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Over the last decades, the emergence of new technologies has inspired a paradigm shift for the fourth industrial revolution. For example,
circular economy, data mining, and artifcial intelligence (AI), which are multidisciplinary topics, have recently attracted industrial and
academic interests. Sustainable structural health monitoring (SHM) also concerns the continuous structural assessment of civil, me-
chanical, aerospace, and industrial structures to upgrade conventional SHM systems. A damage detection approach inspired by the
principles of data mining with the adoption of circular-economic thinking is proposed in this study. In addition, vibration characteristics
of a composite bridge deck structure are employed as inputs ofAI algorithms. Likewise, an artifcial neural network (ANN) integratedwith
a genetic algorithm (GA) was also developed for detecting the damage. GAwas applied to defne the initial weights of the neural network.
To aid the aim, a range of damage scenarios was generated and the achieved outcomes confrm the feasibility of the developed method in
the fault diagnosis procedure. Several datamining techniques were also employed to compare the performance of the developedmodel. It
is concluded that the ANN integrated with GA presents a relatively ftting capacity in the detection of damage severity.

1. Introduction

Advanced, large, and expensive engineering assets such as
high-rise buildings, long-span bridges, dams, oil platforms,
hydraulic structures, wind turbines, ofshore structures,
railways, and ports were designed to last long [1–7].
However, many of them were more than halfway through
their intended service life, and some of them have already
reached the end of it [8]. Countries spend billions each year
on the maintenance of these assets. For instance, according
to ASCE 2021 infrastructure report card [9], there were more
than 617,000 bridges across the United States. Currently,
42% of all bridges are at least 50 years old and 46,154 of the
bridges are considered structurally defcient, meaning they

are in “poor” condition and in need of repair that requires
a $125 billion investment. In another example, road and rail
infrastructures across Europe have been degrading because
of too little maintenance due to the global economic crisis
[10]. Terefore, the monitoring costs associated with the
aging engineering assets have become an ongoing concern.
Emerging technologies need to overcome such bottlenecks
to act more cost-efectively and sustainably in the planning,
control, and management of structures. Structural health
monitoring (SHM) as a powerful tool was utilized to address
the above concerns by changing timetabled maintenance
with as-needed repairs [11].

SHM is the process of applying a damage detection
approach to evaluate the health condition of mechanical,
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civil, and aerospace engineering assets [12]. Damage de-
tection techniques can be considered in two categories due
to their detection abilities which include local-based and
global-based techniques [13]. Conventional approaches, e.g.,
visual inspections, ultrasonic, acoustic emissions, and ra-
diography, are local-based damage detection methods with
various drawbacks. For instance, the aforesaid costly tech-
niques normally necessitate prior knowledge of the damage
location which makes them laborious and inefcient, es-
pecially in big and complicated structures [14, 15]. In
contrast, global-based methods, e.g., vibration-based tech-
niques are based on global structural response and they have
been developed to overcome the aforementioned drawbacks
[16, 17]. From another perspective, emerging computer-
based technologies require to be operated for achieving
SHM data [18]. Hence, mathematical evolutions have
upgraded the SHM schemes. For example, data mining
methods [19, 20], cloud computing [21], and deep learning
[22] have recently been employed in SHM. AI is also one of
the developing scientifc strategies in the 2020s [23, 24]. Over
the past decade, ANN has provided broad solutions for
structural system identifcation problems [25]. Moreover,
according to [26], these days a lot of evolutionary techniques
exist, e.g., GA [27], ant colony optimization [28], grey wolf
optimization [29], particle swarm optimization [30], artif-
cial immune algorithm [31], artifcial bee colony algorithm
[32], and frefy algorithm [33]. Among all metaheuristic
techniques, the GA holds the highest standard aimed at
resolving global optimization problems [34, 35].

