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Te displacement, stress, and strain distributions of railway embankments on the soft deltaic deposit of the Ganges–Brahmaputra
foodplain are investigated. A numerical model developed in general-purpose fnite element software is used to simulate the design
train load on a deltaic deposit for a 100 km/hr rail speed. Te numerical analysis analogy is grounded in the spring model, where
a beam under the unit load is modeled based on theWinkler foundationmodel concept. In the moving load simulation on soil, the
static point load relating to the axle load is assigned in the form of a dynamic multiplier, determined using auxiliary software. Te
calculated shear force in terms of the infuence line is applied as a dynamic multiplier. Te numerical results demonstrate that
under a dynamic train load, the loose ballast undergoes larger and more erratic displacement than the subballast. Comparative
analysis between varying subballast stifnesses shows that stifer subballast yields smaller displacements. Moreover, a high
subballast stifness can counterbalance the potential of forming permanent deformation by generating lower strains. However,
a stifer subballast does not play a prominent role in reducing the displacement of ballast or vertical stresses.Te subgrade is found
to carry the maximum load, withstanding the maximum vertical stress; thus, the importance of using an improved subgrade with
higher stifness is also observed. A greater subgrade stifness improves its load-carrying capacity but fails to reduce the tension
responsible for the lateral spreading of the soft subsoil. To reduce the high radial strain, the efects of improving the stifness
properties of two immediately adjacent soft soil layers are numerically investigated. Te improvement of subsoil alone is efective
in reducing the radial strain, whereas the improvement of both subgrade and subsoil produces further reductions. Te critical
train speed generating the maximum displacement is identifed as 120 km/hr, and the dynamic velocity amplitude decreases with
depth. Finally, an allowable limit of rail embankment settlement on a soft deltaic deposit is observed.

1. Introduction

Te foodplain of the Ganges–Brahmaputra delta needs to
have new rail tracks to facilitate the development initiatives
of Bangladesh, providing a gateway for international rail
trafc and freight transportation [1, 2]. In British India, it
was not techno-economically feasible to construct a railway
track in the southern part of present-day Bangladesh due to
the unique soft soil characteristics of the Gang-
es–Brahmaputra foodplain [3].Tese characteristics include
cyclic expansion and contraction due to wetting and drying,

soil accumulation, and erosion in each food season, which
can prompt a large amount of settlement as well as difer-
ential settlement [4, 5]. Despite this challenging soil, it is of
utmost importance to build railroads in this southern zone
through the Padma Bridge Rail Link Project to provide the
missing connectivity between Southeast Asia and the Trans-
Asian (TA) rail track network. Te opening of the Padma
Bridge [6, 7] is the frst attempt in this endeavor.

Te train track structure is a compound structure with
layers of ballast, subballast, subgrade, and subsoil (Figure 1)
[8]. To understand the track behavior satisfactorily,
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numerical simulations of train load on the rail track
structure and subsequent analysis have been presented in the
literature (i.e., [9–18]). Te dynamic train load demands the
selection of an appropriate material model for numerical
analysis that can better apprehend the stress-strain behavior
of embankments and subsoil. Previous studies have used
linear elastic models [16, 19], Mohr–Coulomb models
[14, 16, 20–25], hardening soil (HS) models [14, 26],
modifed Cam-Clay models [24], and hardening soil models
with small strain stifness (HS-small) [18]. Among these, the
HS-small model can simulate soil stifness at very small
strains and its nonlinear dependency on strain amplitude
[27], which is crucial to consider for predicting soil behavior
under dynamic train loads. However, limited studies that
consider this attribute of all the layers of track structure for
analysis have been reported in the literature.

Te transmission of a train load through the rail
structure and the subsequent response of the individual
track components are dependent on important elements, i.e.,
subballast, subgrade, and soil properties [28, 29]. Te dy-
namic response of a rail track is also strongly associated with
the material characteristics that defne the stifness of its
constituents. As train-induced vibrations become more
prominent, a larger settlement is expected in track structures
with ballast or subballast made of low-stifness materials
[18, 30]. Subgrade has been responsible for many past cases
of track failures, as little can be done to improve the subgrade
during maintenance operations [29]. Moreover, when the
track embankment is constructed on soft subsoil, the pos-
sibility of diferential settlement and dynamic response
amplifcation may lead to bearing capacity failure and po-
tentially put the safety of the track at risk [24, 31] (see also
Figure 1). Soil structure also afects lateral deformation [32].
Delayed lateral deformations can be signifcant for clay
foundations [33], as 20% of the total settlements have been
reported to be due to lateral deformations [34]. Most related
studies observed the lateral deformations of road embank-
ments [33, 35, 36] but did not examine the lateral de-
formation or strain distribution of the soft subsoil of railway
embankments under dynamic train loads.

