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The equations for the critical height of layered slope were derived by a related researcher, but they lack details and do not agree with
the method of limit equilibrium. So this topic was reinvestigated. Considering the possible global or local failure modes of the
layered slope, the equations for the critical height of the above modes are derived based on the upper limit theorem by using
rotational failure mechanisms or rotational and translational failure mechanisms. Based on the above theory, the stability coeffi-
cients of layered slope are investigated. The results show that the presented upper bound approach has better performance than
other methods mentioned in the literature and is consistent with the limit equilibrium method. In combination with the strength
reduction method, the global and local stability of the layered slope are analyzed using the several examples. The high-calculation
accuracy of presented method and the specific measures to improve the smoothness of the sliding surface are reviewed. From the
perspective of the combination of sliding surfaces, the dimensionless parameter vector of the layered slope is introduced. The
possible limitations of the upper bound limit approach with log spirals are pointed out and the conditions which must be fulfilled in
order to achieve a higher computational accuracy are mentioned.

1. Introduction

Slope stability analysis is an important component of the
geotechnical engineering. The economic consequences of
landslides are significant, as they can endanger human life
and property [1]. After more than half a century, several
methods for the analysis of slope stability have been pro-
posed and applied: the best known are the limit equilibrium
method (LEM), which is based on a fundamentally empirical
background, and the finite element method (FEM). The for-
mer was first proposed by Fellenius [2], and other methods,
such as those of Bishop [3], Morgenstern and Price [4],
Spencer [5], and Sarma [6], are constantly applied and devel-
oped. However, there are no theoretical reasons that suffi-
ciently explain the success of the extensive applications, and
the analysis results are not the upper and lower bounds of the
true solution. The FEM, without assumptions on the failure
mode, the numerical approach through elastoplastic, can
deal with a wide range of practical problems. With the shear
strength reduction (SSR) technique, elastoplastic FEM

provides a powerful tool for the geotechnical stability analysis.
Nevertheless, there are inconsistencies in the slip criterion and
constitutive relations, as well as convergence problems. As
another attractive alternative for slope stability estimation,
limit analysis is widely applied and studied due to its distinct
advantages. With this method, lower and upper boundary
solutions can be determined, which can define the range of
the true solution.

The earliest study of the upper bound method focuses on
the homogeneous slopes. For the first time, the upper bound
theorem of limit analysis was applied to the geotechnical
problems and an explicit expression for the critical height
of the homogeneous slope was derived by Chen et al. [7]. In
his book “Limit analysis and soil plasticity,” he described the
principles of the upper and lower bound theorems of plastic-
ity when applied to soil mechanics [8]. Later, Karal [9, 10]
improved the upper bound method and derived the expres-
sion for the slope safety factor. Michalowski [11] presented
another upper bound method with translational failure
mechanism for the slope stability analysis, in which the block

Hindawi
Advances in Civil Engineering
Volume 2023, Article ID 4286038, 9 pages
https://doi.org/10.1155/2023/4286038

https://orcid.org/0009-0004-8391-3098
https://orcid.org/0009-0005-0961-6092
https://orcid.org/0009-0007-2198-0967
https://orcid.org/0009-0002-7465-6419
https://orcid.org/0009-0006-6720-1415
mailto:zhyh9606@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4286038


was divided vertically for landslides, and later (2002) pre-
sented stability diagrams for uniform slopes [12]. Kumar
[13] developed a detailed step-by-step procedure for calcu-
lating the factor of safety (FOS) of a slope. Later (2004), he
used the concept of energy balance to calculate stability num-
bers of soil slopes with nonassociated coaxial and noncoaxial
flow rules [14].

