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In this work, field-scale experiments were carried out on two energy piles to investigate the mechanical behavior of the piles when
subjected to thermomechanical loads under a liquefied natural gas tank. The results showed that the super-long and large-diameter
energy pile exhibited a better heat transfer performance. After pile heating or cooling, the temperature in the mid-depth of the pile
increased or decreased rapidly, and at the two ends, the temperature varied relatively slowly. Regarding the observed axial strain,
energy pile 1 exhibited predominately compressive deformation during the coupled heating–loading process, while a certain tensile
deformation was found near the pile toe of energy pile 2 during the coupled cooling–loading process. Moreover, for both energy
piles, positive shaft resistances appeared predominately under both the pure mechanical and coupled thermomechanical condi-
tions, and occasional and local occurrences of negative resistances could be related to the ground conditions on site. The settlement
and bearing capacity values of the two energy piles were not significantly affected by the coupled thermomechanical loads, and
thus, the serviceability of the gas tank would not diminish.

1. Introduction

Piles as a kind of deep foundations are slender columnsmade of
materials like steel or concrete, and used to support the super-
structure and transfer the loads at desired depth by either skin
friction or end bearing. Over the years, various types of piles
have been designed in consideration of their characteristics and
general uses, such as steel piles, concrete piles, cement fly-ash
gravel (CFG) piles, stiffened deep cementmixing (SDCM) piles.
These piles are predominately loaded axially and/or trans-
versely under different geological conditions (e.g., earthquake)
and artificial influences (e.g., explosion). The evaluation of
workability, serviceability, and stability of the pile is therefore
of vital importance in civil engineering [1–4].

Compared to the use of a traditional ground source heat
pump (GSHP), the use of shallow geothermal energy can also

be realized by an energy pile, because concrete has a better
thermal conductivity than soil [5]. Energy piles can not only
be used for supporting superstructures but also for cooling
and heating buildings. However, whether thermal loads asso-
ciated with structural loads changing the initial interaction
between the pile and soil, and further on affecting the safety
of the pile are unknown. For this reason, in the last two
decades, studies on the mechanical behaviors of energy piles
subjected to separate and coupled thermomechanical loads
under different ground conditions (e.g., sand, silt, and clay)
have been performed by many scholars through in situ full-
scale experiments [6–21], small-scale model tests [22–30],
and numerical analyses [31–36].

Regarding the field-scale experiments, Laloui et al. [6]
found that the strain of an energy pile after one loading
and heating cycle was thermoelastic. The intensity was
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mainly dependent on the types of the surrounding soils.
Sutman et al. [11] reported that the pile expansion was
restrained by the surrounding soils on the sides and at the
pile toe. These restricted strains generated by the tempera-
ture increased during heating, resulting in compressive axial
stresses along the pile. Amatya et al. [8] discussed the
changes of the axial stresses and mobilized shaft resistances
of energy piles in response to heating and cooling, and they
pointed out that the change of the pile–soil interaction could
be attributed to the ground conditions, end restraints, and
thermal load. Gui and Cheng (2014) [14] emphasized that
additional thermal stresses (compressive and tensile stresses)
during the heating and cooling processes associated with
mechanical stresses could exceed the ultimate bearing capac-
ity of the pile, which needs to be considered more carefully
for the structural design of energy piles. You et al. [15]
pointed out that, in the cooling case, a thermally induced
tensile axial stress superimposed with the initial mechanical
compressive stress became the total compressive or tensile
stress. The tensile stress could be generally induced at the
lower part of the pile. The results of Murphy et al. [10]
showed that, for a temperature increase of 18°C, the maxi-
mum thermal axial stress ranged from 4.0 to 5.1MPa, and
the maximum upward displacement (heave) was in the range
of 1.4–1.7mm. Wang et al. [13] found that the bearing
capacity of the pile increased after the pile was heated, and
then, it returned to the initial capacity after the pile naturally
recovered to the initial temperature. The authors drew the
following conclusion: There was no loss in the pile shaft
capacity after the heating and cooling cycles, which con-
firmed the previous conclusions that the pile exhibited a
thermoelastic behavior. Faizal et al. [18] studied both the
axial and radial thermal responses of energy piles to mono-
tonic and cyclic temperature changes. The authors found
that under a constant structural load, cyclic thermal loads
caused a reversible thermal response at the pile–soil inter-
face. Previous studies indicated that an energy pile expands
or contracts when it is heated or cooled. This changes the
initial interaction between the pile and soil (e.g., strain, stress,
and shaft resistance) and may result in additional settlement
and deterioration of the bearing capacity of the pile.