Due to the obvious constraints, the operation of train
tracks over soft ground often requires imposing a critical
speed or cutof speed. A train running over the soft terrain at
a speed higher than this critical speed causes large settle-
ments on the track, and with time, track degradation results
from cumulative plastic deformation and progressive failure.
Consequently, this afects the overall riding quality as well as
the efciency of the transportation system. Tus, a stringent
analysis of stress, strain, and settlement characteristics for
safer train operation is needed. Although Poulos et al. [37]
and Long et al. [38] have studied the behavior of rail tracks
on marine soft clays, rail system performance on the alluvial
deposits of the Ganges–Brahmaputra foodplain has not yet
been reported. Additionally, there is an absence of integrated
studies on how superstructure (ballast, subballast, and
subgrade) properties afect the soft deltaic subsoil during
operation.

To address the aforementioned scenarios, in the current
study, a numerical investigation was performed (i) to

idealize the settlement characteristics, stress, and strain
responses of the newly constructed rail track structure over
the Ganges–Brahmaputra basin with varying subballast and
subgrade stifness, (ii) to observe the comparative contri-
bution of subgrade and subsoil improvement in reducing
lateral strains, and (iii) to determine the critical speed for
reviewing whether the material characteristics of the current
track structure can allow the future speed demand. Te
present study is the frst attempt to predict the behavior of
rail tracks on such challenging alluvial deposits. Te results
provide insight into crucial parameters to be considered for
the satisfactory performance and expansion of the rail
network for future trade opportunities.

2. Methodology

2.1. Study Area. Te selected study area is in the Gang-
es–Brahmaputra foodplain. A 162 km rail track, both bal-
lasted and ballast-less, is being constructed on this soft
deltaic deposit. Te rail track and embankment system
considered for this study are selected based on the un-
derlying soil characteristics. As this study focuses on the
behavior of soft deltaic deposits, a borehole containing layers
of soft soil is selected by consulting the available soil test
reports. Te selected borehole (23°35′43.3″N, 90°18′41.7″E)
encounters diferent soil layers, among which the frst two
are silt and clay with very low standard penetration test
(SPT) values (SPT N: 2–5). Layer 1 contains sand with trace
silt, and layer 2 is silt with clay. Te next layers are silty fne
sand (see also Figure 1), where the SPT value increases with
increasing depth.

2.2. Numerical Modeling

2.2.1. Model Selection for the Rail Embankment System.
Tematerial model selected for the embankment and subsoil
of this study is the HS-small model. Tis model was chosen
because it works in the elastoplastic range. Moreover, the
nonlinearity of soil corresponding to hardening laws and
plastic fow rules are properly accounted for in this model.
Te rail is designed as a beam element. Te properties of the
rail are set according to the standard UIC 60 rail [16] that is
used in the selected rail track of this study. Te standard
sleeper is modeled with solid sections with the properties of
a prestressed concrete section [16]. Te rail clip is modeled
using the node-to-node anchor connected to the steel rail
sections. Te rail, sleeper [39], and rail clip are modeled
using a linear elastic model.

Tree subballast stifnesses are considered for a 25-ton
axle load, and the axle distribution is shown in Figure 2. Te
considered speed is 100 km/h, which is the maximum op-
erational speed for the considered railway track in this study,
that is, the Padma Bridge Rail Link.

2.2.2. Geometry and Material Characterization. Te em-
bankment consists of layers of ballast, subballast, prepared
subgrade, and embankment fll, as shown in Figure 3. Te
ballast material is crushed stones, whereas the subballast
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material is stone chips. Te Los Angeles abrasion (LAA)
(ASTM C 131) value of the subballast is less than 35%, and
the minimum soaked California bearing ratio (CBR) (ASTM
D1883-21) value is 25 when compacted at 100% of its
modifed Proctor density. Te coefcient of uniformity is
Cu≥ 7, and the coefcient of curvature Cc is between 1 and 3
from particle size analysis of soil (ASTM D422). Te sub-
grade material is a mix of sand and brick chips at a ratio of
70 : 30.