Some attention has previously been given to the studies
of inhomogeneous slopes, which are much more common in
real situations. Chen [8] used the kinematic approach to
evaluate the stability of inhomogeneous and anisotropic
slopes, assuming a logarithmic spiral failure surface but a
uniform friction angle. Donald and Chen [15] proposed an
upper bound method in which the sliding block was divided
into several inclined slices. Chen et al. [16] and Chen [17]
extended this solution domain to three dimensions and
active earth pressure. Later, Nian et al. [18] used reinforcing
piles to evaluate the slope stability in inhomogeneous and
anisotropic soils and combined the kinematic approach with
the SSR technique. Recently, several studies have extended
the kinematic analysis technique to three-dimensional (3D)
conditions [19]. Kumar and Samui [20] and Sun et al. [21]
have each presented their own analysis methods with upper
bounds for heterogeneous slopes. The latter considered the
variation of shear strength parameters with soil depth by the
spatial discretization technique, but there were still some
problems that could not be ignored. Wang et al. [22] crea-
tively transformed the composite slope into a single homo-
geneous slope and presented a limit analysis method suitable
for the stability of 3D composite slopes. Chwała [23] pro-
posed an upper boundary analysis method using a dashed
line to simulate the failure mechanism of the dissipation zone
of slopes with spatially variable properties.

Based on the theory of plastic limit analysis, Professor Sloan
proposed a more widely applicable finite element limit analysis
(FELA) method without assuming a failure mechanism by
combining the generalized variational principle and the mixed
FEM using either linear programing or nonlinear programing
methods. Subsequently, some researchers [24–27] have gradu-
ally proposed more rigorous theoretical formulas for the upper
and lower bounds. This method is currently applicable to rigid
plastic or elasticplastic soils, and to various yield criteria and
uncorrelated yield rules, and has been adopted by the geotech-
nical engineering software OPTUM. However, the computa-
tional efficiency of this method may decrease as the number of
unit grids increases. Therefore, it is important to propose a
more efficient and simpler stability analysis methods for strati-
fied slopes, which are commonly used in practice.

Despite the extensive research that has been conducted
since the critical slope height equation proposed by Chen [8],
this classical method of strict upper bound method of slope
has not been fully developed in the field of heterogeneous
slopes because of the numerical difficulties [15]. But not
enough attention has been paid to the critical slope height,
which is important for excavation, design, and backcalcula-
tion of the slopes. Therefore, although the above researches
on the upper limit analysis method are effective and applica-
ble, there are still the following deficiencies.

(1) Explicit expressions for the critical height of the slope
were not given. And the mechanism of partial rota-
tion and partial instantaneous failure under the local
stable failure mode was not fully considered.

(2) In particular, the results of the method proposed by
Kumar and Samui [20] and Sun et al. [21] are not
compatible with those of the method of limit equi-
librium in some examples.

(3) The limits of the approach of the upper bound with
logarithmic spirals could not be shown.

(4) In the finite element limit analysis method, the
computational efficiency depends on the number of
finite elements.

In this study, continuing the research of Chen and the
above researchers, the expressions for the critical slope
height at different failure modes were derived. The causes
of the excessive calculation error of the upper bound method
are discussed qualitatively, and the conditions that must be
satisfied for higher calculation accuracy of the upper bound
method are indicated.

2. Upper Bound Theorem

The upper bound theorem states that if the rate of external
work (gravity) is equal to the rate of energy dissipation in any
kinematically admissible velocity field, the solution is the
upper bound of the true solution. In the kinematic approach,
the main task in deriving the critical slope height is usually to
assume a collapse mechanism and to determine the rate of
external work and internal energy dissipation.

2.1. Collapse Mechanism. Two types of sliding surfaces, the
combination logarithmic spirals (CLS) and the CLS with line
(CLSL), are adopted, respectively, for the failure modes of
global and local stability of layered slope. In both, all logarith-
mic spirals have a common pivot point, but in the latter, the
straight line represents the instantaneous translational motion
of the slope’s rigid soil mass, as shown in Figures 1 and 2.

