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Tis study will solve the classical vehicle routing problem, the goal is to generate k trips with the shortest distance for h customers
with predetermined locations and needs.. Te proposed solution to the classical vehicle routing problem is a hybrid sine cosine
algorithm.Te sine cosine algorithm is hybridized with the grey wolf optimizer, which is used in combination with the methods of
tournament selection, opposition learning, and the mutation and crossover method to build the optimal routing plan for the
means of transporting cement. To demonstrate the advantages of the developed hybrid sine cosine algorithm, this algorithm is
evaluated and compared with modern algorithms such as sine cosine algorithm, dragonfy algorithm, grey wolf optimizer, ant lion
optimizer, particle swarm optimization, modifed hybrid particle swarm optimization, genetic algorithm, and the double-
population genetic algorithm in case studies. Te hybrid sine cos algorithm gives optimal results in these cases because it balances
mining and exploration. Tus, the results of this study indicate that managers can use the developed hybrid sine cosine algorithm
to create optimal vehicle routing plans to reduce transportation distances.

1. Introduction

Te TSP problem is computationally complex [1]. In this
problem, for n cities, 1/2 × (n − 1)! paths are possible. For
example, if n� 16, the number of possible paths is
6.54×1011; thus, the number of paths is too high in the TSP.
Te VRP is an extension of the TSP; thus, the VRP has
considerably high computational complexity.

In the classical vehicle routing problem, which is an ex-
tended version of the traveling salesman problem, the objective
is to generate a set of k trips with the shortest distance or
minimum cost for h customers whose locations and demands
are predetermined. Each vehicle travels to and from a fxed
location and satisfes some associated constraints. Te vehicle
routing problem can be solved using many methods, such as
linear programming, genetic algorithm (GA), ant lion opti-
mizer (ALO), dragonfy algorithm (DA), particle swarm op-
timization (PSO), modifed hybrid particle swarm optimization
(MHPSO), and double population genetic algorithm (DPGA).

Te vehicle routing problem (VRP) is a classical NP-hard
problem that is difcult to not only solve but also defne.
According to Laporte [2], the VRP cannot be precisely
defned because of the diversity and complexity of the
binding requirements in this problem (e.g., time, distance,
cost, pick-up and delivery, and capacity). Terefore, studies
should focus on the most important parameters such as
distance [3], cost [4], and time and CO2 emissions [5] when
solving the VRP. According to Liu et al. [6], the main
diference between the traveling salesman problem (TSP)
and VRP is that in the VRP, multiple routes can be created to
pass through all nodes under the condition of limited vehicle
capacity. Because of the VRP’s complexity, almost all studies
on this problem have attempted to solve it by using heuristic
and meta-heuristic methods.

Te VRP problem has attracted the attention of many
authors because of its practical applicability. In fact, there
cannot be a vehicle that can hold goods to deliver to cus-
tomers when the number of customers is too large and the
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goods are too bulky in size, while it may be assumed that
such a vehicle exists, it remains an unattainable assumption
to deliver goods on time to customers when multiple orders
are placed at the same time. We know that each vehicle will
have a certain capacity and load, so it is necessary to plan the
routing of delivery vehicles to meet the daily needs of
customers. Regardless of the method used, the researchers
want to provide the optimal solution of the objective
function: cost, distance, delivery time, and CO2 emissions, to
deliver goods to customers from one repository [7, 8] or
from multiple repositories [9, 10]. Te issue of optimizing
CO2 emissions has been studied a lot in recent years [6, 11]
because of global warming and countries starting to tax the
amount of CO2 emissions from transport vehicles.