Te fourth industrial revolution, which is known as
Industry 4.0, IR 4.0, or 4IR, includes various platforms, e.g.,
data mining, AI, and circular economy. Data mining has also
several models to run [36–43]. Cross-industry standard
process for data mining (CRISP-DM) is themost widespread
paradigm [44]. Tis model has a hierarchical and cyclic
process in six stages, i.e., business understanding, data
understanding, data preparation, modeling, evaluation, and
deployment. In the modeling phase of CRISP-DM, three
types of techniques such as statistical, machine learning, and
AI techniques can be used for diferent applications [45, 46].
Likewise, the circular economy has several frameworks
[47, 48]. According to [49], the most comprehensive circular
economy framework in six stages was proposed by Potting
et al. [50]. Data mining and AI are considered as one of the
main factors for an extensive adoption and enhanced
modifcation to the circular economy.

Based on the literature review, it is felt to improve the
smartifcation of global-based structural damage identif-
cation systems using Industry 4.0 technologies due to the
demanding needs of developing the fault diagnosis of
structures. Terefore, by taking advantage of the described
relationship between circular economy, data mining, and AI,
a generalized fault diagnosis workfow is proposed in this
study. Tis is also associated with the fact that for the
implementation of computational techniques in SHM,
a systematic procedure along with relevant algorithms is
essential. Consequently, in this article, a brief background of
Industry 4.0, circular economy, and data mining are high-
lighted in Section 2. Te architecture of the proposed

circular model is presented in Section 3. Experimental modal
analysis of a composite bridge deck structure is also detailed
in this section. Here, a range of damage scenarios is in-
troduced to generate the vibration characteristics of single-
type and multiple-type damage cases as the input database
for training the developed ANN integrated with the GA
pattern. In Section 4, fnite element modeling of the test
structure is carried out to verify the experimental work. Te
outcomes of the introduced hybrid network are also pre-
sented in this section.Ten, the performance of the pattern is
compared with predeveloped ANN, support vector machine
(SVM), and classifcation and regression trees (CART) using
mean absolute error (MAE). Finally, Section 5 highlights the
conclusions.

2. Fourth Industrial Revolution (Industry 4.0)

Te term “industry” refers to the creation of products,
services, and facilities within an economy. Our world has
experienced four steps of industrialization. Table 1 presents
the most important contributions of the fourth industrial
revolution, adopted from [51–57]. Circular economy, data
mining, and AI aligned with the fourth industrial revolution
(Industry 4.0) promote smart tasks and diagnostics in re-
search and analytics to industries and organizations in
predictive policing. Data mining and AI platforms are also
considered as one of the main factors for an extensive
adoption and enhanced modifcation to the circular econ-
omy [58, 59].

Te linear economy operates as if there are infnite re-
sources in the world. In the same line, linear thinking as
a traditional value chain has been started after the third
industrial revolution [60]. A linear economy is based on
a “Take, Make, and Dispose” model [61]. In the beginning,
the implementation of this model was successful. However,
it misused the resources in an unsustainable way. For ex-
ample, the United Nations has estimated that by 2030, the
world will need to double the existing resources to become
equal with the rate of global production, consumption, and
population growth [62]. Terefore, to become more sus-
tainable, it is required to move to a circular system that is
based on a closed-loop “Make, Use, and Return” model
[63, 64]. In other words, the idea of a circular economy has
been established from diferent aspects, i.e., fnite resource
stabilization, cost efciency, pollution reduction, risk
management, adoption of better retroft practices, sharing
economy, reusability, and recyclability of materials [65].
Terefore, this technology-focused system can be defned as
a condition for sustainability. Tis is due to the fact that its
concept moves towards the fnal aim of sustainability
[66, 67].

With the rapid growth of database technology, more data
were collected. Obviously, there is a lot of hidden important
information behind the collected data. In this context, one of
the popular strategies for knowledge discovery is the typical
data processing approach. However, its assumption is dif-
fcult to converge with the actual work [68]. In addition,
whenever there is a huge data collected, further drawbacks
can appear. As a result, conventional strategies, i.e., classical
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mathematical techniques perform rather inefciently.
Terefore, the analysis of information should be performed
at a better level to better make use of the databases [69]. To
overcome the mentioned drawbacks, sophisticated com-
puting tools such as data mining can play a signifcant role in
the extraction of valuable information from diferent da-
tabases [70, 71]. Data mining is an emerging procedure that
is used to obtain knowledge from raw data. In fact, it can
handle the qualitative analysis of complex and time-
consuming real-world problems that cannot be solved
with typical statistical techniques [72].