As shown in Figure 1, a layered slope with n soil layers
has a slope toe En, slope vertex E1 or e1, slope height H, slope
angle β and β0. The boundary line between two adjacent soil
layers (i.e., soil i and soil i+ 1) has points Ei and ei with a
horizontal slope angle αi and intersection point Ai with the
sliding surface of the slope. And the main material parame-
ters of slope of the i layer are γi; ci;φi. Each layer of soil i has
a thickness mi H and a slip line which can be defined by a
logarithmic spiral as follows:

r ¼ riexp θ − θið Þtanφi½ �; ð1Þ

where r and ri are the radii of rotation. The former lies
between an angle of θi and θiþ1, the latter corresponds to
an angle of θi. The vi in Figures 1 and 2 represent the velocity
field of the sliding rigid blocks in the slope, with an angle of
φi between the velocity field and the tangent to the sliding
surface. To facilitate the derivation of the formula, the expo-
nential parts of ri are denoted as Gi, and expressed as follows:
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ri ¼ ri−1exp θi − θi−1ð Þtanφi½ � ¼ r1Gi; ð2Þ

where Gi expressed as follows:

Gi ¼ ∏
i

i¼2
exp θi − θi−1ð Þtanφi½ �; i ¼ 1;G1 ¼ 1ð Þ: ð3Þ

For the slope with local failure, the soil mass above the
logarithmic spirals is assumed to rotate about a common
pivot point in the limit state of equilibrium, while the soil
above the straight slip line undergoes an instantaneous trans-
lational motion. The above motions must satisfy the condi-
tion of velocity continuity, which is expressed as follows:

θi ¼
π

2
þ φi − αi: ð4Þ

Note that the height ratio coefficient mi cannot be
applied directly, but must be converted to the virtual height
ratio coefficient m

0
i in the following form

m
0
i ¼ ∑

i¼1
mi 1þ sin β0sin αiþ1

sin β0 − αiþ1ð Þ cot β0 − cot βð Þ
� �

− ∑
i−1

i¼2
m

0
i−1:

ð5Þ

Although the slip line in Figure 1 is different from that in
Figure 2, it is obvious that Figure 2 is a special case of
Figure 1. So, it takes the same form.

Similar to Chen’s [8] derivation, the geometric relation-
ships of the layered slope are given as follows:

H=r1 ¼ sin β0=sin β0 − α1ð Þ Gnþ1sin θnþ1 þ α1ð Þf
−sin θ1 þ α1ð Þg;

ð6Þ

Li=r1 ¼ Gisin β0 − αið Þ Gisin θnþ1 þ α1ð Þf
−Gnþ1sin θ1 þ α1ð Þg: ð7Þ

The stability analysis process based on the critical slope
height formula is essentially an optimization process. For the
collapse mechanism of CLS, the optimized parameters are θ1,
θnþ1 and β0, and for CLSL, the optimized parameters are θ1
and β0, but there are more intermediate nonindependent
variables, such as θ2, θ3, …, θn in Figures 1 and 2. These
variables are determined by the following equation.

m
0
2=m

0
1 ¼ M3 −M2ð Þ= M2 −M1ð Þ

⋮
m

0
i =m

0
i−1 ¼ Miþ1 −Mið Þ= Mi −Mi−1ð Þ

⋮
m

0
n=m

0
n−1 ¼ Mnþ1 −Mnð Þ= Mn −Mn−1ð Þ

Mnþ2 ¼ Mnþ1

8>>>>>>>>><
>>>>>>>>>:

; ð8Þ

where Mi is expressed in the form

Mi ¼ Gi sin θi þ
Li
ri
sin ai

� �� �
: ð9Þ

2.2. External Power Rate. Researchers believe that it is diffi-
cult to integrate the external work of the stratified slope, but
in reality there is no such difficulty for the stratified slope,
and the calculation of the external force shows regularity. For
the i-layered slope, in Figure 1, the external power rate can
be expressed as follows:
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FIGURE 2: Collapse mechanisms of the layered slope (local stability).
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FIGURE 1: Collapse mechanisms of the layered slope (global
stability).
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Wi ¼ WOAiAiþ1
þWNiAiþ1Eiþ1