Nowadays, optimization algorithms are applied in many
diferent felds. In recent years optimization algorithms are
being developed rapidly such as the monarch butterfy
optimization (MBO) [12], slime mold algorithm (SMA) [13],
moth search algorithm (MSA) [14], hunger games search
(HGS) [15], Runge–Kutta method (RUN) [16], colony
predation algorithm (CPA) [17], weIghted meaN oF vectOrs
(INFO) [18], Harris hawks optimization (HHO) [19, 20],
improvement of trajectory tracking by robot manipulator
based on a new cooperative optimization algorithm [21],
optimal design of low computational burden model pre-
dictive control based on SSDA towards autonomous vehicle
under vision dynamics [22], improved grey wolf optimizer
based on opposition and quasi learning approaches for
optimization [23], efective nonlinear model predictive
control scheme tuned by improved NN for robotic ma-
nipulators [24], GSA-based design of dual proportional
integral load frequency controllers for nonlinear hydro-
thermal power system [25], development of an IoT archi-
tecture based on a deep neural network against cyber attacks
for automated guided vehicles [26], reliable deep learning
and IoT-based monitoring system for secure computer
numerical control machines against cyber-attacks with ex-
perimental verifcation [27], a multistrategy-enhanced sine
cosine algorithm for global optimization and constrained
practical engineering problems [28], optimal allocation of
distributed generators in active distribution networks using
a new oppositional hybrid sine cosine muted diferential
evolution algorithm [29], and sine cosine algorithm with
multigroup and multistrategy for solving CVRP [30].

Tis study combines the sine-cosine algorithm with the
grey wolf optimizer, combined with tournament selection,
adversarial learning, mutation crossover, and other
methods, to obtain the optimal path scheme for cement
transportation creation. Tis combined algorithm is called
the hybrid SCA (HSCA).Te SCAwith outstanding strength
in expanding the search space and GWO algorithm with
outstanding mining ability is used in the search for optimal
results. Te TS method improves the ability to select in-
dividuals in the population to run the algorithm. Te OBL
method enhances global discoverability and enhances local
mining through the convergence acceleration parameter, the
MCS method increases the chance of fnding optimal results
through transformability and improves the ability to dis-
cover. From there, the HSCA algorithm will help the VRP

problem achieve the best balance between the discovery and
mining stages. Te study will focus on the application of the
HSCA algorithm to discover a routing plan for cement
transport vehicles so that “the total delivery distance be-
tween the nodes is the shortest.”

In this study, a new algorithm HSCA (SCA-GWO-OBL-
MCS) was created and used to solve the CVRP problem of
distance optimization, saving logistics costs. HSCA has
proven its improvement efectively compared to other al-
gorithms by 2 case studies presented in Chapter 4.

2. Literature Review

Te VRP has been studied for more than 60 years [31, 32],
with diverse objectives being adopted and diverse solutions
being proposed. When considering distance and customer
demands in the VRP [33], this problem can be solved using
the “3-opt” model and mixed-integer linear programming
(MILP) if the vehicles have the same size or diferent sizes,
respectively [34].

Anbuudayasankar and Mohandas [3] used MILP to
optimize the pick-up and delivery of commodities at 13
nodes under diferent distances and customer demands.
Moreover, Wang et al. [35] considered travel and service
times in the VRP and solved this problem using the ant
colony optimization (ACO) algorithm. Qi and Hu [4] solved
the VRP for the transportation of frozen commodities to 13
locations by attempting to minimize vehicle damage, fuel
costs, and refrigeration costs.

Reed et al. [36] used ant colony system (ACS) to route
vehicles for nodes in cyberspace and extended it for mod-
eling the usage of multichambered vehicle to sort waste. A
reasonable solution to the VRP reduced delivery costs by
15% in a management science project at E. I. Du Pont, Inc.
[33]. Venkata Narasimha et al. [37] formulated a VRP that is
diferent from the traditional min-max multidepot vehicle
routing problem to reduce the travel time of the vehicle that
travels the longest distance. Such a reduction is meaningful
in emergency response scenarios to minimize the arrival
time of any customer. In addition, some researchers have
considered carbon emissions for efectively solving the VRP.
Liu et al. [6] used the genetic algorithm (GA) to identify the
minimal-carbon-footprinttime-dependentheterogeneous-
feet vehicle routing problem with alternative paths under
diferent vehicle capacities and vehicle speeds (the vehicle
speed changes at diferent delivery times during a day).
Wang et al. [5] used a GA-based method to optimize a cold
cargo distribution route in China for minimizing the carbon
tax to be paid, travel time, and transportation cost.