For the numerical analysis, the material parameters, e.g.,
the saturated and unsaturated densities, Poisson’s ratio, and
shear modulus, are determined according to the charac-
teristics of the soil of the selected embankment sections.
Next, the advanced parameters (oedometric, tangent,
unloading/reloading Young’s modulus, and reference shear
modulus) are set for the HS-small model.Te parameters are
determined according to the suggested values in the PLAXIS
material model version 2021. Te calculated properties are
summarized in Table 1. Other parameters, including density,
cohesion, and angle of friction, are based on the site-specifc
soil test report collected from the Padma Bridge Rail Link
Project report [8].

Te subballast was also modeled with the parameters
used for the Tampere-Seinäjoki railway line in the study by
Kalliainen et al. [40] for a comparative analysis of the efect
of subballast materials on embankment behavior. Kalliainen
et al. [40] obtained the stifness parameters of two subballast
materials, denoted as P90 Dense and P86 Dense, from cyclic
triaxial tests. Te parameters considered by both the present
and previous studies are presented in Table 2.

2.3. Determination of the Natural Frequency and ShearWave
Velocity. To determine the dynamic properties of the sub-
soil, ambient vibrations at the selected embankment are
recorded and analyzed using a microtremor device. Te data
are collected using a GEODAS15-HS data acquisition system
[41]. Vibration measurements are carried out for

30–45minutes with a sampling frequency of 100Hz. Te
recorded ambient data are processed using Easy HVSR
software following the technique of Nakamura [42, 43], and
the natural frequency of in situ vibration, the shear wave
velocity profle with depth, and the average shear wave
velocity up to 30m depth (Vs30) are determined.

Te recorded microtremor data are imported into the
software and divided into window frames using an in-
built automatic window selection option with a temporal
dimension of at least 20 seconds, as recommended by the
Site Efects Assessment using Ambient Excitations
(SESAME) project [44]. For H/V spectral analysis, these
windows are then fltered with a passband of 0.5–15 Hz to
discard any source of interference afecting the analysis,
and a subsequent Fourier transformation is performed to
obtain the average spectra. To eliminate high-frequency
oscillations, the Fourier transforms are also smoothed
using the smoothing technique “Triangular Proportional”
with 10% smoothing and 5% tapering. Te natural fre-
quency of in situ soil is then obtained from the frequency
value corresponding to the peak of the average H/V
spectral ratio. A reliability check of the H/V average curve
and its peak is also performed according to the conditions
referred to by the SESAME project. Te standard de-
viation of the natural frequency value was kept within
±0.5 Hz. Figure 4 shows the average H/V spectral ratio and
its confdence interval as a function of frequency at the
embankment location.

Figure 5 shows the shear wave velocity profle along with
its depth at the selected embankment section. For this, the
shear wave velocity of the frst layer was estimated using an
empirical correlation between the Vs and N values, as stated
in Rahman et al. [45]. Te shear wave velocity of the fol-
lowing layers was iterated while keeping the soil layer
thickness, unit weight, and Poisson’s ratio constant [46].Te
obtained result of Vs was used to verify the natural frequency
obtained from the feld data using the following equations
[47–49]:

1.5 m 1.65 m 1.65 m 6.4 m 1.65 m 1.65 m 1.65 m 1.65 m1.65 m 1.5 m1.65 m 3 m 6.4 m

Figure 2: Position of the axles of the 25-ton locomotive (wheel-to-wheel distance in mm).
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Figure 1: Schematic representation of the rail track system.
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Figure 3: Schematic diagram of the embankment and subsoil.

Table 1: Material properties for the diferent layers of embankment and subsoil.

Material model Unit Ballast Subballast Prepared subgrade Embankment fll Layer 1 Layer 2 Layer 3 Layer 4
HS small HS small HS small HS small HS small HS small HS small HS small

Drainage type Drained Drained Drained Drained Drained Drained Drained Drained
ɣ unsat kN/m3 16 20 20 19.7 15 17 17 18
ɣ sat kN/m3 18 23 21.8 21.8 17 19 19 20
e init 0.74 0.52 0.52 0.52 0.66 0.77 0.66 0.66
c ′ref kPa 0 0 0 0 25 48 0 0
φ′ Deg 50 55 60 38 30.7 28.9 38.7 40.7
G 0ref kN/m2 50000 130300 130300 90000 70000 33300 112500 112500
vur′ 0.2 0.2 0.2 0.3 0.15 0.2 0.2 0.2

Table 2: Input parameters for the subballast and subgrade materials.