In this work, based on a pilot project, field-scale experi-
ments were carried out to study the mechanical behaviors of

two energy piles that underwent separate and coupled ther-
momechanical loads under a liquefied natural gas (LNG)
tank. As shown in Figure 1, since the energy pile system is
being applied for the first time in the petroleum and chemical
industry, the structural design of the energy piles has priority.
The aim of this work is to ensure that when the temperature
changes within a certain range, the geotechnical analysis of
the pile indicates that the additional settlement and the bear-
ing capacity do not exceed the allowable values so that the
serviceability of the tank will not diminish.Moreover, the heat
transfer performances of energy piles were also evaluated and
then compared with those of previous studies. The results of
this work can provide basic knowledge and serve as a prelimi-
nary reference for the practical application of super-long and
large-diameter energy piles under an LNG tank.

2. Materials and Methods

The pilot project was located at the shoreside of the Yangtze
River in the city of Wuhu, in the Anhui province of China, as
shown in Figure 2. According to the geological survey con-
ducted on the site, the soil strata included the Holocene
marine sediments, the Upper Pleistocene lacustrine and
marine sediments, and the Upper Pleistocene marine and
continental alternated Quaternary sediments. The ground
was composed mainly of three sedimentary types of soils:
clay, sand, and sandstone. The detailed distribution of the
soil is shown in Figure 3. Moreover, two types of groundwater
were identified in this site. The perched groundwater was
distributed in the fill material layer, and the confined ground-
water was distributed in the silty to gravelly sand layers. The
confined groundwater was well connected with the Yangtze
River, which means that the confined groundwater varied
with the water table of the Yangtze River, and its value was
measured at about 3.2–4.4m below the ground surface during
the surveying.

The designed cast-in-place concrete pile was 53m in
length and 1.2m in diameter. The main part of the pile
was placed in the sand layer (i.e., silty to gravelly sand),
and the pile toe was inserted into the moderately weathered
sandstone. The reinforcing cage had a diameter of 1m and
extended the full length of the pile. The designed 3U-shaped
polyethylene (PE) tube with a total length of about 250m was
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FIGURE 1: Application of energy pile system in petroleum and chemical industry.
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attached to the inside of the reinforcing cage. The inner and
outer diameters of the tube were 26 and 32mm, respectively.
According to the soil strata on site and the pile length, eleven
vibrating wire strain gauges (VWSGs) were installed in the
pile to measure the axial strain and temperature at various
depths. The detailed positions of the VWSGs are shown in
Figure 3.

Static load tests were carried out according to the China
Industry Standard JGJ 106-2014 [37]. Since the designed
maximum load was set to 11,000 kN, nine levels of working
loads were applied stepwise to press the pile. The corre-
sponding displacements of the pile were measured using
two linear variable differential transformers (LVDTs), which
were positioned on the pile top.