−WOEiAi
−WOEiNi

−WEieieiþ1Eiþ1
:

ð10Þ

It can be simplified as follows:

Wi ¼ γiΩ fOAiAiþ1
þ fNiAiþ1Eiþ1

− fOEiAi
− fOEiNi

− fEieieiþ1Eiþ1

Â Ã
;

ð11Þ

where γi is unit weight, Ω is angular velocity, fOAiAiþ1
and

fNiAiþ1Eiþ1
, fOEiAi

, fOEiNi
, fEieieiþ1Eiþ1

are, respectively, expressed
as follows:

fOAiAiþ1
¼ G3

i

3 1þ 9 tanφi½ �2ð Þ
3tanφicos θiþ1 þ sin θiþ1ð ÞG

3
iþ1

G3
i

�

− 3tanφicos θiþ1 þ sin θið Þ
�
;

ð12Þ

fNiAiþ1Eiþ1
¼ sin β0 − αiþ1ð Þsin θiþ1 þ aiþ1ð Þ

6sin β0 þ θiþ1ð Þ
Liþ1

r1

� �
2

3Giþ1cos θiþ1 −
Liþ1

r1

cos θiþ1sin β0 − aiþ1ð Þ
sin β0 þ θiþ1ð Þ

��

þ cos αiþ1

��
;

ð13Þ

fOEiAi
¼ 1

6
Li
ri

� �
2

2cos θi −
Li
ri
cos αi

� �
sin θi þ αið ÞG3

i ;

ð14Þ

fOEiNi
¼ 1

6
Gnþ1sin θnþ1 þ β0ð Þ m

0
i

sin β0
H
r1
−
Liþ1

riþ1

sin θi þ aið Þ
sin β0 þ θið Þ

� �
;

ð15Þ

fEieieiþ1Eiþ1
¼ f iþ 1ð Þ − f ið Þ; ð16Þ

in which, f ið Þ is written as follows:

f ið Þ ¼ 1
6
∑
i

i¼2
m

0
i−1 ∑

i

i¼2
mi−1

H
r1

� �
2
cot β0 − cot βð Þ

3Gnþ1cos θnþ1 þ
H
r1

3cot β0 − ∑
i

i¼2
m

0
i−1cot β

0 þmi−1cot β
À Á� �� �

; i ¼ 1; f ið Þ ¼ 0ð Þ:
ð17Þ

2.3. Internal Energy Dissipation Rate. Considering the upper
bound theorem, the slip surface can be regarded as the sur-
face of the velocity discontinuity. However, if one follows the
associated flow laws and the Mohr–Coulomb criterion, this
inevitably leads to the consumption of frictional and dila-
tional energy balancing out. By integration, the rate of inter-
nal energy dissipation occurring in the velocity discontinuity
surface can be written as follows:

E ¼ ∑ci G2
iþ1 − G2

i

À Á
=2tanφi: ð18Þ

For local failure, both the log spirals and the linear sec-
tion have internal energy dissipation, so the internal energy
dissipation rate can be expressed as follows:

E ¼ ∑ci G2
iþ1 − G2

i

À Á
=2tanφi þ ci cot β0 − cot βð Þcos φi

H
r1
:

ð19Þ

2.4. Critical Heights of Layered Soil Slope. When the rate of
external work equals to E , the soil mass of the slope reaches
the limit equilibrium state. Therefore, the critical height of an
n-layered slope can be expressed as follows:

Hcr ¼
∑ci G2

iþ1 − G2
i

À Á
=2tanφi

∑fiγi

H
r1
; ð20Þ

in which H=r1 is shown in Equation (6).
It can be seen that for the layered slope with different

material parameters, there is no form of the stability coeffi-
cient corresponding to that of the homogeneous slope. For
the local failure mode, the similar equation for the critical
height can be formulated as follows:

Hcr ¼
∑ci G2

iþ1 − G2
i

À Á
=2tanφi þ ci cot β0 − cot βð Þcos φiH=r1

∑fiγi

H
r1
:

ð21Þ

By using the above formula in conjunction with SSR, the
slope stability analysis problem can be transformed into an
optimization problem. When the critical heightHcr is exactly
equal to the actual height of the slope, the reduction coeffi-
cient is the slope stability FOS.

