts the helmet-wearing features; the neck module realizes
the fusion of helmet-wearing features; the prediction module is
responsible for predicting helmet-wearing targets.

Tis study constructs three versions of the YOLOv5
model, as well as their corresponding YOLOv5-SN models,
which are used for comparison. Te performance im-
provements achieved by the improved YOLOv5-SN algo-
rithms compared to the original YOLO models are analyzed
regarding the reasoning speed, number of parameters, and
model size.
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3.2. Model Optimization and Deployment

3.2.1. Model Optimization. Although deploying the im-
proved YOLOv5-SN models directly on the embedded
terminals can provide better performance compared to the
original YOLOmodels, the reasoning speed of the YOLOv5-
SN models still does meet the requirements of real-time
processing. To solve this problem, this study reduces net-
work complexity by performing optimization operations,
thus improving the reasoning speed after the deployment.
Te model optimization operations mainly include model
quantization and layer fusion.

Te model quantization refers to the process of trans-
forming the weights, activation values, and other parameters
of a trained deep neural network model from high accuracy

to low accuracy. For instance, from 32-bit foat type to 8-bit
int type. Te expected accuracy of the model after the
quantization operation is close to that before the quanti-
zation operation.

Performing quantization operation on a model can re-
duce the occupation of memory and storage spaces as well as
shortens the time required to access the memory, which
optimizes the calculation time signifcantly. Moreover, the
model quantization reduces the power consumption in
reasoning; for instance, the energy consumption of an 8-bit
int model is quite diferent from that of a 32-bit foat model.
From the viewpoint of a processor, many processors exhibit
higher efciency in processing integer data than foat data. In
summary, the model quantization operation can efectively
improve the reasoning speed of a model, meeting the real-
time detection requirement and thus creating suitable
conditions for deploying the model on Jetson Nano em-
bedded terminals.

Te purpose of layer fusion is to fuse network layers.
Aiming to improve the detection accuracy of deep learning
networks, recent studies have tended to design highly
complex network models consisting of a large number of
layers, including both convolution layers and fully-
connected layers. However, during reasoning, the forward
propagation needs to pass through every layer; so in
a complex network, a large number of convolution and fully
connected layers need to perform CUDA core calls and
tensor reading or writing, which signifcantly slows down the
reasoning process. Te layer fusion operation aims to
eliminate some of the unused layers to avoid unnecessary
calculations and merge multiple layers into a single layer,
thereby improving reasoning efciency. Te layer fusion
process used in model optimization is shown in Figure 7,
where it can be seen that the original convolution, ofset, and
ReLU layers are fused into a new layer named the CBR layer.
Te layer fusion operation can speed up the forward
propagation on GPU, thus improving reasoning efciency.

However, the aforementioned optimization operations
modify only the reasoning process of trained models but not
the model structure, so the accuracy achieved during the
training process is not afected by the optimization
operation.

3.2.2. Model Deployment. In this study, a deep learning
server was used to train the YOLO series models and their
corresponding improved YOLOv5-SN models, and the
processes of model optimization, deployment, and testing
were performed on Jetson Nano embedded terminal.

First, the model was trained on the deep learning server,
obtaining the model of the pt format. Te pt format is
a model format that is obtained after the model is trained
using the Pytorch deep learning-based framework written in
Python. Ten, the trained model was transferred to the
Jetson Nano development board for the frst round of de-
ployment. Te speed and accuracy of the model were tested
and recorded. Furthermore, the model was optimized on the
Jetson Nano development board, and through layer fusion
and model quantifcation operation, the format of the model
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Figure 5: Te workfow of the ShufeNetV2 model.
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was converted from the pt format (Pytorch framework) to
the TensorRT format (engine). Finally, the converted model
was again deployed on the Jetson Nano development board,
and the speed and accuracy of the model were tested and
recorded.Te operation of the model deployed on the Jetson
Nano development board is presented in Figure 8.

3.3. Model Evaluation Metrics. In this study, the metrics for
model performance evaluation included single frame image
reasoning time, precision, recall, parameter quantity, and
model size. Te precision was used to measure the accuracy
of themodel detection, and its calculation formula is given in
(3). Te recall rate was used to evaluate the comprehen-
siveness of the model detection, and it is expressed by (4),
where TP represents the real case, FN is the pseudonegative
case, and FP denotes the pseudopositive case.

P �
TP

TP + FP
, (3)

R �
TP

TP + FN
. (4)

4. Experimental Results Analysis

4.1. Training and Embedded Platform. Te TeslaA100, 40GB
memory, Ubuntu 20.04 LTS 64-bit operating system, Py-
thon, and Pytorch deep learning-based framework were used
for model training.

Te model reasoning and model optimization were
performed on the JetsonNano development board.TeGPU
had the NVIDIAMAXWELL architecture and was equipped
with 128 NVIDIA CUDA cores. Te CPU was a four-core
ARM CORTEX-A57 MPCORE, and the memory was 4GB
64-bit LPDDR4. Te running environment on the Jetson
Nano included the Ubuntu18.04 operating system and
Python3.6.