Due to special application of the LNG tank, two individ-
ual experiments were designed in order to better reflect the
realistic working behaviors of the energy piles under the
LNG tank. First, static loads without any thermal loads
were imposed on the two energy piles (EPs) separately to
simulate the loading process of the pile caused by the storage
(filling and emptying) of LNG. After that, the two EPs were
heated and cooled, and they simultaneously experienced
mechanical loads to examine the response of the pile to
coupled thermomechanical loads. The detailed experimental
design is shown in Figure 4. EP1 was used as a heating pile,
and EP2 was used as the cooling pile. During the test, the
measured data were the inlet and outlet fluid (normal water)
temperatures, the fluid flow rate and the heating or cooling
power in the thermal response test (TRT) unit, the axial
strain and temperature at different depths of the pile, and

the working load and the corresponding displacement (heave
or settlement) at the pile top. Figure 5 shows the construction
of the EP on site.

3. Results

3.1. Heat Transfer Performance. Figures 6(a) and 6(b) show
the inlet and outlet water temperatures recorded by the TRT
unit, as well as the temperature difference calculated by sub-
tracting the outlet water temperature from the inlet temperature
for heating EP1 and cooling EP2, respectively. When EP1 was
heated, the temperature began to rise immediately and contin-
uously, and at the end of heating process, the inlet and outlet
water temperatures were measured at 37.9 and 33.4°C, respec-
tively. Similarly, when EP2 was cooled, the temperature began
to decline with time, and at the end of the cooling process, the
inlet and outlet water temperatures were measured at 7 and
9.3°C, respectively. Laloui et al. [6] reported that a temperature
difference of about 2°C between the fluid inflow and outflow
from the primary circuit is sufficient for the economical opera-
tion of an energy system. In this work, temperature differences
of about +4.5°C for EP1 and −2.3°C for EP2, respectively, were
obtained between the inflow and outflow water.

Based on the temperature data, the heat flux was calcu-
lated using the following equation:

Q ¼ ρFluidCFluidV tin − toutð Þ; ð1Þ

where Q (in watts) denotes the heat flux, ρFluid (in kilograms
per cubic meter) is the mass density of the fluid, which is

FIGURE 2: Location of pilot project location and construction of energy piles.
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1,000 kg/m3 for normal water, CFluid (in joules per kilogram
degree celcius) is the specific heat capacity of the fluid, which
is 4.2× 103 J/kg°C for normal water, V (in cubic meters per
hour) is the fluid flow rate, which was fixed at 1.8m3/hr in
this work, and tin and tout (in degree celcius) are the inlet and
outlet water temperatures, respectively. The corresponding
heat flux was calculated as follows:

q ¼ Q
L
; ð2Þ

where q (in watts per meter) denotes the heat transfer rate,
and L is the effective pile length.

When the outlet water temperature was set at 38°C for
heating EP1 and the temperature difference between the inlet
and outlet water in the quasi-stable state was found to be
about 4.5°C, the heat flux of the pile was calculated to be 9.5 kW,
and the corresponding heat transfer rate was 178.3W/m. The

outlet water temperature was set to 7°C for cooling EP2. At
the end of the cooling process, when the temperature differ-
ence was stabilized at about 2.3°C, the heat flux and heat
transfer rate of the pile were determined to be 4.8 kW and
91.1W/m, respectively.

3.2. Temperature Distribution. Figure 7(a) shows the tem-
peratures distributed along EP1 after pile heating. At the
initial state, the ground temperature decreased with depth:
The highest temperatures (26.4, 25.9, and 27.1°C) were mea-
sured at the upper parts of the pile (−1, −3, and −4m), the
temperatures (22.8−23.5°C) in the middle parts of the pile
(−8 to −23m) were less than those in the upper parts, and
the lowest temperatures (20.4−21.0°C) were observed at the
lower parts of the pile (−43 to −51m). After switching on the
heat pump, the temperatures of the pile shaft begin to rise,
and at the end of the heating process, the temperatures mea-
sured at −1, −3, and −4m were 27.6, 27.4, and 28.7°C,
respectively, which showed that the changes were small
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FIGURE 4: Experimental design. (a) Energy pile 1 (heating pile). (b) Energy pile 2 (cooling pile).