A MILP model developed in 2016 by Afshar-Bakeshloo
et al. [8] provided a VRP problem-solving model with
heterogeneous vehicle capacity to serve a group of customers
in a predetermined time period; in this model, in addition to
cost optimization, emissions and customer satisfaction are
also considered. In this paper [38], an accurate heuristic-
based approach is developed to solve the green vehicle
routing problem, which extends the classical vehicle routing
problem by considering a limited range of vehicles with
limited refueling infrastructure. In 2019, Wang [9]
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combined 3 algorithms Clarke and Wright savings heuristic
algorithm, the sweep algorithm, and the multiobjective
particle swarm optimization algorithm to solve the problem
of routing vehicles with many diferent warehouses. Tis is
a 2-objective model of CO2 emissions and operating costs
and it also implements a penalty function for early or late
delivery to reduce waiting times and improve customer
satisfaction. When it comes to customer satisfaction, Wang
says that fnding the shortest distance sometimes also falls
short of goals for cost and minimum CO2 emissions.

In 2020, Zhang proposed a [10] multidepot green vehicle
routing problem, in which clean fuel vehicles start from
diferent depots; after serving the customer, the vehicle will
have to return to the original warehouse with the goal of
reducing CO2 emissions to the environment because there is
not enough fuel, and the vehicle will have to go to the station
to refuel; the two-stage ant colony system method is pro-
posed to solve this problem. In addition, the VRP problem is
also known in another form as the dynamic problem,
Khouadjia et al. [39] used particle swarm optimization and
variable neighborhood search to solve this dynamic vehicle
routing problem. In the dynamic vehicle routing problem,
new orders appear when the goods plan is being delivered, so
the routes have to be rearranged to deliver goods to the
customer while the old model is still in progress, this is also
an extended problem of the traditional VRP problem.

3. Materials and Methods

Chapter 3 identifes the VRP problem and introduces the
hybrid SCAmethods with GWO, OLB,MCS, and TS applied
to the case study in Chapter 4.

3.1. Description of VRP Problem. Tere are many documents
on how to solve the VRP problem according to diferent
defnitions. According to Bodin’s defnition [40], the VRP
problem is developed through the mixed-integer pro-
gramming (MIP) in which the variables are integers associ-
ated between the arcs of the location.Tis model is also called
as vehicle fow model. Another quite efective way of de-
scribing the capacity problem of VRP is introduced by Shan
and Wang [41] which is described as a summation model for
the problems and optimization is implemented by the particle
swarm optimization (PSO) which is quite efective.

Te CVRP problem is specifcally defned by Shan and
Wang [41] as follows:

It is assumed that there is a warehouse and vehicles will
transport commodity to predetermined customers from the
warehouse, and after delivery, the vehicles will return to the
warehouse. And the additional constraints are given as
follows:

Cargo vehicles are limited in capacity
Each customer comes to deliver the commodity only
one time

Objective: to optimize the delivery distance of many
vehicles at the same time.

Variables:

D � total distance travelled by all vehicles,

xijs �
1, vehicle  s  depart  from  i  to  j

0, otherwise
􏼨 􏼩,

yis �
1, customer  i  is  served by vehicle  s

0, otherwise
􏼨 􏼩.

(1)

Coefcients:

cij � cost form customer i to customer j,

gi � the demand of th ith customer(i � 1, 2, 3 . . . , h),

h � total number of customer,

k � total number of vehicle,
qs � capacity of vehicle s,

s � the.vehicle.number(i � 1, 2, 3 . . . , k).