Present study P90 dense P86 dense
Kalliainen et al. [40]

Subballast
Drainage Drained Drained Drained
E 50

ref (kPa) 28850 31250 50000
E oed

ref (kPa) 28850 31250 50000
E ur

ref (kPa) 86500 140000 125000
Subgrade

Drainage Drained Drained Drained
E 50

ref (kPa) 60000 60000 60000
E oed

ref (kPa) 45000 45000 45000
E ur

ref (kPa) 180000 180000 180000
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Here, Vs is the shear wave velocity of the soil layer, h is
the thickness of the soil layer, and s is a coefcient that is
determined from Poisson’s ratio of the soil.

2.4. Determination of Damping Coefcients and Critical
Frequency. To demonstrate the actual damping efect of the
wave propagation from train movement, material damping
characterizations are introduced to decrease the velocity in

the deeper layers. Target frequencies (lowest� 0.5Hz and
highest� 1.02Hz) and natural angular frequency are given
as input parameters for determining the damping co-
efcients (Rayleigh coefcients α, β). Te target frequencies
are chosen to search for the critical frequency for the given
damping ratio (ξ � 0.2% for soft soil). Te natural angular
frequency of the soil layers in both directions can be
expressed by the following equation, where Vs is determined
from the microtremor analysis:
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. (3)

2.5. Boundary Condition and Mesh Size. Te length, width,
and height of the model are 120m (X-axis), 60m (Y axis),
and 6.6m (Z axis), respectively. Te three-dimensional fnite
element method (FEM) was used in this study for numerical
modeling and analysis using PLAXIS software. Te de-
formation boundary condition is set to default under the
model condition. In the case of dynamic analysis, consid-
ering the moving wheels, the generated waves might re-
verberate from the boundaries, so the boundaries are set to
be viscous boundaries. Te generated mesh is very fne, with
a coarseness factor of 0.05 in embankment sections, to
properly accommodate the efect of the stifness of the ballast
and subballast near the wheel locations. Away from the
embankment, a fner mesh is used, as shown in Figure 6(a),
to complete the analysis in less time.

2.6. Phase Construction. Te numerical computations are
completed in seven phases. Te frst six phases are the
construction stage in which the subsoil and embankment
sections are constructed, generating the initial stresses. To
achieve the efect of consolidation, the drainage condition is
selected as drained. At the end of phase six, the rail, sleepers,
and rail clips are activated. Following phase six, phase seven
is calculated to simulate the dynamic train load on the whole
embankment system, as shown in Figures 6(b)-6(c).

2.7. Dynamic Load Determination. To simulate a train load,
static analysis to produce the shear force distribution of
a beam resting on an elastic medium is carried out using
three-dimensional building information modeling (BIM) by
PROKON (structural engineering software). Tis approach
uses the spring concept of a beam constructed on a Winkler
foundation [50–55], and it is applied for defning the soil and
rail track systems. In this procedure, the rail track and
sleepers are modeled as beam elements and elastic spring
elements, respectively. Te shear force throughout the beam
is recorded for every 0.6m movement of the train wheel in
the forward (Y) direction. In the subsequent steps, these data
are processed to calculate the infuence line in every sleeper
position along the track. Dividing the wheel position by the
train velocity, the shear force with respect to time for each
sleeper is generated, and the dynamic multiplier properties
are determined. Ten, data are incorporated into PLAXIS
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through its built-in dynamic load multiplier attribute, as
shown in Table 3. Earlier, Shahraki et al. [16] studied the
efect of train loads on organic and peat soils by using
dynamic multipliers in PLAXIS. As this is a complex model
combining a signifcant number of components (train, rail,
sleeper, clip, dynamic load, embankment, and subsoil),
a script is developed to systematically generate multiple
dynamic models in a time-efcient manner.

3. Results and Discussion

3.1. Displacement of Ballast and Subballast for Diferent
Subballast Stifnesses. A plot of vertical displacement along
the longitudinal axis is delineated in Figures 7(a)–7(f) just
before the frst train axle leaves the rail track for all three
subballast cases. Tese fgures also show the comparative
behavior between the ballast layer and subballast layer,
where the latter has diferent stifnesses in the order of soft
deltaic deposit< P90 Dense< P86 Dense.

Figures 7(a)–7(c) show that the maximum displacement
of the ballast is 0.07m for all three subballast cases. For the
subballast of the present study, the maximum displacement
is close to 0.012m, as seen in Figure 7(d). Tus, the ballast
exhibits a settlement almost 6 times greater than that of the
subballast, as the former is the nearest point of contact from
the wheels. Tis signifes that away from the wheel, the
amplitude of the vertical displacement decreases. Moreover,
the ballast is displaced in both the upward and downward
directions, showing a fuctuating displacement. Ballast,
being the frst layer, absorbs shocks from the dynamic train
load [56], and the response is a typical response of dis-
placement under dynamic loading. Te train wheel load can
be considered a repetitive impact (small duration impulse
load) loading, which together with the “denseness” of ballast
(stone dominant) ofers a low level of damping in the re-
sponses causing the fuctuation seen in Figures 7(a)–7(c).
Subballast consists of particles smaller than those of the

ballast. Te energy dissipated by sliding friction is higher in
smaller particles, which also exhibit a higher number of
contacts [57]. Tis will result in better damping, and thus,
a more consistent pattern of displacement is noticed for the
subballast where the displacement is smaller than the ballast.