3. Evaluation of Analytical Methods

In order to test and analyze the effectiveness and limitations
of the proposed approach and to provide a method for
improving the smoothness of the sliding surface, three
main examples are presented in this work.
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3.1. Verification and Discussion (Global Failure Mode).
According to Equation (20), a multilayered slope naturally
degenerates into a homogeneous slope when soil parameters
are the same. Chen [8] has given the stability coefficients Ns

(Ns ¼ γH=c) of homogeneous slopes in the range of friction
angle from 5° to 20°, which cover most cases of practical
engineering applications. As shown in Table 1, the stability
coefficients in this work are almost identical to those of Chen
[8] and Sun et al. [21] while Sun’s results are smaller, which
may lead to a larger FOS in the slope stability analysis.

To investigate the performance of the presented method
for the layered slope, the first example of Kumar and Samui
[20], whose critical equation for the layered slope is worth
reevaluating, was used withm1 of 0.4,m2 of 0.6, γ of 17.8 kN/
m3, c of 14.3 kN/m2, φ1 of 10°, φ2 of 20°, and the geological
profile in Figure 3. Comparing the results of this work with
those of Kumar and Samui [20] and Sun et al. [21], as shown
in Table 2, one can see that the stability coefficients of the
three are close to each other. However, whenm is equal to 0.4,

and β is equal to 45°, 70° and 80°, the stability coefficients in this
work are obviously different from the others, and the compari-
son results show that the results of Kumar and Samui [20] and
Sun et al. [21] have a relative error of 19% and 12%, respectively,
compared with the Morgenstern–Price method (by Geo-Slope
software), but not more than 3% in this work. The main reason
for this phenomenon is that the computational accuracy of the
method of Sun et al. [21] can be affected by the number of skew
strips and the rationality of the allowed velocity field. However,
Kumar et al. did not provide a detailed equation for the critical
height of the slope, so the reason is unclear. Thus, the proposed
method can determine the slope stability coefficients in greater
agreement with the method of limit equilibrium, which shows
the advantage of the presented upper bound approach.

To further investigate the performance of this method in
analyzing slope stability, the case of Kumar [13] with φ2 of
30° is reexamined. As shown in Table 3 and Figure 3, the
slope stability of the presented upper bound method is very
close to that of Kumar and Samui [20], Deng et al. [28], and
Zhao et al. [29]. However, Kumar’s FOS is smaller and the
sliding surface of the slope is deeper.

Because of the material differences between the topsoil
and subsoil, there is an obvious discontinuity at the intersec-
tion of the logarithmic spirals, as shown in Figure 3. Although
this discontinuity does not affect the analysis results, it does
not correspond to reality, and the direction of the shear stress
is not clear because the stress curve is. This unresolved con-
tradiction is caused by the difference of the shear expansion
angle between two adjacent layers, which can be improved by
the linear layer transition technique. That is, the slope of two
layers with different shear strength parameters is layered near
the boundary N times (N= 2), and the shear strength param-
eters of each layer are linearly transitioned between the lower
layer and the upper layer. Although the problem cannot be
completely solved, the sliding surface at the intersection tends
to become smooth as the number of layers increases.

Without losing generality, the second example of Deng
et al. [28] is studied with three layers, based on the LEM, with
the slope parameters in Table 4. The results show that the

Soil 1, φ1 = 10° 
Soil 2, φ2 = 16.67° 
Soil 3, φ3 = 23.33° 
Soil 4, φ4 = 30°

β

Kumar and Samui [20]
Presented (no smoothing)

Presented (smoothing)
Geo-Slope (Bishop)

0
–4 –2 0 2 4 6 8 10

2

4

6

8

10

FIGURE 3: Results of slope stability analysis with β of 60° and φ2
of 30°.