(2)

Objective function:

Min  D � 􏽘

h

i�o

􏽘

h

j�0
􏽘

k

s�1
cijxijs . (3)

Constraints:

􏽘

h

i�0
xijs � yjs, j � 1, 2, . . . , h,

s � 1, 2, · · · , k,

(4)

􏽘

h

i�0
xijs � yis, j � 1, 2, . . . , h,

s � 1, 2, . . . , k,

(5)

􏽘

h

i�0
giyis ≤ qsyis, s � 1, 2, . . . , k, (6)

􏽘

k

s�1
yis �

1, i � 1, 2, 3, . . . , h

k, i � 0􏼨 􏼩. (7)

Equation (3) presents the VRP’s objective function. In
this equation, xijs is a binary variable that indicates whether
the current path has been selected. Equations (4) and (5)
indicate that only one path exists between a vehicle and
a specifc customer. Equation (6) incorporates vehicle ca-
pacity as a limitation. Equation (7) indicates that each
customer is served by only one vehicle and that the ware-
house is served by k vehicles.

3.2. Introduction of SCA. Te SCA, which was introduced by
Mirjalili [42], is a population-based optimization method.
Te SCA generates many initial choices and allows them to
fuctuate toward the best solution by using the sine and
cosine functions.
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Te optimization process of population-based optimi-
zation algorithms is divided into two phases: exploitation
and exploration [42].

Te equation represents the two phases of exploitation
and exploration follows:

X
t+1
i � X

t
i + r1 ∗ sin r2( 􏼁∗ r3 ∗P − X

t
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (8)

X
t+1
i � X

t
i + r1 ∗ cos r2( 􏼁∗ r3 ∗P − X

t
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (9)

Te two formulas (8) and (9) are combined as follows:

X
t+1
i �

X
t
i + r1 ∗ sin r2( 􏼁∗ r3 ∗P − X

t
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌; r4 ≤ 0.5

X
t
i + r1 ∗ cos r2( 􏼁∗ r3 ∗P − X

t
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌; r4 ≥ 0.5

⎧⎨

⎩ , (10)

where r4 is a random value in the interval [0; 1].
Te main parameters in formulas (7)–(9) are r1,r2,r3,

and r4.

(i) r1 shows diferent directions within the space be-
tween the solution and the destination or the space
outside the solution.

(ii) r2 determines the distance to travel outward or
toward the destination.

(iii) r3 gives randomweights to emphasize the weights of
the processes of exploration (r3 > 1) or exploitation
(r3 < 1).

Efects of sine and cosine in equations (8) and (9) are
illustrated in Figure 1. Tis fgure shows how equations (8)
and (9) defne the spatial region between two solutions in the
search space. Te two-dimensional model is illustrated in
Figure 1, however, the search space can be extended to
higher dimensions. Te cyclical model of sine and cosine
functions allows repositioning around a diferent solution.
Tis way certainly ensures the exploitation of the space
defned between the two solutions.

In addition, in order to avoid local optimization, solu-
tions shall be searched outside the space between the so-
lutions and the destination. To achieve this, it is necessary to
change the ranges of the sine and cosine functions shown in
Figure 2.

Te conceptual model of the efects of sine and cosine
functions in the range (−2, 2) is illustrated in Figure 3.
Figure 3 shows that changing the range of the sine and cosine
functions will lead to one solution which changes the po-
sition of this solution itself with another.

For a good algorithm, a balance of the two phases of
exploration and exploitation is requested to discover
promising regions of the search space to reach the global
optimization.

For SCA, in order to balance the exploration and ex-
ploitation, the range of sine and cosine functions in formulas
(7)–(9) is changed by the following formula:

r1 � a − t
a

T
, (11)

where t is the current iteration, T is the maximumnumber of
iterations, and a is a constant.

Figure 4 shows that equation (11) reduces the range of
sine and cosine functions over iterations. Based on Figures 3
and 4, it can be seen that the SCA algorithm shall explore the
search area when the range of sine and cosine functions is in
the interval (1, 2] and [−2, −1). However, the algorithm shall
exploit the search space when the range is in the interval (−1,
1) (see Algorithm 1).