4.2. Training Parameters Setting. Te model training fol-
lowed the principle of the consistent settings of model
parameters. Te training cycle included 300 epochs, and the
batch size was set to 64. Te model was saved after each
epoch, and the best model at the end of the training process
was selected as the fnal model.

4.3. Training Model Results Analysis. Te variations in the
box loss and object loss values of the YOLOv5s, YOLOv5l,
and YOLOv5m models and their improved YOLOv5-SN
versions with the number of training epochs are presented in
Figures 9 and 10. Although complete ftting of the loss value
curves was not achieved within 300 epochs, the declining
speeds of the loss values clearly indicated the tendency of the
complete ftting.

Te variations in precision and recall of the models with
the number of epochs are presented in Figures 11 and 12,
respectively. Usually, with an increase in the number of
epochs, the model accuracy increases, and the loss value
decreases. However, in this study, after 150 epochs, the
values of precision and recall tended to be stable, indicating
that further training could not improve the model
performance.

Based on the comprehensive examination of variations
in the models’ accuracy, mAP, and recall rate values, the
optimal weights of each model were selected from the
results of 300 epochs as the fnal model training result and
used for subsequent performance assessment. Te test
results are shown in Table 1. Compared with the original
YOLOv5 models, the improved YOLOv5-SN models were
much better in terms of the number of parameters and
model size. It should be noted that parameter quantity
refers to the total number of model parameters, and in
a convolution neural network, the parameter quantity is
mainly defned by weights in each convolution layer. Te
parameter quantity can afect the memory occupation, the
speed of model initialization, and model size, which can

Input
CSP1_

3
CBL Up-

sampling

Co
nc

at CSP2_
1 CBL Up-

sampling

Co
nc

at
Co

nc
at

Co
nc

at

CBL

CSP2_
1

CSP2_
1

CSP2_
1

CONV

CONV

CONV

Output

Output

Output

CBL

BackBone Neck Prediction

CONV

Shuffle_Block

Shuffle_Block

Shuffle_Block

Shuffle_Block

Shuffle_Block

Shuffle_Block

Figure 6: Te overall structure of the YOLOv5-SN model.

Advances in Civil Engineering 7



further afect model performance in reasoning. For the
YOLOv5s model, the parameter quantity of the original
YOLOv5s model was 7.01M, while the parameter quantity
of the YOLOv5s-SN (improved version) was 0.84M,
which was only about 12% of that of the YOLOv5s model.

Te reduction in parameter quantity led to the reduction
in the model size. Te size of the YOLOv5s-SN model was
2.0MB, which was only 13.8% of that of the YOLOv5s
model of 14.4MB. Similar improvements were achieved
for the other improved YOLOv5 models. Te sharp
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decrease in parameter quantity led to a decrease in net-
work complexity and the reduction of the convolution
network weight number, which reduced the computa-
tional complexity and made model deployment on plat-
forms with low computing power easier. Te precision
decreased by roughly 3% on average, and the recall was
reduced by 7%–8% on average. Tus, the lightweight
design of the improved YOLOv5-SN algorithms met the
real-time requirement.

4.4. Visualization of Test Results. After the optimal model
obtained by lightweight improvement and model optimi-
zation was deployed on Jetson Nano, it was used to perform
helmet-wearing detection under diferent conditions. Te
prediction result is presented in Figure 13, where tag “hat”
indicates that a helmet was correctly worn, and tag “person”
indicates that the person did not wear a helmet. Te con-
fdence score of the classifcation was attached to the tail end
of each classifcation result. In Figure 13, it can be seen that
the proposed detection system could accurately detect
workers in the video image, as well as the helmet-wearing
status of each worker.

Te actual detection performance of the YOLOv5s-SN
model for diferent targets in diferent scenes is presented in
Figure 14, where it can be seen that the YOLOv5s-SN model
achieved good detection performance under the conditions
of poor detection angle, target occlusion, dense small targets,
and low illumination.

Figure 8: Te deployment on Jetson Nano.
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Figure 9: Te results of the bounding box.
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Figure 10: Te results of the bounding object loss.
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Figure 11: Precision results of the models.
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Figure 12: Recall results of the models.
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4.5. Test Results and Analysis after Model Deployment.
Based on the previous analysis, it can be concluded that
improving a detection model by performing network
lightweight and model optimization could signifcantly
accelerate the reasoning speed of the model. To prove
the efectiveness of network lightweight and model
optimization, an ablation experiment was conducted.

First, the YOLOv5 series models were improved by
performing network lightweight, and the YOLOv5-SN
series models were developed and deployed on Jetson
Nano for testing. Te test results are shown in Table 2.
For the YOLOv5s model, the reasoning speed of the
original YOLOv5s model was 116.9 ms/f, and the rea-
soning speed of the improved YOLOv5s-SN model was

Table 1: Te results of model performance.

