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Te shear strength of fber-reinforced polymer (FRP) reinforced concrete beams is often given a large safety margin by current
construction requirements. Six characteristics are utilized as inputs to compute the shear strength of FRP-reinforced concrete
beams.Tis study uses 198 samples from the literature to predict the shear strength of 139 training samples and 59 testing samples.
Additionally, the ANN structure is optimized with the frefy algorithm. Te FA-ANN model is also compared to ACI-440, CSA-
S806, and BISE-99 codes, and the optimized model by Nehdi et al. Findings show that regarding the shear strength of FRP-
reinforced concrete beams, the frefy algorithm-optimized model performs better than the other four models. Concerning
accuracy, the coefcient of correlation, R2, was calculated as 0.961, while the average absolute error (AAE) is 0.22 for the shear
strength of FRP-reinforced beams.

1. Introduction

Corrosion problems in infrastructure impose huge expenses on
rehabilitating structures worldwide [1]. Furthermore, exposing
structures (e.g., water treatment facilities, marine structures, and
bridges) to extreme corrosion compromises their structure and,
therefore, reduces their service life tremendously [2]. Fiber-
reinforced polymer (FRP) bars are a promising substitute for
traditional reinforcing steel bars [3, 4]. Additionally, the greater
strength, smaller weight, and higher axial stifness-to-weight
ratio of FRPs make them more attractive solutions. However,
FRPs sufer from a few shortcomings compared to steel, in-
cluding a smaller modulus of elasticity, brittleness, and an-
isotropy. Recent research has focused on predicting the shear
strength of FRP-reinforced concrete beams in addition to other
aspects [5]. According to reports, themodulus of elasticity, shear
span-to-depth ratio, beamwidth, concrete compressive strength,
and fexural reinforcement ratio are the primary factors afecting
the shear strength of FRP-reinforced concrete beams without
stirrups [6].

Te current shear provisions in building codes are ex-
tensions of their steel-reinforced concrete predecessors. Te
design codes difer signifcantly in their choice of infuencing
parameters on shear strength and their contributions. Re-
searchers have assessed the shear provisions and concluded
that they are exceedingly cautious or insufcient in some
cases [5]. Tis overestimation results in an excess number of
bars in the design, which causes reinforcing congestion and
higher costs. Many provisions were devised at the time
utilizing restricted experimental data [7]. Te discrepancy
between experimental shear test fndings and code standards
illuminates our lack of understanding of the shear mecha-
nism in FRP-reinforced concrete members.

Furthermore, concrete members such as footings, slabs,
and bridge decks are constructed without stirrups. In ad-
dition, sudden and brittle failure may occur in these
buildings without imminent warning [3, 8]. Tis highlights
the signifcance of appropriately evaluating the shear
strength mechanism in FRP-reinforced concrete members
[2]. Also, research has been conducted on using basalt fber-
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reinforced polymer (BFRP) in short beams so that ten beams
with a length of 2.0meters and a rectangular section with
a width of 140mm and variable height were tested under
a four-point loading confguration. Using ABAQUS soft-
ware, a fnite element model was established to forecast the
behavior of the tested beams to a level that accurately
predicted the shear capabilities of the beams and recorded
their failure mechanisms [9, 10]. Also, using basalt micro-
fbers in the fber-reinforced polymer is a disputed topic [11],
and using optimization algorithms based on ANN to de-
termine the torsional strength of a reinforced concrete beam
[12, 13].