Te SCA algorithm starts the optimization with a set of
random solutions. Te algorithm then saves the best solu-
tions obtained so far, assigns it as the destination, and
updates other solutions with respect to it. Meanwhile, the
scope of the sine and cosine functions is updated to em-
phasize the exploitation of the search space as the iteration
counter increases. Te SCA algorithm terminates the opti-
mization process when the iteration counter goes higher
than the maximum number of iterations by default. How-
ever, any other termination condition can be considered
such as maximum number of function evaluation or the
accuracy of the global optimum obtained. Te fowchart of
SCA algorithm is another demonstration of Figure 5.

3.3. Introduction of OBL and MCS Methods

3.3.1. OBL Method. Te concept of opposition-based
learning and its applications was introduced in 2005 by
Tizhoosh [44] (illustrated in Figure 6).

X (Solution)

Next Position region 
when r1 >1 

P (Destination)

Next Position region 
when r1 >1 

Figure 1: Efects of the sine and cosine function in updating the
latest value [43].

2

1

0

–1

–2
0 π/2 π 3π/2 2π

Figure 2: Efects of sine and cosine in formulas (7) and (8) on the
next region and position.
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Let P(x1, x2, . . . , xn) be a point in n-dimensional space,
where x1, x2, . . . , xn ∈ R and xi ∈ [ai, bi]∀i ∈ 1, 2, . . . , n{ }.
Te opposite point of P is defned as P(x1, x2, . . . , xn), where

xn � ai + bi − xi . (12)

Assume f (x) is a suitable function used to measure the
solution’s optimum. If f(P)≥f(P), then the point P can be
replaced by P, otherwise we shall continue with P.

3.4. Introduction of MCS Method

3.4.1. MCS Method. Tis method is introduced by Roseline
and Saravanan [45] as follows:

Mutation and crossover are popular exploitation algo-
rithms in various phases of optimization. Each
xi � xi1, xi2, ..., xin􏼈 􏼉 is a vector of n directions (n
dimensions).

Step 1. Mutation.
Te mutation algorithm can generate a mutation vector

ui by choosing random components from the directions of
the original vector xi and reassign the value in the specifed
domain of such direction as follows:

uij �
rand xij ∈ Domainofxij􏽨 􏽩􏼐 􏼑; rand≤pc.

xij, otherwise.

⎧⎨

⎩ (13)

2

1

0

–1

–2
0 π/2 π 3π/2 2π

X (Solution) P (Destination) P (Destination)Sine and cosine functions with the range 
in [-2, 2]

Figure 3: Efects of the function in the range (−2, 2) enabling a solution to go outside or around the destination [42, 43].

2

1

0

–1

–2

Ra
ng
e

0 T/4 T/2 3T/4 T
r1

Figure 4: Model of descending the range of sine and cosine functions (a� 3).

Initialize a set of search agents (solutions) (X).
Do
Evaluate each of the search agents by the objective function.
Update the best solution obtained so far (P�X∗)
Updater1, r2, r3, and r4
Update the position of search agents using equation (10)

While (t<maximum number of iterations)
Return the best solution obtained so far as the global optimum.

ALGORITHM 1: Steps of SCA algorithm [41].
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Start

Initialize random population

Calculate the value of objective 
function for the solutions

Initialize parameters r4, r3, r2, r1
and tmax

Update locations of solutions

Update parameter r4, r3, r2, r1

Remember the best solution (destination)

Satisfy stop condition

The end

No

Yes

Figure 5: Te fowchart of SCA algorithm.

X
Global best

solution

X– X–= a + b - X

Opposition-based learning

Figure 6: OBL method.
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Step 2. Crossover.
Te crossover algorithm can generate a new vector vi by

using a crossover with the mutation vector. New vector vi is
generated by random selection of components from vector
ui and target vector xi based on the probability factor pc.

vij �
uij, rand≤pc  or  j � jo,

xij, otherwise,
⎧⎨

⎩ (14)

where pc is the probability factor which controls the pop-
ulation diversity and reduces the risk of local optimization
(set pc � 0.1 in this study) and j0 is an indicator belonging to
(1, 2, 3, . . ., n) to ensure that vector vi contains at least one
element from the mutation vector ui.