As already mentioned, the ballast displacement is the
same for all three considered subballast stifnesses. Hence,
the stifness of the subballast does not afect the ballast
displacement. In contrast, the lower stifness properties of
the subballast of the soft deltaic deposit result in slightly
more displacement than in the P90 dense and P86 dense
cases, as seen in Figures 7(d)–7(f ).

Figure 7(g) presents how the displacement changes along
with the depth of the embankment for subballast of diferent
stifnesses. As the depth increases, the displacement de-
creases. Te soft deposit of this study deforms 1.3%–2%
more than the P86 dense and P90 dense subballasts, at
a depth of +5m from the existing ground level (EGL).

However, at the bottom of the soil layer, e.g., at a depth of
15m, the deltaic deposit deforms by more than 9% and 4%
compared to the P86 dense and P90 dense, respectively.
Tus, the data from the soft deposit always plot to the left of
the other two materials of higher stifness having higher
displacement.

3.2. Efect of Subballast Stifness on Shear Strain. Figure 8
presents the plots of shear strain at diferent depths. Here,
with decreasing stifness (i.e., P86 dense>P90 dense> -
present study), the shear strain increases slightly. Te strain
associated with soft deltaic deposits rises by 9% compared to
that associated with the P86 dense subballast. Tis shows
that a larger shear strain occurs in a softer material. Te
shear strain is in the range of 10−4 for the subballast, and for
the subgrade, the range is 10−4 to 10−3. Tis strain range can
simulate permanent deformation [58]. However, in the soil
layers, the shear strains decay to 10−5, which is less than 10−4,

Z

Y

X
(a)

Y

(b)

Phase 7(c)

Figure 6: FEM model: (a) meshed model; (b-c) activation of train load in phase 7.
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and the chances of permanent deformation in the soil are
unlikely to occur under this study condition.

Te generation of a larger strain occurs when loose
material is used in a subballast, as confrmed by Kalliainen
and Kolisoja [59]. Vinter and Tanttu [18] also stated that
the use of loose subballast material increases the shear
strain, resulting in permanent deformation. He also stated
that the stifness of subsoil is the most dominant factor for
the accumulation of a larger strain. In this study, the
stifness of the frst two subsoil layers is within 15–20MPa,
whereas Vinter and Tanttu [18] studied subsoil with
a stifness in the range of 10–200MPa. From these results, it
is observed that in the subballast layer (P90 Dense), the
shear strain is 0.085% for the present study (sub-soil
stifness � 20MPa), whereas in Vinter and Tanttu [18]; for
the same subballast, the shear strain is 0.1% for a subsoil
stifness of 10MPa. Hence, for similar subsoil stifnesses,
the obtained shear strains are close, which validates the
numerical model of the present study. Again, in the present
study, a loose subballast is used, and the shear strain in the
loose subballast is 8.5% greater than that in the P86 dense
subballast.

Tus, stifness is the main controlling factor of the
change in shear strain. Tis fnding asserts that the use of
loose material with low stifness in subballast increases the
vulnerability of developing larger plastic strains. Such loose
subballast on top of soft subsoil may cause larger de-
formation, leading to the sinking of the ballasted track.

3.3. Efect of Subballast Stifness on Vertical Stress.
Figures 9(a)–9(c) show the vertical stresses along the lon-
gitudinal axis of the model with diferent stifnesses of the
subballast layer. All the stress points in Figure 9 are taken
along the midsections of consecutive layers (i.e., ballast,
subballast, and subgrade). Tese fgures show that the efect
of subballast stifness is somewhat insignifcant on the
generated vertical stresses at diferent layers of the

embankment.Te tangent stifness (E50) of the subballasts of
the present study, P90 dense case, and P86 dense case vary in
a small range of 28850–50000 kPa. Tus, only a 13% dif-
ference in the vertical stress of the subballast is observed
between the present study and the P86 Dense case, with the
latter being greater.