Researchers have successfully utilized soft computing
methods to increase the accuracy of shear strength pre-
diction methods. Nehdi et al. used genetic algorithms to
predict the shear strength of FRP-reinforced concrete beams
[14]. Kara predicted the shear strength of FRP-reinforced
beams without stirrups using genetic programming [15],
while Gandomi et al. used a linear genetic programming
approach for this purpose [16]. Bashir and Ashour proposed
an artifcial neural modeling approach, showed the feasi-
bility of this approach, and determined the contribution of
infuencing factors using experimental data available at the
time [17]. With more comprehensive experimental data
available, Lee and Lee used the same approach for FRP-
reinforced concrete beams without stirrups and proposed
the relevant design equations [18]. Te shear strength was
predicted using a fuzzy inference technique by Nasrollah-
zadeh and Basiri [19]. Shahnewaz et al. optimized shear
design equations using a genetic algorithm and reliability
analysis for FRP-reinforced beams with stirrups [20]. Also,
Golafshani and Ashour studied the feasibility of the
biogeography-based optimization for FRP-reinforced con-
crete beams without stirrups [21]. Hasanzade-Inallu et al.
estimated the shear strength of FRP-reinforced concrete
beams without stirrups by amassing many experimental test
results from the literature and modeling the shear strength
with an ANN trained using a modifed imperialist com-
petitive optimization algorithm [7].

Several opportunities exist within these soft computing
tactics to propose new models applying novel techniques to
reduce model uncertainty. Yang developed the frefy al-
gorithm, a technique for metaheuristic optimization in-
spired by the fashing behavior of tropical frefies. Te
algorithm has successfully performed over other meta-
heuristic algorithms [22]. Tis study focused on improving
the predictive accuracy of a model by training an ANN with
the frefy method. Te proposed method considered all the

relevant factors afecting shear strength and was validated
using a database of 198 specimens from the literature. Te
second section gives background information on ANNs and
the frefy algorithm. In Section 3, the setup and training of
the model are discussed. Sections 4 and 5 present the
fndings and conclusion, respectively. Figure 1 illustrates the
organization of this study.

2. Background

2.1. Artifcial Neural Networks (ANNs). ANNs were mod-
eled based on how the human brain performs tasks and
contains data processing units called neurons arranged
in layers. Feedforward (FF) is a class of ANNs consisting
of one input layer, one hidden layer, and one output
layer. In a fully integrated FF, each layer’s neurons are
connected to neurons in preceding and subsequent
layers. Te function of a neuron is frst to apply weights
to its inputs to refect the relevance of each input on the
output, then add a constant called bias to the result, and
then apply a function, called the activation function, to
the resulting sum. Te hyperbolic tangent function is
a typical activation function applied for regression
problems [23–25].

Typically, ANN weights are initialized randomly, caus-
ing the network’s output to deviate from the desired values.
A training method should modify the network weights and
biases to minimize the model’s error (i.e., the diference
between the output and target values) [23, 24].

Training an ANN is an optimization process, and the
approaches for tackling this optimization problem are di-
vided into gradient-based and metaheuristic methods.
Gradient-based techniques are fast, but they can become
trapped in local minima. In contrast to gradient-based
methods, metaheuristic methods are not trapped in local
minima. Te response provided by metaheuristic ap-
proaches is not always the global minimum. Nevertheless,
these approaches often aim to explore and exploit a sub-
stantial amount of the solution space to attain the correct
answers [23, 24].

ANNs are exposed to the overftting problem. An
overftted model can reliably predict outputs for the range of
inputs observed during training, but it lacks the generality
necessary to predict outputs for inputs not received during
training. Typically, this efect is countered by separating data
into training and testing sets. Te training set alters the
network’s weights, while the testing set is used to choose
more extensible networks [24, 26].
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Figure 1: Te article content outline.
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2.2. Firefy Algorithm (FA). FA is based on the fashing
pattern of tropical frefies proposed by Yang. Researchers
believe these bioluminescent signals’ primary functions are
to attract potential mates and prey. Also, they might act as
a defensive alerting mechanism to predators. Firefy algo-
rithm idealized this fashing behavior by using the following
three simplifying assumptions:

(i) All frefies are unisex and can absorb other frefies
regardless of gender [22].

(ii) A frefy’s attractiveness is proportional to its lu-
minosity; if two frefies are present, the dimmer one
will approach the brighter one. Due to the inverse
relationship between light intensity and distance
from the light source, frefies become less attractive
as their distance from the light source increases. If
a frefy cannot fnd a frefy that is brighter than
itself, it will move randomly [22].

(iii) Te architecture of the objective function governs
the luminance and, thus, the attractiveness of
a frefy. For our implementation, the lower the cost
of a frefy, the higher its brightness will be [22].