FIGURE 5: Construction of energy pile on site: (a) borehole drilling; (b) reinforcing cage with 3U-shaped tube; (c) sensor instrumentation; (d)
burying of reinforcing cage; (e) pile after cast-in-place concrete ready for test; (f ) stacking of concrete blocks for static load test; (g) applied
apparatus for thermal response test; (h) data measurement of strains and temperatures.
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compared to the initial state. It was reasonable to assume that
the temperatures in the upper parts of the pile were affected
by the atmospheric temperature. The temperature in the
middle parts of the pile (i.e., −23m) increased from 22.8 to
26.3°C, and the corresponding temperature difference was
about 3.5°C. The largest temperature difference of about
6.0°C was found at the pile toe (i.e., −51m). This may
have been because the sensors were placed relatively close
to the hot water tube at this position. Fang et al. [21] empha-
sized that the temperature was sensitive to the distance of the
sensor from the heat exchanger: The closer the sensor was to
the heat exchanger, the higher the measured temperature
was. Figure 7(b) shows the temperature distribution along
EP2 after pile cooling. Similar to EP1, the initial ground
temperatures decreased gradually with depth. The highest

temperature was also found near the pile top (e.g., 25.7°C
at −4m) due to the ambient temperature. During the cooling
process, the temperature of the pile began to decline. The
temperatures in the middle parts of the pile decreased rap-
idly, while at the two ends, they decreased slowly. In sum-
mary, at the stages of pile heating and cooling, the
temperature changes for the two EPs were similar: The tem-
perature in the mid-depth of the pile increased or decreased
rapidly, and at the two ends of the pile, the temperatures
changed slowly.

3.3. Observed Axial Strain. The observed axial strain (εObs)
measured by the VWSGs needed to be corrected for the
temperature effects due to pile heating or cooling. The for-
mula is as follows:
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FIGURE 6: Evolution of inlet and outlet water temperatures with time. (a) Energy pile 1 (heating pile). (b) Energy pile 2 (cooling pile).
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FIGURE 7: Temperature variations with depth. (a) Energy pile 1 (heating pile). (b) Energy pile 2 (cooling pile).
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εObs ¼ f 2i − f 20ð ÞGBþ Ti − T0ð Þαs; ð3Þ

where fi is the resonant frequency of the strain gauges at time
i, f0 is the reference resonant frequency of the strain gauges,
GB is the calibration factor of the strain gauges, where G is
the gauge factor and B is the batch factor, Ti is the tempera-
ture of the strain gauges at time i, T0 is the reference temper-
ature of the strain gauges, and αs is the coefficient of linear
thermal expansion of the steel wire in the strain gauges
(12.2 με/°C). Note that the value of f0 was selected at the
beginning of each experiment to remove the effects of any
strains due to self-weight of the pile and curing of the con-
crete. The use of this equation assumes that the temperature
of the steel wire was the same as that of surrounding rein-
forced concrete, which should be valid for seasonal tempera-
ture fluctuations, but it may not be valid for more rapid
temperature fluctuations of several days due to the insulating
effect of the air surrounding the steel wire within the VWSG
casing [9].

The measurement data recorded by the sensors placed at
the depth of −4m are considered as sample data. The violet
line in Figure 8(a) indicates the evolution of the temperature
for EP1 during the pure mechanical and coupled thermome-
chanical processes. It is clear that the temperature at the pure
mechanical stage was kept almost unchanged at 27.1°C.
After pile heating, the temperature increased continuously,
and at the end of the heating process, the temperature
reached 28.7°C. Moreover, the red line in Figure 8(a) indi-
cates the evolution of the εObs at −4m for EP1. The results
showed that the observed strains measured at each load level
during the coupled heating and loading process were higher
than those during the pure mechanical loading process,
which means that the pile expanded when it was heated.
The violet line in Figure 8(b) shows that the initial tempera-
ture within EP2 had a more or less constant value of 25.7°C
in the pure mechanical stage, and this value was reduced to
23.3°C at the end of the cooling process. The red line in
Figure 8(b) shows that the observed strains at the end of
the first and second loading processes were more or less

equal to each other for EP2, which means that the cooling
effect could play a certain role.