However, one important observation is that the stresses
in the subgrade are much higher than those in the ballast and
subballast layers. Te thickness of diferent layers of the
railway track is an important factor that afects the vertical
stress distribution [60]. Tus, a subgrade with a thickness
greater than those of the ballast and subballast has a varia-
tion in stress that is diferent than those of the other two
layers. Te subgrade carries 240% more force per unit area
than the subballast in the present study. Te subgrades for
the other two cases also show a similar increase in force per
unit area compared to their respective subballasts. Tis
signifes that the subgrade carries greater loads than the
ballast or subballast when subjected to wheel loads [61] also
showed that subgrade reactions to wheel loads are larger
than subballast and ballast reactions.

3.4. Efect of Subgrade Stifness on Vertical Stress.
Figure 10 summarizes the variation in vertical stress in
response to the diferent stifnesses of the subgrade ma-
terials investigated. In Figure 9, the tangent stifness of the
subgrade is E50 � 60MPa, whereas, in Figure 10, cases with
100MPa and 200MPa are also depicted. Tese results
indicate that as the stifness increases to 100MPa, the
maximum vertical stress increases by 24% compared to that
for E50 � 60MPa. Te maximum force per unit area, e.g.,
stress, increases further as E50 increases to 200MPa, and an
increase of 50% is observed compared to the result for
E50 � 60MPa. Tus, stifer subgrades are required to carry
greater loads.

Te magnitude of the vertical stress caused by the track
on the subgrade is low. Abebe and Qiu [62] found that the
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maximum vertical stress caused by a high-speed train
(350 km/hr) with an improved subgrade by introducing
geogrids is 122 kPa. However, in this study, the speed is
limited only to 100 km/hr with increased subballast and
subgrade stifness (60, 100, and 200MPa). Te average
maximum vertical stress for the 200MPa subgrade is
33 kPa for a 100 km/hr rail speed. However, increasing the
load cycle with time may increase the stress because, with
time, the particle interlocking of the ballast will increase,
and it will transmit more load to the subgrade [63].

3.5. Efects of Subgrade Stifness and Subsoil Improvement on
Radial Strain. Figure 11 shows the distribution of the radial
strain in the soil layers beneath the embankment fll. L1
denotes the subsoil layer immediately under the embank-
ment fll, while L2 and L3 are the consecutive layers. Te
strain measurements are taken along the midsection of each
layer. Figure 11(a) represents the radial strain in the three
subsoil layers with a subgrade with E50 � 60MPa for deltaic
deposits. L2 shows the maximum radial strain, whereas L3
shows the minimum radial strain. L2, which contains soft
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clay and silt, extends (i.e., a positive sign denotes com-
pression, and a negative sign denotes tension) 75% more
than L3, which contains mostly sand. Compared to that in
L1, the radial strain is slightly higher in L2, owing to the
presence of a higher percentage of clay (15%) and silt
(77%). Moreover, Figure 11 is a graphical representation
of the compression and extension of the soil being sub-
jected to a dynamic load. As an efect of the wheel load,
plain strain is generated between the soil particles, fol-
lowed by an arching efect between the gauges. Te ex-
pansion generated by the particles of this zone is nullifed
by the expansion of the particles on the opposite side. As
a result, this zone remains in compression throughout. On
the other hand, particles outside of this zone expand
laterally due to the absence of confnement in the soft soil.
Figures 11(b) and 11(c) are graphical representations of
radial strain in the subsoil of L1 and L2 with increasing
subgrade stifness. Te properties of the subgrade are
listed in Table 4. As the stifness of the subgrade is in-
creased from 60MPa to 200MPa, the radial strains in
layers 1 and 2 remain unchanged.

Figures 12(a) and 12(b) represent the radial strains in
the frst two layers of soil, and the stifnesses of both layers
are improved. Te stifness of layer 1 is increased from
20MPa to 35MPa, whereas for layer 2, it is increased from
15MPa to 30MPa. Almost 33% and 58% reductions in
radial strain are observed for L1 and L2, respectively,
compared to the unimproved subsoil condition. Te ten-
sion is reduced by 50% and 62.5% for L1 and L2, re-
spectively, as both the subgrade and subsoil are further
improved. Tus, from Figures 11 and 12, it can be inferred
that for the soft deltaic deposit, an improvement in sub-
grade stifness alone cannot reduce the radial strain. To
reduce the radial strain in this type of soil, the improvement
of the subsoil is necessary.

Figures 13(a)–13(d) show the color contours of the radial
strain results without and with an improvement of the
subgrade and subsoil stifness. Te outcome of Figure 13(a)
can be explained as follows: contours inside the embank-
ment but below the rail track show.