3. Methodology

By taking advantage of the described relationship between
circular economy, data mining, and AI, a generalized fault
diagnosis workfow is proposed in this study, as shown in
Figure 1. Tis systematic model is based on the combination
of CRISP-DM and circular economy closed-loop concepts
for the health monitoring of engineering assets using inverse
analysis. As can be observed from Figure 1, assessing the
damage level is the initial part of the circular fault diagnosis
model to collect data. Te subsequent phase is focusing on
data processing through a number of duties, i.e., data
cleaning, data integration, data construction, and data
transformation. Generally speaking, the data preparation
step is one of the most problematic parts of the procedure. It
is because several problems such as incomplete data, missing
values, out-of-range records, wrong data type, and un-
available details should be solved in this step to construct
a database.Ten, the processed data are considered as inputs
for the next step. In the modeling step, applicable algorithms
such as ANN, fuzzy, support vector machine (SVM),
principle component analysis (PCA), GA, ant colony op-
timization (ACO), Bayesian, and particle swarm optimiza-
tion (PSO) can be applied for diferent purposes, i.e.,
classifcation, optimization, or perdition. Te accomplished
results are utilized for damage assessment of structural el-
ements. Once the models are assessed, the deployment of the
proposed circular model can be performed through the
implementation of strengthening and retroftting actions to
expand the health state of structures. In this regard, the
reliability of structures can be also estimated through

a number of suggested treatments, e.g., repairing or
upgrading the structural members, major/minor mainte-
nance, or replacement of the damaged components, as in-
dicated in Figure 1.

3.1. Experimental Modal Analysis. Modal parameter esti-
mation relies on methods of excitation as well as the ac-
curacy of data acquisition tools. Mode identifcation
methods can be divided into operational and experimental
modal analysis. Operational modal analysis regularly refers
to output-only measurements whereas experimental modal
analysis uses input excitation and output response mea-
surements to estimate the modal parameters [73–76]. In this
study, a series of experimental modal analysis of a bridge
deck structure were conducted to generate the data. Te
common span length, as well as girder spacing of a common
composite girder bridge, is 25m to 30m and 3.5m to 4m,
respectively. A 1 :10-scaled form of this girder deck was cast
and tested in the heavy structure laboratory of the De-
partment of Civil Engineering, University of Malaya. Te
model consists of three universal steel beams joined to
a concrete slab using shear stud connectors (see Figure 2).
Te length of the testedmodel is 3200mm including 100mm
at both support ends. Te materials used in this work were
cement, fne aggregates, silica fume, water, and super-
plasticizer. Te reinforcement of the concrete slab is wel-
ded wire mesh. Its diameter is 5mm with 100mm by
100mm spacing. Te concrete cover for the mesh is 30mm.
According to [77], mechanical connectors (e.g., shear studs)
are needed to succeed the composite action. Terefore, full
composite action between the concrete slab and steel I-
beams is modeled using sixteen shear stud connectors
which are installed on each I-beam. To do so, the nuts are
welded on top of the beam fange. Ten, the bolts are frmly
tightened to the nuts. Te schematic view, physical prepa-
ration, and experimental setup of the specimen are presented
in Figures 2 and 3.

Figure 4 presents the schematic illustration of the
conducted experimental modal analysis. In the frst step, the
composite bridge deck structure was tested in its intact
condition to obtain the vibration features of the model as the
reference or benchmark model. To aid the aim, the specimen

Table 1: Industry 4.0 contributions.