TABLE 1: The stability coefficients Ns of Chen [8] and Sun et al. [21] and this work.

φ(°) Source
β°

15° 25° 35° 45° 55° 65° 75°

5°
Chen [8] 14.38 10.02 8.41 7.35 6.53 5.81 5.14

Sun et al. [21] 14.30 9.99 8.38 7.33 6.53 5.79 5.12
Present 14.37 10.12 8.41 7.35 6.53 5.81 5.14

10°
Chen [8] 45.49 16.64 11.61 9.31 7.84 6.73 5.80

Sun et al. [21] 44.99 16.57 11.61 9.29 7.83 6.72 5.80
Present 45.49 16.64 11.61 9.31 7.84 6.73 5.80

15°
Chen [8] — 32.11 16.83 12.05 9.54 7.85 6.57

Sun et al. [21] — 31.96 16.78 12.04 9.53 7.84 6.56
Present 32.11 16.83 12.05 9.54 7.85 6.57

20°
Chen [8] — 94.63 26.66 16.16 11.80 9.25 7.48

Sun et al. [21] — 93.74 26.58 16.14 11.78 9.24 7.49
Present 94.63 26.66 16.16 11.80 9.25 7.48

Advances in Civil Engineering 5



accuracy of the upper limit method is comparable to that of
the LEM for stability analysis of slopes with more than two
layers, and the slip surfaces of the three methods are very
close, as shown in Figure 4 and Table 5.

It is worth noting that the upper bound method based on
the CLS does not always achieve high accuracy. It is consid-
ered that the relative error between the upper bound method
and the LEM depends mainly on the selected combination
type of the slope slip surface, which is given by the dimen-
sionless parameter λ= c/(γH tan φ) of Jiang and Yamagami
[30]. This parameter is valid only for homogeneous slopes,
but it can be extended to layered slope in the form

~λ ¼ c1
c2
;
c1
c3
⋯

c1
cn
; λ1; λ2;⋯; λn

� �
: ð22Þ

TABLE 2: Comparison of Ns between researchers and the presented for layered slopes with φ2 of 20° (Example 1).

m Source
β

45° 50° 55° 60° 65° 70° 75° 80°

0.2
Kumar and Samui [20] 15.69 13.60 11.86 10.30 8.95 7.89 7.06 6.32

Sun et al. [21] ― 13.51 11.72 10.30 9.22 8.29 7.46 6.77
Present 15.61 13.51 11.73 10.33 9.23 8.30 7.49 6.78

0.4
Kumar and Samui [20] 13.86 12.10 10.78 9.47 8.5 7.55 6.06 5.56

Sun et al. [21] ― 12.84 11.21 9.94 8.91 7.29 6.61 5.81
Present 15.06 12.85 11.22 9.96 8.92 8.36 7.30 6.62

Geo-Slope (Morgenstern–Price) 15.31 ― ― ― ― 8.30 7.51 6.80

0.6
Kumar and Samui [20] 13.26 11.78 10.48 9.22 8.25 7.31 6.6 5.95

Sun et al. [21] ― 11.70 10.63 9.24 8.35 7.59 6.91 6.31
Present 13.53 11.72 10.34 9.26 8.36 7.59 6.92 6.31

TABLE 3: Comparison of the stability results with φ2 of 30°.

Reference Analytical methods Slope FOS

Kumar and Samui [20] Upper bound approach 1
Deng et al. [28] Morgenstern–Price 1.093
Zhao et al. [29] Bishop 1.080

Presented
No smoothing 1.061
Smoothing 1.062

Geo-Slope (Software) Morgenstern-Price/Bishop 1.086/1.084

TABLE 4: Slope parameters in layered slope (Example 2).