A circular zone of compressed soil (yellowish to red
colored circular grids). Inside this grid, the presence of
green-to-blue contours indicates the presence of soil un-
dergoing expansion; similarly, dark-colored contours out-
side the rail track are dominant, indicating that a signifcant
soil zone undergoes expansion, initiating lateral spreading of
the soil. However, the expectation of geotechnical engi-
neering in this regard would be that the soil throughout the
infuence zone of the embankment for the rail track will be
under compression so that the lateral spreading tendency of
soil is no longer efective or posing a threat to the instability
of the whole track system.

Due to the high compressibility and low permeability of
soft soil with a considerable amount of clay, the settlement
process takes a long time to complete (consolidation set-
tlement), and its magnitude accumulates with time; hence,
the soil mass will remain in unstable conditions until the
pore water pressure dissipates completely. In addition, a less
stif subgrade develops a larger radial strain, moving the
underlying soft soil outward from the track and resulting in
a large settlement. Less stif subgrade spreads laterally,
whereas stifer subgrade resists spreading by developing
lateral tensile strain [64]. Lateral spreading and settlement
could accelerate in the absence of confnement if any water
body or free space exists beside the embankment, which is
likely for the considered case of deltaic deposits in this study.
Because of the large settlements in the soft soil of the em-
bankment, diferential settlement within the embankment-
viaduct-bridge system is unavoidable. Tis substantial dif-
ferential settlement can create irrecoverable damage to the
track and thus should not be allowed. To mitigate this issue,
proper subsoil improvement methods along with denser and
stifer subgrade materials should be chosen. However, the
economic viability and availability of such materials should
be studied further.

3.6. Variation in Dynamic Velocity with Depth. Te ampli-
tude of the dynamic velocity decreases with increasing
depth, which can be noted in Figure 14.Tis decay with each
layer of embankment and subsoil is because of the decay of
the wave owing to the material’s damping. A major decrease
in velocity is observed until the depth of the subgrade, which
is also reported by Shahraki et al. [16]. It is also observed that
initially until the dynamic time is 1.28 s, the velocity is quite
low. After that, the velocity increases and fuctuates up to
2.13 s. Ten, the velocity remains lower than previously
observed until the train passes the whole stretch of the track
at 2.16 s.

3.7. Determination of Critical/Cutof Speed. Figure 15 shows
the relationship between vertical displacement and train
speed for diferent layers of the embankment and subsoil.
At a speed of 120 km/h, the displacement near the track
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Table 4: Properties of the subgrade and subsoil are considered in Figures 11(a)–11(c) and 12(a)-12(b).

Variable Reference fgure
Stifness values (E50) Mpa

Case
Subgrade (MPa) L 1 (MPa) L 2 (MPa)

Subgrade stifness

11(a) 60

20 15 —11(b) and 11(c)
60
100
200

Subsoil stifness 12(a) and 12(b) 60 20 15 I
35 30 II
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surface is larger than those induced by all other considered
speeds. According to Costa et al. [31] and Hu et al. [65]; the
critical speed is the speed at which the maximum dis-
placement of the track ground system is observed. For this
study, the maximum amplitude for displacement was ob-
served at 120 km/h. Hence, 120 km/h is the critical speed
for this study. Speed ranges lower (70–100 km/h) and
higher (125–200 km/h) than this are stated as subcritical
and supercritical speed zones, respectively. Te de-
termination of the critical speed is required because it is
important in the context of the diferential settlement of the
underlying soft soil [65]. When a train is moving, the
propagated waves pass slowly through the soft soil, and the
soil properties, e.g., density and water table, respond to the
wave propagation. When the frequency of the train waves

interacts with the natural frequency of the soil, a large
amplifcation occurs, which sometimes deforms the track
and the embankment structure permanently. Tis per-
manent deformation may lead to diferential settlement of
the track–soil system, which is undesirable for embank-
ment-viaduct-bridge systems. Hence, to avoid this, it is
desirable to run the train at a speed less than the critical
speed, e.g., 120 km/h for the soft soil considered.