Key contributions of IR 4.0

(i) Internet of things (IoT)
(ii) Smart factories/smart manufacturing/robotics
(iii) Circular economy/product-lifecycle-management (PLM)
(iv) Data mining/big data analytics/deep learning
(v) AI/machine learning
(vi) Smart sensors/remote sensing/wireless sensor network/online monitoring
(vii) Cloud computing/cognitive computing/mobile computing
(viii) Cybersecurity/blockchain
(x) Digital twin/smart tasks and diagnostics/smartifcation
(xi) Virtual reality/augmented reality/building information modeling (BIM)
(xii) Unmanned aerial vehicles (UAVs)/internet of drone/smart cities
(xiii) Smart environment/sustainable development/renewable energy
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was excited using analogue signals of Wilcoxon acceler-
ometers with the sensitivity of 100mV/g through IMV
VE-50 electrodynamic shaker which were amplifed by VA-
ST-03 power amplifer. Sixteen accelerometers were
employed in each beam to record the time-domain re-
sponses of the model. OROS analyzer along with its plat-
form, NVGate, recorded the measurements [78]. Tis signal
analyzer transformed the input analogue signals to digital
format with the sampling rate of 5.12 kS/s and the frequency
bandwidth and resolution of 2500Hz and 0.39Hz, re-
spectively. To do so, NVGate converted the time-domain
data to the frequency domain utilizing fast Fourier trans-
form. In the next step, the academic license of ICATS, which
is the modal analyzer software, was used to extract the
structural dynamic parameters, i.e., the frst four fexural
modes from measured modal test data [79].

Several damage cases (i.e., single and multiple) were
induced to the test specimen through notching diferent
locations in several members by saw cuts as well as a disk
grinder. To aid the aim, twenty-fvemagnitudes of controlled
damage from 3mm to 75mm depth with the increment of
3mm and correspondingly the prescribed locations were
generated for each damage case, as shown in Figure 5. Te
modal testing was carried out for each case, individually. As
it can be seen from Figures 5(b) and 5(c), the mid-span of

beam 1 was considered as the location of damage for
a single-type damage scenario, though the one-quarter span
of beam 1 and three-quarter span of beam 3 were selected as
damage location for the multiple-type damage scenario. It
should be noted that in this study, diferent parts of the
undamaged structure were incised to generate the damaged
state. Ten, the loss of stifness was recovered by welding
back the members to create another undamaged state. In this
regard, the process of controlled cutting and welding was
repeated in diferent damage scenarios. Ten, the fndings of
the experimental modal analysis were employed in the role
of inputs for the circular data mining-based process.

Vibration characteristics of the frst four fexural modes,
i.e., Fi, i� 1, 2, 3, 4 in healthy and damaged cases for single-
and multiple-type scenarios were obtained, as shown in
Figure 6. Te horizontal axis of each fgure signifes the
twenty-six damage cases including the intact state in ad-
dition to twenty-fve damaged states.Te vertical axis of each
fgure indicates the natural frequency measurements. As it
can be seen from the fgure, in general, the trend of modal
parameters in both scenarios reduced with damage ex-
pansions. However, several damaged states experienced
slight fuctuations in particular modes. For example, the
maximum reductions of natural frequency values were
3.71% in F2-multiple damage state, 3.68% in F3-single
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Figure 1: Te proposed closed-loop model inspired by circular economy.
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damage state, and 4.16% in F3-multiple damage state.
Conversely, the minimum reductions of natural frequencies
belonged to mode 4 with 1.17% and 0.95% in single and
multiple damage states, respectively. Tis is due to the node
points aimed at certain mode shapes (see Figure 7). In

addition, the results indicated that minor fuctuations of the
natural frequencies afected by environmental uncertainties
and noise were detected in some damage states, e.g., 36mm
damage state in modes 2 and 4 of single- and multiple-
damage scenarios.
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Figure 2: (a) Layout plan and dimensions, (b) construction of the specimen, (c) shear stud connectors, (d) casted model, (e) schematic view,
(f ) laboratory test setup, and (g) schematic setup of the specimen.
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3.2. Artifcial Neural Network (ANN) Integrated with Genetic
Algorithm (GA). ANN is one of the greatest powerful AI
algorithms inspired by biological neurons [80]. ANNs are
categorized using their topology. For instance, a neural
network can be feedback or feed-forward. In recent years,
ANNs have been employed for solving civil engineering
problems encountered in diferent structures from basic
structural members (e.g., truss structures [81], reinforced
concrete beams [82], and steel plates [83]) to complex
systems (e.g., dams [84], buildings [85–87], and bridges
[88, 89]). In spite of this, according to [90, 91], ANNs are
afected by a lack of reliance on allocating the weights to
networks between layers. As a result, it can increase the error

in the results of the network. In order to prevent such
problems, an optimization-based algorithm can be applied
in the training procedure of the network. GA holds the
highest standard aimed at resolving global optimization
problems [92]. Tis algorithm can enhance the generaliza-
tion performance of artifcial models. In addition, the
technical advantages of GA are high parallelism, initial
values independence, and outstanding robustness in the
calculation of extreme values [93]. Figures 8 and 9 show the
fundamental concepts and structures of ANN and GA,
respectively. Based on the mentioned description, an ANN
integrated with a genetic algorithm (GA) is developed in
this study.
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4. Results and Discussion