Figure 9 shows the εObs along EP1 and EP2 before and
after pile heating and cooling at the load levels of 2,200,
5,500, and 11,000 kN. In the pure mechanical stage, two
conclusions can be obtained based on the dashed lines in
Figure 9: (1) At the same load level (e.g., 2,200, 5,500, or
11,000 kN), the observed strain decreased with depth, and
its value was almost zero at the pile toe, and (2) at the same
depth, as the working load increased (e.g., from 2,200 to
5,500 and then to 11,000 kN), the mechanically induced
strain increased. These behaviors reflect the working behav-
ior of a friction pile. Figure 9(a) compares the observed
strains before and after heating EP1. The results showed
that, at the same load level, the observed strain increased
slowly with increasing temperature, which reflected the char-
acteristics of pile expansion due to heating. The solid lines in
Figure 9(b) show the change of the observed strains with
depth for EP2 after pile cooling. The observed strain was
mainly governed by the mechanical load. When the working
load was relatively low (e.g., 2,200 and 5,500 kN), the tem-
perature change at each load level was relatively small. How-
ever, at the end of the coupled cooling and loading process
(e.g., 11,000 kN), the observed strain along the pile was lower
than that in the initial state, which indicated that the pile
contracted when it was cooled. It is worth noting that the
temperature decrease, during cooling, caused the contraction
of the upper and lower parts of the pile relative to the neutral
point when the two ends of the pile were free. In this work,
the upper parts of EP2 represented compressive deformation
due to loading on the pile top, while a certain tensile defor-
mation was found near the pile toe, which might have been
due to the existence of collapsed sediments (e.g., sand) at the
bottom of the pile, indicating a relatively free end restraint.

3.4. Mobilized Shaft Resistance. It is well known that when a
pile is loaded axially, the axial strain has the highest value at
the pile top, and this value decreases with depth as the shaft
resistance is mobilized at the pile–soil interface. The axial
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FIGURE 8: Evolution of temperatures and observed strains with time at a depth of −4m. (a) Energy pile 1 (heating pile). (b) Energy pile 2
(cooling pile).
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strain will decrease to zero if the shaft resistance is sufficient
against the upper load; if not, it will decrease to a nonzero
value, and the end bearing resistance will then be mobilized
at the pile toe. The mobilized shaft resistance is calculated as
follows:

fmob;i ¼
PT;i−1 − PT;i
� �

Ai
; ð4Þ

where fmob,i is the mobilized shaft resistance, PT,i−1 and PT,i
are the mechanical loads imposed on sections i−1 and i,
respectively, and Ai is the lateral area i of the pile.

Figure 10 shows the shaft resistance mobilized along EP1
during the pure mechanical and coupled thermomechanical
processes. As shown in Figure 10(a), when EP1 was not

heated, the shaft resistance exhibited an irregular distribu-
tion with depth at the same load level (e.g., 2,200, 5,500, or
11,000 kN). When the applied load was increased (e.g., from
2,200 to 5,500 and then to 11,000 kN), it is reasonable to
assume that the positive resistance was predominately mobi-
lized and increased with increasing load. During the coupled
heating and loading process, the mobilized shaft resistance in
Figure 10(b) also showed an irregular distribution with
depth, and the shaft resistance showed an increasing trend
with increasing load. The upper load had a positive effect on
the reduction of the negative shaft resistance due to pile
heating. It is noteworthy that a high negative shaft resistance
was identified at the pile toe, which may have been due to the
existence of collapsed sediments (e.g., sand) at the bottom of
the pile. This confirmed the results of Lu et al. [17], who
found that negative shaft resistances occur at different parts
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FIGURE 10: Distributions of mobilized shaft resistances along energy pile 1. (a) Before heating. (b) After heating.