When training an ANN using the frefy algorithm, the
network’s weights and biases were specifed as frefy loca-
tions, and the network’s prediction error was defned as its

cost function. As the fnal weights and biases of the network,
the position of the frefy with the lowest cost (most
brightness) was selected. Figure 2 [22, 27] shows the fow-
chart of the frefy algorithm.

3. Methods and Materials

3.1. Dataset. Te experimental data required to train and
test artifcial neural networks were collected from the dataset
by Hasanzade–Inallu et al. [7]. It contains 198 test cases of
shear strength of FRP-reinforced concrete bars without
stirrups. Table 1 provides descriptive statistics regarding the
fndings of the experimental test.

3.2. Model Setup. Te selected parameters for training artifcial
neural networks (ANNs), drawn from past research, are web
thickness (bw), efective depth (d), shear span-to-depth ratio (a/
d), FRP longitudinal reinforcement ratio (ρf), FRP bar modulus
of elasticity (Ef), and concrete compressive strength (fc

′). Tese
six parameters served as inputs to neural networks; the network’s
output was the shear strength.

Te ANNs’ input variables have varying ranges, which
can increase the training time or cause the optimization
algorithm to diverge [24]. Each variable was normalized to
a range of [−1, 1] using the following equation to bring
diferent input and output variables to similar ranges:

Yn �
2 Y − Ymin( 

Ymax − Ymix
− 1, (1)

where Yn is the normalized variable value, Ymax is the
maximum value, and Ymin is the minimum value. Y is the
original variable value (un-normalized). Each variable’s
minimum and maximum values are presented in Table 1.
Since the ANNwill be trained using the normalized values of
the variables, it is necessary to normalize any future input
into a trained network and un-normalize the network’s
output into its original range [7].

Te ANN architecture is problem-dependent [23]. Te
optimal architecture, including the number of neurons and
hidden layers, was thus determined by trial and error (i.e., best
representing the data). Forty-fve architectures with two or three
hidden layers were trained, and the best-performing architec-
tures were chosen. Tis research used ANN models and the
frefy algorithm in MATLAB software [28].

3.3. Model Training. Data were separated randomly into two
groups to prevent overftting. Seventy percent (139 test cases)
were used to train the networks, while thirty percent (59 test
cases) were used to test the network on data not seen during
training to identify the networks with the most excellent gen-
eralization capabilities. Te hyperbolic tangent function was
employed as the activation function for hidden layers, while the
identity function was used for the output layer.

Training a neural network aims to optimize its weights and
biases (i.e., parameters) to reduce the network’s prediction error.
Te frefy algorithm (FA) was used to train the networks. For
every network architecture, the network parameters were de-
fned as frefies, and by generating a population of frefies, FA

Start

Generate initial population of fireflies

Evaluate the brightness of all fireflies 

Update the brightness of fireflies

Rank the fireflies and update their
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Maximum
iteration
reached?
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Figure 2: Flowchart of frefy algorithm.
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generated the initial possible network parameters. As the iter-
ations of FA progressed, the network parameters (frefy posi-
tions) were updated to refect the behavior of the training dataset
and, therefore, minimize the prediction error.Te fnal solution
of the FAwas chosen as the optimumnetwork parameter for the
given network architecture. Te parameters chosen for FA were
inspired by the recommendations given by Yang [22] and were
somewhat altered to best train the ANNmodel. Te parameters
used are given inTable 2, and the description of the parameters is
given in Section 2.2.

As recommended by most researchers, the chosen error
measure for ANN models was the mean squared error
(MSE) function given in the following equation:

MSE �
1
n



n

i�1
Vpredicted,i − Vexperiment,i 

2
, (2)

where n is the number of training samples (139 in our case),
Vpredicted,i is the neural network output for the ith sample,
and Vexperiment,i is the shear strength of the ith test case
reported from experiments.