Finite element modeling of the test structure was carried out
using ABAQUS to verify the laboratory outcomes using
modal frequencies. Te element type for the numerical
model of the I-beam was Shell homogeneous S4R, which was
a 4-node doubly curved thin or thick shell, reduced in-
tegration, hourglass control, and fnite membrane strains.
Te element type for the fnite element model of the girder
deck was Solid homogeneous C3D8R, which was an 8-node
linear brick, reduced integration, and hourglass control. Te
fnite element model of the I-beam and girder deck consisted
of 432 and 7533 nodes and 371 and 4800 elements, re-
spectively. After a variety of trials, the boundary condition of
the model on both sides was considered as simply supported,
pinned-roller with spring elements. For pinned support,
rotations along the X, Y, and Z directions and translation of
the Y-axis were zero. For roller support, rotation along the X
and Y directions and translation of the Y-axis were zero. To
associate the rigidity of the beam and supports, two springs
have been modeled at the locality of the top fange of the I-

beam in the horizontal direction at roller supported side
with a stifness of 0.08GN/m and in both supports in the
vertical direction with a stifness of 0.06GN/m. For better
understanding, the frst four mode shapes in multiple-type
damage scenario with 75mm damage depth are detailed in
Figure 10.

Figure 11 demonstrates the correlation between the
numerical and experimental works based on fnding their
results. In this line, the diference between the numerical and
experimental modal frequencies was around 5% in modes 1
and 2 and 2% in modes 3 and 4. Terefore, the outcomes of
experimental and numerical analysis approved the validity
of the fndings.

As mentioned before, the ANN integrated with GA was
trained using the frst four experimental natural frequencies
of undamaged and damaged states, i.e., Fi, i� 1, 2, 3, 4 as
inputs and the acquired damage severities as outputs of the
network. It should be noted that the database was separated
into two partitions, comprising 80% for the training and 20%
for the testing groups. Tis step was conducted by the
modeling of two feed-forward neural networks for single-
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Figure 11: Te diference between simulation analysis and laboratory work. (a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode.
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Figure 12: Comparison of results: (a) training section of single-type damage state, (b) testing section of single-type damage state, (c) training
section of multiple damage state, and (d) testing section of multiple damage state.

Table 2: Comparison between the performance of patterns.

Model
Mean absolute error (MAE)

Training Testing
CART 4.706 7.200
SVM 5.056 4.925
Predeveloped ANN 1.355 2.097
ANN-GA 0.070 0.084
ANN-ICA 0.057 0.075
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type and multiple-type damage cases. Ten, GA has been
applied in the training procedure of the networks in order to
reduce the cost function and improve the weights of the
networks using its setting factors, i.e., population size� 150,
mutation� 0.35, crossover� 0.5, and maximum gen-
erations� 50. Figures 12(a)–12(d) present the results of the
developed hybrid network for single-type and multiple-type
damage cases in training and testing segments, respectively.
As shown in the fgure, the normalized predicted damage
severities were closely ftted to the actual measurements.
However, the capability of individual models was not the
same. For example, in the training segment of the multiple-
type damage state, the calculated outcomes ftted to the
actual recorded data with the matching pattern. In spite of
this, the training segment of the single-type damage state
gave lower ftness between forecasted and real data.