3.5. Introduction of Tournament Selection Method. In the
SCA algorithm, the roulette method in the individual se-
lection step is replaced by tournament selection. Te
tournament selection procedure randomly selects k elements
and compares the values of the objective function. We se-
lected elements with better objective function values. Tis
technique helps to improve the ability to quickly fnd the
optimal value of the SCA algorithm.

3.6. Introduction of GWO. In 2014, Mirjalili et al. [46] in-
troduced the GWO algorithm. We approached hunting and
hierarchical leadership like wolves in the wild, where there
are 4 levels: alpha, beta, delta, and omega. Te frst three
wolves will be the best variant of the population, and omega
(ω) is the population variant. Wolf population has 2 stages:
siege and hunt for prey.

Te siege phase is displayed as follows:

d
→

� c. x
→t

p − x
→t

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

x
→t+1

� x
→t

− a
→

. d
→

,

(15)

where x
→

(t) is the wolf’s position in iteration t, x(t) is the
prey’s position, and vectors a

→ and c
→ are coefcient vectors,

computed as follows:

a
→

� 2l.r1,

c
→

� 2r2.
(16)

Hunting phase: To simulate hunting behavior, Mirjalili
assumes that the knowledge of the potential position of the
prey is known by alpha, beta, and delta based on its expe-
rience as follows:

d
→

α � c
→

1. x
→

α − x
→􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

d
→

β � c
→

2. x
→

β − x
→

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

d
→

δ � c
→

3. x
→

δ − x
→􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

x
→

1 � x
→

α − a
→

1. d
→

α􏼒 􏼓,

x
→

2 � x
→

β − a
→

2. d
→

β􏼒 􏼓,

x
→

3 � x
→

δ − a
→

3. d
→

δ􏼒 􏼓

·
x
→

1 + x
→

2 + x
→

3

3
,

(17)

When searching and attacking prey, a
→ is a random value

in the range of (−2a, 2a). When | a
→

|< 1, random prey value
is attacked by wolves, it is the mining stage. When | a

→
|> 1,

wolves are forced to ignore their prey in search of better
prey [47].

Another parameter that afects the decoy search is that c has
a value in the range (0, 2), and c

→ will randomly and suddenly
update the value of the solution to avoid local optimization. If
c> 1, the solution converges towards the prey, and if c< 1, the
solution moves away from the prey to fnd new prey.

Finally, the fowchart of the SCA-GWO-TS-OBL-MCS
algorithm is shown in Figure 7.

4. Application of the HSCA to Solve the VRP

4.1. Case Study 1. Te developed HSCA was evaluated
against other algorithms in solving the problem of [48] (case
study 1).

Tis problem is expressed as follows. For a central
warehouse, eight customers are served by two trucks, each of
which has a capacity of 8 units.Tematrix of travel distances
and customer demands is presented in Table 1. Te re-
quirement is that two vehicles should deliver the goods so
that the shortest total delivery distance is achieved and the
conditions of the VRP stated in Section 3 are satisfed.

A personal laptop with an 11th Gen Intel(R) Core(TM)
i7-1165G7@ 2.80GHz processor was used to run each al-
gorithm 20 times with 20 search agents in 50 iterations. Te
HSCA was programmed in Java. Te shortest distance ob-
tained was 67.5 units, and the following paths were obtained
in Java for the two vehicles (in the output order in Java):

Advances in Civil Engineering 7



Vehicle 1: 0 ->Customer6 ->Customer7 ->Customer
4 -> 0.
Vehicle 2: 0 ->Customer1 ->Customer3 -
>Customer5 ->Customer8 ->Customer 2 -> 0.