Slope number
Shape parameters Soil parameters

m δi (°) Unit weight γ (kN/m3) Cohesion c (kN/m2) Friction angle φ (°)

Soil 1 1/3 0 17.8 30 20
Soil 2 1/3 10 ― 15 10
Soil 2 1/3 −10 ― 30 20

0 5 10 15 20 25
0

2

4

6

8

10

12

Deng et al. [26] 
Presented

Geo-Slope

FIGURE 4: Results of slope stability analysis (Example 2).

TABLE 5: Comparison of the stability results from Example 2.

Reference Analytical methods Slope FOS

Deng et al. [28] Morgenstern–Price 1.188
Presented Upper bound approach 1.196
Geo-Slope Bishop 1.202

6 Advances in Civil Engineering



And the correspondence between dimensionless vector
and sliding surface can be proved by similar approach of
Jiang and Yamagami [30].

To evaluate the influence of the difference of the dimen-
sionless parameter vector ~λ, which reflects the combination
mode of the slip plane, on the relative error δ, Kumar’s
example was used several times for the slope stability analysis
with c2 of 14.38 kN/m

2 and λ1 of 4, but with φ2 of 2°;½ 4°;⋯;
44°�. Comparing the relative error of slope stability FOS
between the upper bound method approach and Bishop’s
method provided by Geo-Slope, we can see that the upper
bound method with CLS has limitations. When the slope is
steeper and λ1=λ2 is smaller, the relative error δ between the
two methods is up to 24%, which decreases as the slope slows
down and increases as the cohesive force ratio increases, as
shown in Figures 5–7. This phenomenon may be caused not
only by the assumption of the slip plane, but also by the fact
that the associated flow law overestimates the dilatancy angle
of the soil, which causes the frictional energy consumption
and dilatancy energy consumption to be opposite to each
other. According to the research of Wang et al. [31], for
homogeneous rectangular slopes, the unassociated flow laws
can be used to obtain a larger slope stability coefficient or a
smaller FOS. If the uncorrelated rule is used in the stability

analysis, the boundary may be broken, which is not consid-
ered due to the relationship between the uncorrelated flow
law and the normal stress on the sliding slope. Therefore, the
upper bound approach using the CLS failure mechanism is
only suitable for situations where the cohesion ratio is smal-
ler and the dimensionless parameters are larger. Otherwise, a
relative error of more than 5% may occur.

3.2. Verification and Analysis (Local Failure Mode). Equation
(20) has been fully verified and evaluated by the above. How-
ever, if the shear strength of the upper layer is lower, local
failure of the layered slope may occur. To verify Equation
(21), the third example of a slope with four layers from
Zolfaghari et al. [32] is used (water pressure and earthquake
loads are not considered). The slope parameters are listed in
Table 6, and the analysis results are shown in Tables 6 and
7 and Figure 8.

The method presented in this paper yields essentially the
same slope FOS as those of Zolfaghari et al. [32] and Cheng
et al. [33] using the methods of Morgenstern–Price and
Spencer. The relative error is less than 2%, and the sliding
surfaces of the slope are close to each other, which proves
that the upper bound method using CLSL can analyze the
local stability of the slope with high precision.
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4. Conclusions

The equations for critical height of slopes are important for
geotechnical engineering, but there is hardly any effective
equation for critical height suitable for layered slope. In
this paper, this issue is studied in detail and the following
main conclusions are drawn.

(1) The derived equations for the critical height of lay-
ered slope have high precision and are in better
agreement with the method of limit equilibrium,
which confirms the advantages of these equations.

(2) The presented technique of layered slope lineariza-
tion can effectively improve the problem of disconti-
nuity of the sliding surface, but the safety factor of
slope stability has not changed significantly.

(3) A dimensionless vector is presented that can reflect
the relationship between the sliding surface and the
shear strength parameters. On the basis of this vec-
tor, the limits of the upper bound method with CLS
are shown and the slope of the application of the
upper bound method with CLS is given.
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