–60

–50

–40

–30

–20

–10

0
0 200 400 600 800 1,000

D
ep

th
 (m

)

Observed strain (με)

2,200 kN
Heating at 2,200 kN
5,500 kN

Heating at 5,500 kN
11,000 kN
Heating at 11,000 kN

ðaÞ

2,200 kN
Cooling at 2,200 kN
5,500 kN

Cooling at 5,500 kN
11,000 kN
Cooling at 11,000 kN

–60

–50

–40

–30

–20

–10

0
–200 0 200 400 600 800

D
ep

th
 (m

)

Observed strain (με)

ðbÞ
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of the pile shaft after heating, and these values decrease when
the applied loads are increased.

Figure 11 compares the mobilized shaft resistances at
various depths before and after cooling EP2. During the
pure mechanical process, positive mobilized shaft resistances
occurred predominately and became greater with increasing
load. The occurrence of negative resistances can be attributed
to the properties of the surrounding soil. During the coupled
cooling and loading processes, the shaft resistances also
showed an increasing trend with increasing load, and nega-
tive resistances occurred occasionally and locally. The high
shaft resistances may have been due to an issue in the
responses of the VWSGs to the temperature changes. It is
worth noting that groundwater seepage could also change
the interactions between the pile and soil, which might be
good for the structural response of the pile.

3.5. Pile Settlement and Bearing Capacity. Figure 12 shows
the applied working load and the induced pile displacement
plotted against to the corresponding time for EP1 and EP2,
respectively. A negative displacement corresponded to pile

settlement. It is reasonable to conclude that the settlement
values of the two EPs increased with increasing load and
decreased with decreasing load. For EP1 at the pure mechan-
ical stage, the cumulative settlement reached 54.9mm at the
end of loading process and then recovered to 33.2mm at the
end of the unloading process. This relatively high settlement
could be attributed to the consolidation of collapsed sedi-
ments (e.g., sand) at the bottom of the pile. During the cou-
pled heating and loading process, when the maximum load
of 11,000 kN was reached again, the accumulated settlement
was measured at 15.9mm, which was about 29.0% of the
initial state, and after the pile was totally unloaded again,
the accumulated settlement was reduced to 10.2mm, which
was 30.7% of the initial state. These behaviors reflected the
fact that heating could reduce the pile settlement. The cumu-
lative settlement at the pile top of EP2 was measured to be
12.9mm at the end of the first loading process and 2.48mm
at the end of the unloading process. During the cooling
process, the accumulated settlement values were then found
to be 10.3 and 4.4mm at the end of second loading and
unloading processes, respectively, which were 80.3% and
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FIGURE 11: Distributions of mobilized shaft resistances along energy pile 2. (a) Before cooling. (b) After cooling.
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177.8% of the initial states. The increased residual settlement
indicates that cooling could cause additional and irreversible
settlement of the pile. According to JGJ 106-2014 [37], if the
load–settlement (Q–s) curve varied gently, the total settle-
ment of the pile could reach 60−80mm, and if the end
bearing resistance was not completely mobilized, the pile
could be loaded until the total settlement at the pile top
reached more than 80mm. In this work, according to the
test results, the settlement of the two EPs did not exceed the
allowable settlement.

Figure 13(a) compares the Q–s curves of EP1 in the pure
mechanical stage and in the coupled heating and loading
stage. When the maximum load of 11,000 kN was reached,
the total settlement values of the pile were found to be 54.9
and 15.6mm before and after heating, respectively. The neg-
ative slope of the Q–s curve after pile heating was much
smaller than that before pile heating, and the settlement
was also smaller than that before the pile heating, especially
with the gradual increase in the load. The pile settlement
significantly decreased after pile heating, meaning that the
bearing capacity of the pile was improved. As shown in
Figure 13(b), under both the pure mechanical and the cou-
pled thermomechanical conditions, the Q–s curves did not
show a significant difference, which means that the bearing
capacity of EP2 did not change significantly due to pile cool-
ing in this work.