Figure 8 depicts the HSCA’s optimal solution, and Ta-
ble 2 presents the smallest number of iterations required for
obtaining the optimal result with diferent algorithms. Te
aforementioned fgure and table indicate that the HSCA can
search for optimum solutions faster and more efciently
than the other algorithms used in this study.

Te results obtained with the HSCA, SCA, DA, PSO, and
ALO were compared. Te results indicated that the HSCA

achieved convergence faster than the other four algorithms.
Figure 9 displays the average best solutions obtained with the
aforementioned fve algorithms after 50 iterations and
20 runs.

Table 3 presents the results obtained in case study 1 when
using diferent algorithms. Te average distance value ob-
tained with the HSCA (i.e., 67.675 units) was lower than
those obtained with the other algorithms.

Te results obtained with the HSCA were more stable
(i.e., had a smaller deviation) than those obtained with the
other algorithms, and the global optimal solution was ob-
tained with the HSCA. Tus, the HSCA can be used for
cement vehicle routing. Cement vehicles have similar

Start

Initialize random 
population

If the maximum 
number of 
Iteration?

Stop

Population choose
from 1 to (N/2)

NO

NO

YES

YES

Initialize the set of 
random variables in the 

initial population

Remember the best 
solution (destination)

OBL-MCS 
method

Keep updating the location of all 
solutions xt

i, xt
i,OBL-MCS

Creating SCA 
populations and 

parameters

Update location of 
solutions

Creating GWO 
populations and 

parameters

Update wolf 
position in the 

population

Apply tournament
selection to the values
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Figure 7: Te fowchart of HSCA.

Table 1: Matrix of travel distances and customer demands case study 1 [48].

Customer 0 1 2 3 4 5 6 7 8 Demand
0 0 4 6 7.5 9 20 10 16 8
1 4 0 6.5 4 10 5 7.5 11 10 1
2 6 6.5 0 7.5 10 10 7.5 7.5 7.5 2
3 7.5 4 7.5 0 10 5 9 9 15 1
4 9 10 10 10 0 10 7.5 7.5 10 2
5 20 5 10 5 10 0 7 9 7.5 1
6 10 7.5 7.5 9 7.5 7 0 7 10 4
7 16 11 7.5 6 7.5 9 7 0 10 2
8 8 10 7.5 15 10 7.5 10 10 0 2

8 Advances in Civil Engineering



Table 2: Optimal results obtained with diferent algorithms after 20 runs in case study 1.

HSCA SCA DA PSO ALO MHPSO∗ [48] DPGA∗ [48] SGA∗
[48]

Generation 2 5 9 12 8 6 18 45

HSCA
SCA

Optimum Solution Curve

66

68

70

72

74

78

76

D
ist

an
ce

30 500 4010 20
Generation

Figure 8: Optimal values obtained by the HSCA and SCA after 20 runs in case study 1.
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Figure 9: Optimal average values were obtained with diferent algorithms after 20 runs in case study 1.
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capacities and are delivered to diferent warehouses and
distribution stores daily. Te HSCA can be used to obtain
optimal routes for cement vehicles depending on the de-
livery case and time of day.

4.2. Case Study 2: Real Problem of Cement Delivery to
Customers. Te real problem of a cement distribution
agent (case study 2) is expressed as follows: In 1 day,
a cement distribution agent with a central warehouse must
serve 30 customers by using fve trucks, each of which has
a maximum capacity of 90 cement bags during a single
delivery. Te matrix of travel distances and customer de-
mands for case study 2 is presented in Table 4. Te re-
quirement is that fve vehicles should deliver the goods,
such that the shortest total delivery distance is achieved and
the relevant conditions of the VRP stated in Section 3 are
satisfed.