4. Results

4.1. Model Evaluation. Test data’s mean squared error
(MSE) was chosen as the error metric to select the best-
performing artifcial neural network (ANN) among 45
trained architectures. Te top four performing ANNs are
given in Table 3. Te networks are sorted in the order of
increasing values of the MSE value of test data. ANN
identities are labeled with ANN mL (n1-n2-n3), where m
is the number of hidden network layers, and n1, n2, and
n3 are the number of neurons in the frst, second, and
third hidden layers, respectively.

Figure 3 provides a visual representation of the performance
of the top four networks by plotting the values predicted by the
networks against their experimental values from the database.

Since the points in Figure 3 are near the y� x line, the
projected shear strength values correspond to the observed
values. Figures 4 and 5 depict the training and testing
performance of the leading network, ANN 3L (2-6-2).

As demonstrated in Figures 4 and 5, the best-
performing network’s projected values for both the
training and testing phases closely match their experi-
mental values. It is noteworthy that the ANN 3L (2-6-2)
performs well even for one test case where the shear
strength is about 810 kN, which is much higher than the
rest of the test cases. Te ANN 3L (2-6-2) model is chosen
for further analysis.

4.2. Comparison with Existing Equations. ACI-440.1R-15
[30], CAN/CSA-S806-12 [31], BISE-99 [32], and Nehdi
et al. (optimized equation method) provide the shear
design requirements for FRE-reinforced concrete beams
without stirrups.) [33, 34]. Tus, they were used on
experimental test data. Teir predictions were calculated
to evaluate the relative accuracy of the selected ANN 3L
(2-6-2) model compared to other models recommended
by code provisions and some published models (strength
reduction coefcient assumed to be φ� 1). For a visual
indication of the accuracy of equations given by ACI-
440.1R-15 [30], CAN/CSA-S806-12 [31], BISE-99 [32],
and the optimized equation by Nehdi et al. [14, 33], their
predictive values are plotted against the experimental
values and are illustrated in Figure 6. Te three con-
sidered codes underestimate the shear strength, con-
frming the reports from other researchers [7, 17].

In addition, the mean, standard deviation (SD), and
coefcient of variation (CV) of the equations’ forecasted
shear resistance were assessed. Te values provided by
the top four ANN models are given in Table 4. Te model
is considered accurate when the mean value is near one
and SD returns a low value. Compared to other ANN
models, although ANN 3L (2-6-2) does not have a mean
value closest to one, it is identifed as the best model since
its CV value is the lowest. Terefore, the model’s sta-
tistics are more reliable. Te model’s coefcient of var-
iation (R2) is also calculated and depicted in Figure 7. Te
ANN 3L (2-6-2) model has the most signifcant variation
coefcient, and best describes the variation in the data.

Te Taylor diagram (Figure 8) provides an additional
visual comparison of the performance of the FA-ANN
model and that of the other code models. It presents
a graphical representation of each model’s applicability
based on the root mean square-centered diference,
correlation coefcient, and standard deviation. Te re-
sults of the study indicate that the FA-ANN model better
estimates the total defection closest to the experimental

Table 1: Descriptive statistics of the experimental data [7].

fc
′ (MPa) ρf (%) Ef (GPa) a/d bw (mm) d (mm) Vcf (kN)

Mean 41.57 1.07 58300 3.32 284.40 336.79 92.97
Standard deviation 13.08 0.64 42.47 1.44 190.08 210.90 112.77
Min 22.70 0.18 23.20 1.00 89.00 104.00 9.80
Max 88.30 3.43 192.00 12.50 1000.00 1097.00 953.00
Here, fc

′� concrete compressive strength; ρf � FRP longitudinal reinforcement ratio; Ef � FRP bar modulus of elasticity; a/d� shear span-to-depth ratio; bw

�web thickness; d� efective depth; and Vcf � shear strength of the concrete beam.

Table 2: Firefy algorithm parameters [29].

Parameter Value
Population size 100
Mutation coefcient 0.25
Light absorption coefcient 1
Attraction coefcient base value 2
Mutation coefcient damping ratio 0.99
M (exponent of distance term) 2
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shear strength of FRP-reinforced beams, followed by the
model developed by Nehdi et al. Compared to the
ACI-440 and BISE-99 code models, the CSA-S806 model
produced higher root mean square-centered diference
and SD values, indicating a model with less precision
when approximating experimental data.