Recently, the performance of artifcial intelligence,
machine learning, and statistical algorithms aimed at the
damage detection of the composite bridge deck structure has
been reported through predeveloped ANN [94], support
vector machine (SVM) [95], classifcation and regression
trees (CART) [96], and hybrid ANN-imperial competitive
algorithm (ICA) [97]. In the current work, a comparison
between the aforesaid algorithms and the proposed model
was made to show the performance of the developed al-
gorithm, as shown in Table 2. Although themost appropriate
robustness was succeeded by hybrid algorithms due to
enhancing the learning procedure of the ANN utilizing
metaheuristic algorithms, after ANN-ICA, the best MAE
rates still belonged to the developed ANN integrated with
GA, which were 0.070 and 0.084 for the training and testing,
respectively. As shown in Table 2, the efciency of other
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Figure 13: Accuracy of outputs in (a) CART, (b) SVM, (c) ANN, (d) ANN-GA, and (e) ANN-ICA.
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methods, from best to worst succeeded by the predeveloped
ANN, SVM, and CART, respectively. It is mainly attributed
to the fact that the ability and complexity of artifcial in-
telligence techniques are beyond the capacity of statistical
methods.

It is also required to investigate the damage success of the
patterns. In this regard, Figure 13 illustrates the accuracy of
all patterns. Te detection success percentage is the ratio of
predicted to the actual values. According to the fgure, the
average percentage success is 57.95%, 59.29%, 79.58%,
86.44%, and 90.11% for CART, SVM, predeveloped ANN,
ANN-GA, and ANN-ICA, respectively.

5. Conclusions

Conventional approaches in SHM and nondestructive
damage detection methods are common tools for the
damage assessment of civil structures. However, they are
mostly time-consuming, expensive, require damage location
baseline data, and limited in capacity to assess the health
condition of structures, particularly for deep unobservable
damages as well as large and complex structures. However,
they are not benefcial to continuous monitoring, real-time,
and online assessment for solving real-world problems. To
overcome the mentioned drawbacks, advanced vibration-
based techniques using Industry 4.0 technologies can be
developed to upgrade conventional SHM, achieve
sustainable-based SHM, and implement reliable and eco-
nomical SHM systems. Similarly, the concept of circular
economy is a strategy to promote sustainable development.
By taking advantage of the relationship between circular
economy, data mining, and AI, a generalized systematic fault
diagnosis approach has been proposed in this study using
ANN-GA. After model creation, its performance was
evaluated by comparing the MAE of diferent computing
algorithms, i.e., CART, SVM, ANN, and ANN-ICA. Te
results confrmed the feasibility of the proposed damage
detection approach for sustainable-based damage detection
of composite bridges aimed at enhancing their smartifca-
tion. Te damage identifcation is not the last phase of the
proposed circular model. After pattern assessment, the
implementation of strengthening and retroftting plans is
required to ensure the reliability of the structure.
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[34] B. Miller and L. Ziemiański, “Optimization of dynamic be-
havior of thin-walled laminated cylindrical shells by genetic
algorithms and deep neural networks supported by modal
shape identifcation,” Advances in Engineering Software,
vol. 147, Article ID 102830, 2020.

[35] K. Elbaz, S. L. Shen, A. Zhou, Z. Y. Yin, and H. M. Lyu,
“Prediction of disc cutter life during shield tunneling with AI
via the incorporation of a genetic algorithm into a GMDH-
type neural network,” Engineering, vol. 7, no. 2, pp. 238–251,
2021.

[36] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “Knowledge
discovery and data mining: towards a unifying framework,”
KDD, vol. 96, pp. 82–88, 1996.

[37] X. Zhu, “Agile Mining: A novel data mining process for
industry practice based on agile methods and visualization,”
Master Dissertation, University of Technology Sydney, Ul-
timo, Australia, 2017.

[38] P. Chapman, CRISP-DM 1.0 Step-by-step Data Mininng
Guide, SPSS, Chicago, IL, USA, 2000.

[39] D. Stevens, Te leveraging efects of knowledge management
concepts in the deployment of six sigma in a health care
company, Ph.D. thesis, Walden University, Minneapolis, MN,
USA, 2006.

[40] A. Azevedo and M. F. Santos, “KDD, semma and CRISP-DM:
A parallel overview,” in Proceedings of the IADIS European
Conference Data Mining, pp. 182–185, Amsterdam, Te
Netherlands, July 2008.
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