A personal laptop was used to run each algorithm
20 times with 50 search agents in 200 iterations. Te HSCA
was programmed in Java. Te best solution for the total
distance was 701.1625 units. Figure 10 displays optimal

values obtained by the HSCA. Te following paths were
obtained in Java for the fve vehicles (in the output order in
Java):

A comparison of the results obtained with the DA,
PSO, ALO, the SCA, and the HSCA in case study 2 in-
dicated that the HSCA converged faster than the other
algorithms. Figure 11 displays the average best solutions
obtained with the diferent algorithms after 200 iterations
and 20 runs.

Table 5 presents the maximum values, minimum values,
mean values, and deviations to the best solution obtained
with the diferent algorithms used in this study. After 200
iterations, 20 runs, and 50 agents, the HSCA obtained
a maximum distance of 849.61 units and a minimum dis-
tance of 701.16 units (its optimal result); thus, the optimal
result of the HSCA was superior to those of the SCA, PSO,
DA, and ALO. In addition, the optimal results of the SCA,
PSO, ALO, and DA exhibited deviations of 14.7%, 16.9%,
34.7%, and 37.5%, respectively, from the optimal result of
the HSCA; thus, the results of the SCA and PSO were stable
and more accurate than those of ALO and DA. In summary,

Table 3: Best solutions obtained in case study 1 with diferent algorithms after 20 runs.

Distribution of optimum solutions Max Min Mean

HSCA

67.5 68 67.5 67.5 67.5

69 67. 67.67 68.5 67.5 67.5 67.5 67.5
67.5 68 68 68 68
67.5 67.5 67.5 67.5 67.5

SCA

69 68 69 68 68

69 67.5 68.02568 69.5 67.5 67.5 68
69 68 67.5 67.5 67.5
68 67.5 68 67.5 67.5

DA

71.5 67.5 71.5 68 67.5

71.5 67.5 68.72569 70 70.5 68 69
70 67.5 67.5 69 68
67.5 68 68 67.5 69

ALO

71.5 68 71.5 68 67.5

71.5 67.5 69.15069 70 70.5 68 69
70 68 71 69 68
71.5 68 68 67.5 69

MHPSO

69.5 67.5 69 69 70

70 67.5 68.87569.5 70 69 67.5 67.5
69 69.5 69 70 67.5
70 69 67.5 70 67.5

PSO

67.5 70 70 69 69

70 67.5 68.95068 69 70 70 68.5
68.5 68.5 67.5 68 70
70 67.5 69.5 69 69.5

DPGA

70 69 67.5 71 69

72 67.5 69.55070.5 72 67.5 71.5 69
67.5 69 71 70 67.5
70.5 69 69.5 71 69

SGA

69 72 73.5 69 70

75.5 67.5 70.42571 67.5 69 69 75.5
70 69.5 69 73 69
74 70 69.5 69 70

Bold values represent better HSCA search results than other algorithms.
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in the problem of cement transport by fve vehicles to 30
delivery points, the results obtained by the HSCA were
superior to those obtained by the SCA, PSO, ALO, and DA.

5. Conclusion

In this study, an HSCA was developed to solve two case
studies of the classical VRP:

(1) In case study 1 [48], the developed HSCA provided
stable results and the global optimal solution.
Moreover, under the same numbers of search agents
and iterations, the HSCA outperformed the DA,
PSO, ALO, and SCA.

(2) In case study 2, in which the number of delivery
points was 30, the HSCA again provided the global
optimal solution and outperformed the aforemen-
tioned algorithms. Te results of this study indicate
that the developed HSCA can be used by cement
distributors to optimize their vehicle routing plans to
shorten travel distance and reduce travel cost.

In conclusion, a routing planning model for cement
transport trucks using HSCA is proposed based on its strong
optimization.With case studies from 1 to 2, there will be amore
overview of the VRP problem, the increasing complexity of
VRP, and comparison of HSCAwith the algorithms of previous
studies. With the available data and related constraints of the
VRP problem, it is found that the study has high practical
application in supporting the routing planning for cement
transportation vehicles. Further studies will further solve some
problems such as deliverywith a delivery timewindow,multiple
warehouses, and time-limited delivery of hazardous materials
by optimal methods.
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