Models Precision Recall rate Parameter (million) Model size (MB)
YOLOv5s 90.5 88.7 7.01 14.4
YOLOv5s-SN 87.7 79.2 0.84 2.0
YOLOv5m 91.5 89.4 20.85 42.2
YOLOv5m-SN 88.8 82.6 2.02 4.4
YOLOv5l 90.5 90.7 46.11 92.8
YOLOv5l-SN 89.3 84.3 3.79 8.0

Figure 13: Detection results obtained on images of a real construction site.

(a) (b) (c)

(d) (e) (f )

Figure 14: Te detection results of the YOLOv5-SN model in diferent scenes. (a) Poor detection angle. (b) Dense small targets. (c) Target
occlusion. (d) Back-showing dense small targets. (e) Single target. (f ) Low-light targets.
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44.9 ms/f, which was an improvement of 72 ms/f. Im-
provements of a similar extent were also achieved for the
other YOLOv5 models. Te results in Table 2 demon-
strate that the network lightweight improvement
method was efective.

Next, the YOLOv5 models were improved using the
model optimization method; namely, the models with the
pt format were optimized into the engine-format models
and deployed on Jetson Nano for testing. Te test results
are shown in Table 3. For the YOLOv5s model, the rea-
soning speed of the original YOLOv5s model was
116.9ms/f, and the reasoning speed of the improved
YOLOv5 engine model increased to 67.3 ms/f, which
represented an improvement of 49.6ms/f. It is worth
noting that the improvement achieved by the model
optimization method had little efect on the detection
accuracy and recall rate of the model.

Finally, the YOLOv5 models were improved using both
the network lightweight improvement method and the
model optimization method. Te improved models were
deployed on Jetson Nano for testing, and the obtained test
results are shown in Table 4. As shown in Table 4, the
improved YOLOv5s-SN model with the engine format
achieved a high reasoning speed of 32.2ms/f, surpassing the
reasoning speed of the YOLOv5s model of 116.9ms/f by
84.7ms/f. Te results in Table 4 demonstrate that combining
the two improvement methods could provide better model
performance than when the two methods were used
separately.

5. Conclusions

Tis study introduces an improved safety helmet-wearing
detection model named YOLOv5-SN, aiming to address
the shortcomings of the existing YOLOv5 models, in-
cluding a large number of model parameters, slow rea-
soning speed, and redundant network structure. Te
network lightweight method proposed along with the
ShufeNetV2 model is adopted to reduce the parameter
quantity and model size. Considering that the reasoning
speed of a model slows down after the model is deployed
on a Jetson Nano terminal because of unused layers,
compilation, and increased calculation time, the quanti-
zation and layer fusion operations are performed on the
trained model to fuse the redundant layers and quantify
the model precision. Te results show that when the
models improved by the two optimization methods are
deployed on the Jetson Nano terminal, the helmet de-
tection speed is signifcantly accelerated. In the model
improvement process, the reduction of convolution layer
number, parameter quantity, and network complexity
causes the detection accuracy to decline to a certain ex-
tent. Finally, the models improved using the proposed
method can meet the real-time detection requirements. In
this study, the real-time helmet-wearing detection at
construction sites is realized by deploying the target
detection model on an embedded terminal, which con-
tributes to the intelligent level improvement of
construction sites.

Table 2: Detection performance of the models improved by the network lightweight improvement method.

Models Model format Processing speed (ms/f) Precision (%) Recall rate (%)
YOLOv5s pt 116.9 90.5 88.7
YOLOv5s-SN pt 44.9 87.7 79.2
YOLOv5m pt 277.1 91.5 89.4
YOLOv5m-SN pt 64.6 88.8 82.6
YOLOv5l pt 500.9 90.5 90.7
YOLOv5l-SN pt 93.1 89.3 84.3

Table 3: Detection performance of the models improved by the model optimization method.

Models Model format Processing speed (ms/f) Precision (%) Recall rate (%)
YOLOv5s pt 116.9 90.5 88.7
YOLOv5s (after optimization) Engine 67.3 90.4 88.8
YOLOv5m pt 277.1 91.5 89.4
YOLOv5m (after optimization) Engine 171.2 90.4 90.4
YOLOv5l pt 500.9 90.5 90.7
YOLOv5l (after optimization) Engine 318.5 90.6 90.6

Table 4: Detection performance of the models that have been improved using both the two improvement methods.

Models Model format Processing speed (ms/f) Precision (%) Recall rate (%)
YOLOv5s-SN pt 44.9 87.7 79.2
YOLOv5s-SN (after optimization) Engine 32.2 88.8 78.0
YOLOv5m-SN pt 64.6 88.8 82.6
YOLOv5m-SN (after optimization) Engine 56.5 88.0 83.2
YOLOv5l-SN pt 93.1 89.3 84.3
YOLOv5l-SN (after optimization) Engine 83.9 88.6 84.7
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One of the future research directions could be to im-
prove model detection accuracy by using a knowledge
distillation method. In addition, more attention could be
paid to target features by introducing an attention mecha-
nism to minimize false-positive and false-negative errors.
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