4.3. Sensitivity Analysis. A sensitivity analysis determined the
efect of inputs on the outputs [35]. In this work, theGevrey et al.
[35, 36] profle approach was implemented in MATLAB soft-
ware [28]. Tis technique evaluates each input variable

individually while keeping the others constant. During execu-
tion, the scale separated the range of each input variable into
many equal intervals.Te remaining variableswere assigned ton
distinct constant values, and the network output was calculated
across the whole range of the chosen variable, resulting in n
distinct output groups. Finding the median output for each
input scenario was the last step in combining the n output
groups.Teminimum, frst quartile, median, third quartile, and
maximumwere utilized as constant values for each variable. Lek
ofers the details of the method [35, 36]. Te chosen scale was
192, as suggested by Gevrey et al. [35, 36].

Table 3: Top four ANN statistics.

Num Topology
Train Test

R2 y� ax+ b RMSE AAE R2 y� ax+ b RMSE AAE
1 FA-ANN 3L (2-6-2) 0.972 y� 0.9426x+ 3.9394 20.18 0.21 0.952 y� 1.0783x+ 0.9683 26.37 0.25
2 FA-ANN 3L (8-2-4) 0.970 y� 0.9554x+ 3.9683 20.37 0.24 0.942 y� 1.1022x+ 1.6858 30.98 0.32
3 FA-ANN 3L (3-7-3) 0.955 y� 0.9303x+ 5.0749 25.14 0.26 0.928 y� 1.1101x - 0.4873 33.84 0.30
4 FA-ANN 3L (3-8-2) 0.965 y� 0.9696x+ 2.8502 21.95 0.25 0.943 y� 1.1669x - 4.1261 34.73 0.31

y = 0.9734x + 3.838
R2 = 0.9613
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Figure 3: Experimental vs. predicted values of shear strength for (a) ANN 3L (2-6-2) model, (b) ANN 3L (8-2-4), (c) ANN 3L (3-7-3) model,
and (d) ANN 3L (3-8-2) model.
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Figure 9 depicts the explanatory variables’ relative in-
fuence and contribution (six inputs) on the response var-
iable (shear strength).

Te two most essential criteria are beam width and ef-
fective depth. Since average stress equals shear force divided
by cross-sectional area, width increase directly afects shear
strength. Since higher efective depth results in longer di-
agonal shear cracks at maximum loading, beams with greater
efective depth have greater shear strength. Shear strength
has the most negligible efect on concrete compressive
strength.

4.4. PredictiveModel and ANNWeights. Since the generated
ANN 3L (2-6-2) would be useless without its source fle, the
weights and biases of the trained network are given in this
study. Te input data must be normalized with equation (1)
using the minimum and maximum values from Table 1, and
the output from the network must be denormalized using
equation (3). Te input is the 6×1 vector, a(1). Te shear
strength is determined by the following equations [7, 37]:

a(2)
� tan h ϑ(1)

× a(1)
+ b1 ,

a( )
� tan h ϑ(2)

× a(2)
+ b2 ,

a(4)
� tan h ϑ( )

× a( )
+ b  ,

V
predi ct(normalized)
c � tan h ϑ(4)

× a(4)
+ b4 ,

V
predi ct
c �

V
predi ct(normalized)
c + 1

2
× Vmax − Vmin(  + Vmin,

(3)

Table 4: Statistical index of experimental to the predicted shear strength of FRP-reinforced beams.