4. Discussion

Previous studies [31–36] indicated that the heat transfer per-
formance of an EP expressed by the heat flux and heat trans-
fer rate can be affected by many factors, such as the inlet fluid
temperature and velocity, the types of soils and their thermal
properties, including their conductivities and heat capacities,
the pile length and diameter, and the shapes and lengths of
the installed PE tubes. A comparison of the heat transfer
performances from different studies is shown in Table 1.
Most piles had lengths of 10−30m, so that the heat transfer
performance might be limited within a certain range.

Overall, the length and diameter increase of the pile could
enlarge the heat transfer area and thus improve the heat
transfer rate. According to the test results, we can deduce
that the super-long and large-diameter EP will have a better
heat transfer performance. Moreover, the heat diffusion
could be related to the ground conditions. When clayey or
silty soils with low permeability existed, the heat exchange
between the pile and soil was mainly in the form of heat
conduction. However, when the soils were highly permeable
sand or gravel, the heat exchange was mainly via heat con-
vection. It should be noticed that the groundwater seepage
on site is another important factor affecting the temperature
distribution along the pile, as well as the heat transfer per-
formance of the pile [38]. Groundwater seepage can reduce
the temperature difference, which is beneficial to the heating
or cooling balance of the pile. The determination of the
direction and dimension of the groundwater seepage is
therefore necessary and useful for evaluating the perfor-
mance of the EP.

5. Conclusions

The aim of this work was to gain a better understanding of
the thermomechanical behaviors of super-long and large-
diameter EPs under LNG tanks in terms of the heat transfer
performance, temperature distribution, axial strain, and
mobilized shaft resistance along the pile, as well as the pile
settlement and its bearing capacity. Two EPs with lengths of
53m and diameters of 1.2m were selected for testing: EP1
was subjected to heating and static loads, and EP2 was sub-
jected to cooling and static loads.

The comparison of the findings of previous studies with
the results of the pile heating and cooling in this work
showed that super-long and large-diameter EPs have better
heat transfer performances: The heat flux of EP1 was 9.5 kW,
the heat transfer rate was 178.3W/m, and those of EP2 were
4.8 kW and 91.1W/m, respectively. The temperature distri-
butions within the two EPs showed that, overall, the tem-
peratures in the mid-depth of the pile increased or decreased
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rapidly, and at the two ends of the pile, the temperatures
varied relatively slowly. By comparing the εObs between the
pure mechanical and coupled thermomechanical conditions,
EP1 underwent predominately compressive deformation dur-
ing the heating–loading process, while a certain tensile defor-
mation was found near the pile toe of EP2 during the
cooling–loading process. Moreover, for both EPs, positive
shaft resistances occurred predominately under the pure
mechanical and coupled thermomechanical conditions,
which means that the shaft resistance was mainly governed
by the mechanical load. The observed negative shaft resis-
tances could be attributed to specific types of soils, that is,
soft clayey and mucky soils, around the pile shaft, and the
mechanical loads could prevent the mobilization of a negative
shaft resistance. According to the test results, coupled ther-
momechanical loads did not have significant effects on the
settlement and bearing capacity values of the two EPs, and the
serviceability of the LNG tank would not be diminished.

Note that whether periodic heating and cooling associ-
ated with mechanical loading and unloading causing the
fatigue failure of the EP in the long-term service is also a
key subject, which will be studied in further works.

Data Availability

Data are available on request.

Additional Points

Highlights. Field-scale experiments of super-long and large-
diameter energy pile under liquefied natural gas tank suffered
to thermo-mechanical loads were carried out. Heat transfer
performance of energy pile after heating and cooling was
evaluated. Changes of observed axial strain and shaft resis-
tance due to heating and cooling were discussed. Settlement
and bearing capacity of energy piles were estimated.
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