Te displacement increases very slowly at both sub and
supercritical speeds, whereas at 120 km/h, it increases
sharply, as shown in Figure 16. At subcritical and super-
critical speeds, the vertical displacement is somewhat
constant, except at the cutof speed. To reach any speed
higher than 120 km/h, the train will cross this critical speed,
and the maximum deformation will occur. Hence, it is
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always desirable to keep the speed of the train less than
120 km/h for the 25-ton axle load studied here. Te design
report of the Padma Bridge Rail Link, which was

constructed on the soft deltaic deposit of the Gang-
es–Brahmaputra foodplain, also corroborates this obser-
vation [8]. Te report also recommends a design train
speed of less than 120 km/h: in particular, 100 km/h for an
axle load of 25 tons.
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Figure 16 also shows that the point nearest to a wheel
generates the maximum displacement of 14mm, whereas, at
the point nearest to the EGL (−0.73m from the EGL; a point
in the embankment fll), the displacement is reduced by 24%
compared to the former. A previous study by Jeon [66]
recommends an allowable settlement of 10mm for ballasted
tracks. For speeds lower than that, Aziz et al. [67] recom-
mended the allowable limit to be 15mm. Te maximum
displacement for this study is thus within the allowable
range. However, further verifcation is required from set-
tlement sensors located in the feld.

3.8. ComparativeAnalysis of the PresentModelwith theModel
of Shahraki et al. [16]. Te present model was compared with
the study of Shahraki et al. [16]. Shahraki et al. [16] followed
the same methodology for the incorporation of train load in
PLAXIS by using dynamic multipliers. Teir study in-
vestigated the behavior of peat and organic soil under an
InterCity Express (ICE) train load. Figure 16 shows the
change in the vertical velocity of the ballast over dynamic
time for both studies. In both cases, the frst peak in velocity
is observed after the wheels cross the midspan of the rail
track. Tis largely validates the present results in narrating
the general behavior in local and global scenarios of the
idealized problem in this paper. However, the time when the
maximum velocity occurs is later in the present study. Te
potential reason behind this shift can be the lower speed of
the present train, e.g., 100 km/hr, compared to the 180 km/hr
of Shahraki et al. [16]; for which the train takes longer to
cross the midspan. In the case of Shahraki et al. [16]; the
third peak occurs in the positive direction, whereas for the
present study, it occurs in the negative direction. As the train
moves over the track, periodic waves are generated, which
are afected by the characteristics of the train and sleeper
spacing [16]. Although the sleeper confguration of both
studies is the same, an ICE train has only four wheels,
whereas the train adopted in the present study has thirteen
wheels, which may have caused the variation in the patterns
of vertical velocity. Further parametric studies will be re-
quired by changing the confguration of wheels and the
speed to isolate their efects on dynamic velocity.

4. Conclusion

A numerical study is conducted as the frst attempt to study
the behavior of railway embankments constructed on the
soft subsoil of the Ganges–Brahmaputra foodplain. A dy-
namic train load is simulated, and the efects of variations in
the properties of the subballast, subgrade, and subsoil are
investigated. Te major observations from the study are as
follows:

(1) Displacement patterns of ballast and subballast are
estimated. Comparing their displacements, the for-
mer shows greater displacement owing to the
proximity of the train wheels and the properties of
the materials. Even after improving the stifness of
the subballast, the ballast displacements remain
unchanged, and its efect on the subballast

displacement is negligible. Looser and less stif
subballast exhibits larger shear strains (0.085% for
subballast in this study).Tis, followed by soft deltaic
subsoil may result in greater permanent settlements.

(2) An increased subballast stifness does not infuence
the vertical stress of the ballast, subballast, or sub-
grade. However, the subgrade withstands the max-
imum vertical stress, and the higher the subgrade
stifness is, the greater the vertical stress. Tis in-
creased stifness reduces the chances of lateral
spreading.

(3) Subsoil layers containing clay and silt exhibit radial
strains larger than (75%) of those in sandy layers. It is
inferred that increasing the subgrade stifness alone
cannot properly constrain the radial strain. Te
stifness of the subsoil layers of soft deltaic deposits
must be improved to reduce the radial strain and the
probability of lateral spreading. Tis study shows
that the slight improvement in stifness in both the
subgrade and soft subsoil layers decreases the lateral
expansion between 33% and 58%.

(4) Te results show that the dynamic velocity decreases
with depth. However, at 120 km/hr, the displace-
ments are the maximum observed for all the con-
sidered layers. Hence, 120 km/hr is considered the
cutof velocity for the studied railway track
confguration.

(5) Tis study fnds the maximum settlement (14mm
nearest to the wheel) to be within allowable limits, as
determined by existing studies. Nevertheless, the
current study recommends further investigation
focusing on the validation of numerical results with
feld observations, as there remain no specifc
guidelines for the allowable settlement or infuence
of material properties on the operation of railways on
soft deltaic deposits. However, researchers have to
wait until this track goes into operation to collect the
feld data.
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