Num Topology
All

R2 y� ax+ b RMSE AAE
1 FA-ANN 3L (2-6-2) 0.961 y� 0.9734x+ 3.838 22.21 0.22
2 FA-ANN 3L (8-2-4) 0.956 y� 0.9887x+ 4.1415 24.03 0.26
3 FA-ANN 3L (3-7-3) 0.939 y� 0.9713x+ 4.4465 28.02 0.27
4 FA-ANN 3L (3-8-2) 0.950 y� 1.0145x+ 1.8956 26.41 0.27
5 ACI-440 0.315 y� 0.166x+ 23.551 111.69 0.53
6 CSA-S806 0.451 y� 0.3358x+ 40.062 88.28 0.22
7 BISE-99 0.308 y� 0.196x+ 33.473 104.76 0.36
8 Nehdi et al 0.881 y� 0.9748x+ 13.568 41.91 0.25

y = 0.196x + 33.473
R2 = 0.3083

0

250

500

750

1000

0 250 500 750 1000
Observation Data

Shear Strength
Linear (y=x)

Ca
lc

ul
at

ed
 D

at
a

(c)

Ca
lc

ul
at

ed
 D

at
a

y = 0.9748x + 13.568
R2 = 0.8811

0

250

500

750

1000

0 250 500 750 1000
Observation Data

Shear Strength
Linear (y=x)

(d)

Figure 6: Experimental vs. predicted values of shear strength for (a) ACI-440.1R-15 equation, (b) CSA-S806-12 equation, (c) BISE-99
equation, and (d) Nehdi et al. (optimized) equation.
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where tanh� hyperbolic tangent function; Vpredi ct
c

� predicted value of shear strength, and Vmax and
Vmin �minimum and maximum shear strengths provided in

Table 1. Te weight (θ) and bias (b) matrices are provided in
the following:

ϑ(1)
� 10− 1

×
2.2164 −0.6883 8.6643 −10.0000 −9.9421 3.3755

0.2448 −2.8990 2.6792 10.0000 −8.3346 −2.2653
 ,

ϑ(2)
� 10− 1

×
−10.0000 6.0145 6.7892 −4.3231 2.1742 8.7769

8.3649 8.6428 −6.4922 −9.6582 −5.2643 −10.0000
 

T

,

ϑ( )
� 10− 1

×
−3.9723 −5.3190 7.2372 4.0631 −0.6853 6.1589

8.4195 −4.6722 −9.4349 −7.1096 −2.5752 −6.2628
 ,

ϑ(4)
� 10− 1

× 9.5694 −8.6457 ,

b1 � 10− 1
× −3.2927 7.0137 

T
,

b2 � 10− 1
× 9.8089 −2.7279 −9.9623 9.1751 −3.7018 −9.3895 

T
,

b � 10− 1
× 1.2541 −7.1203 

T
,

b4 � 0.6549.

(4)

5. Conclusion

One hundred ninety-eight published experimental test
results were compiled to solve the fber-reinforced
polymer (FRP) reinforced concrete beam shear
strength prediction problem with longitudinal bars and
without stirrups. Te frefy algorithm (FA) was used to
train the ANN models. Te results analysis suggests the
following:

(1) Te trained FA-ANN 3L model (2-6-2) is more
accurate than other ANNs with similar topologies for
estimating concrete beam shear strength. Tis
model’s RMSE and AAE for all available data were
22.21 and 0.22, respectively.

(2) Nehdi et al. introduced a straightforward experi-
mental model for estimating the shear strength of
concrete beams. It ofered acceptable results; how-
ever, these results are less accurate than the proposed
FA-ANN 3L (2-6-2) model.

(3) Te trained ANN 3L (2-6-2) model can predict the
shear strength more accurately than the three code
provisions and two models suggested in the litera-
ture. Te mean value and standard deviation of
experimental to predicted values are 1.0342 and
0.3073, respectively.

(4) According to the sensitivity analysis results, the
beam width and efective depth are the most in-
fuential parameters on the shear strength of FRP-
reinforced beams. Te least infuential factor is
concrete compressive strength.

(5) Based on the weights and biases of the ANN 3L (2-6-
2) model (top-trained model), a predictive model
was developed to enable access to the trained model
without the source fle.

(6) Findings confrm literature concerns that code
standards underestimate the shear strength of FRP-
reinforced concrete beams, which could increase
costs and reinforce bar congestion.

Data Availability

Te datasets are available in the Appendix at https://link.
springer.com/article/10.1007/s11771-019-4243-z, and re-
searchers can access to datasets.
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