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Te use of alternative materials and recycling in construction has gained popularity in recent years as part of the industry’s
commitment to sustainability. One such material, recycled aggregates, has been extensively studied over the past two decades for
its potential to replace natural aggregates in cement-based composites. However, the unique properties of recycled aggregates
make traditional concrete mix design methods inefective in determining their target compressive strength. To address this
challenge, four machine learning models based on ensemble learning algorithms, including CatBoost regressor (CatBoost), light
gradient-boosting machine regressor (LGBM), random forest regressor (RFR), and extreme gradient-boosting regressor
(XGBoost), were employed to predict the compressive strength of recycled aggregate concrete. Results demonstrate that the
proposed models are highly accurate and generalizable, with high coefcients of determination and low error predictions. Te
CatBoost model performed the best, exhibiting an R2 of 0.938 and low mean absolute error and root mean squared error values of
2.639 and 3.885, respectively, in the blind evaluation process. Although the random forest regression algorithm performed the
least well among the four models, it still outperformed conventional machine learning algorithms such as support vector machines
and artifcial neural networks. Te fndings in this study suggested that the CatBoost model is the optimal choice for predicting
concrete’s compressive strength due to its high accuracy and low prediction error.

1. Introduction

Concrete has been the most widely used man-made material
in the world since its invention about three tons of concrete
are used worldwide per person every year [1]. Concrete, in
general, is made up of three main components: aggregate,
binder, and water, of which aggregate accounts for 75
percent, which makes it extremely important. In the con-
struction industry, natural resources are used extensively,
and demolition and construction waste are disposed of in
large quantities. For instance, in 2012, about 100million tons
of construction and demolition waste (CDW) were gener-
ated in the United Kingdom [2]. In comparison with 2010
(102 million tons), this represents a 2% decline, but only
a 0.8% decline from 2008 (101 million tons). As a result of
these substantial amounts of consumption, there can be

serious environmental impacts on a regional scale and de-
plete the bulk resource stock within an area due to excessive
consumption rates. It is, therefore, no longer considered
sustainable to use either of these practices due to their
environmental and economic consequences [1–3].

Over the past two decades, the recycling of recycled
aggregate has been extensively studied, with its in-
corporation into cement-based composites [4–7]. It was
found that recycled aggregates, when properly processed,
have similar or superior mechanical properties to natural
aggregates [4]. To reduce natural aggregate consumption,
recycled aggregates have gained popularity as a replacement
for new concrete aggregates [6].

In concrete structures, compressive strength (CS) is
crucial to structural safety and durability, so the primary
objective of mixed design methods is to achieve a suitable CS
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value, safely and economically. Concrete is made by opti-
mizing the proportions of Portland cement, fne aggregate,
coarse aggregate, water, and, optionally, chemical and
mineral [8]. In addition to being quite time-consuming and
labor-intensive, the wide variety and heterogeneity of
concrete’s raw materials are also signifcant challenges.

Even though several mix design methods exist around
the world, including those proposed by the American
Concrete Institute (ACI) and the British Department of
Energy (DOE), there is still no consensus on mix design.
Researchers and institutions, therefore, propose diverse mix
design methods which are mostly based on empirical graphs
and tables [9, 10]. A test must be conducted after the
proportions of materials have been determined, and ad-
justments must be made based on the results. Te com-
pressive strength of concrete specimens is determined using
a compressive test, usually after 28 days of curing, according
to standard procedures (specifc to each country). For
residue-based concretes such as recycled aggregate concrete,
this process is made more complicated by their difering
characteristics. As a result of these peculiar properties,
traditional mix design methods are less efective in de-
termining their target CS.

A wide range of machine learning (ML) methods has
been developed in recent years, including deep learning
(DL), which is based on neural networks in combination
with representation learning which has allowed us to de-
velop excellent predictive models [11]. Since ML/DL
emerged, it has made great strides in solving previously
impossible problems. Due to its ability to detect intricate
patterns in high-dimensional data, it can be used in many
felds of science, business, and government [12]. Tere have
been successful applications of ML/DL in the healthcare,
fnance industry, retail, social media, agriculture, mechanical
engineering, and so on [13]. It is conceivable that ML/DL
models could be used to predict concrete CS in an analogous
way since it is also afected by a wide range of factors, for
instance, its ingredients. Many studies have attempted to
develop ML/DL models for predicting concrete strength
[14–17].

In recent years, ML/DL techniques have gained popu-
larity for predicting the CS of concrete based on its con-
stituent components as inputs to the model. Table 1 provides
a summary of various ML/DL models used to predict CS for
diferent types of concrete. Several empirical and statistical
models, such as linear and nonlinear regression algorithms,
have been employed to predict the properties of concrete.
Among the ML/DL algorithms, artifcial neural networks
(ANNs) [14, 20, 26, 28, 29, 31] and support vector machine
(SVM) [15, 19, 24, 27] are the most commonly used tech-
niques for CS prediction. CS prediction has been performed
for diferent types of concrete, including ordinary concrete
[21, 30], high-performance concrete [17, 24, 27], self-
compacting concrete [22, 26, 28], and green concrete with
supplementary cementitious materials, such as fy ash
[23, 31], blast-furnace slag [17], steelmaking slag [19],
metakaolin [15], and recycled aggregates [18, 20, 25]. Fur-
thermore, ML/DL techniques have been utilized to predict
the properties of concrete. For instance, the work of Elemam

et al. [32] used DL-based ANN algorithms to predict the
slums’ fow and optimize the fresh properties of self-
compacting concrete. Te study conducted by Duan et al.
[33] and Golafshani and Behnood [34] used the DLmodel in
the prediction of the elastic modulus of recycled aggregate
concrete using the ANN model. Overall, there have been
signifcant developments in the implementation of ML/DL
for predicting the property characteristics of concrete.

Many ML/DL studies have achieved acceptable perfor-
mance in predicting the CS of concrete [17, 18, 22, 24].
However, these studies required pre-proportioning and
predetermining a series of features through experimentation
as part of the modeling process. Te selection of the model
and the representation of the data used to create the model
also played a crucial role. To enhance the predictive accuracy
of concrete CS, it is necessary to consider several aspects.
Firstly, the selection of the model used is crucial in de-
termining the accuracy of predictions [17]. Regression-based
models, artifcial neural networks, and support vector ma-
chines are some of the models available, each with its own
advantages and disadvantages. Secondly, it is important to use
representative data in training to achieve high accuracy [19].
Tis ensures that the model learns from diverse and relevant
data, enabling it to make more accurate predictions. Finally,
the features used to train themodel also signifcantly infuence
the accuracy of predictions [18]. Careful selection of features
can help improve the performance of the model. Terefore,
these three aspects—model selection, representative data, and
features used for training—are essential for improving the
predictive accuracy of concrete CS.

In this study, ML models are applied to predict the CS of
recycled coarse aggregate concrete based on nine features
combined as model inputs (i.e., water-binder ratio, sand-
aggregate ratio, efective water, recycled coarse aggregate
replacement proportion, fy ash replacement proportion,
silica fume replacement proportion, slag replacement pro-
portion, superplasticizer, and age of concrete testing)—the
selection of these features is based on the study done by Zeng
et al. [18]. Rather than dealing with the complexity of deep
neural network algorithms, four ML models based on en-
semble learning algorithms (CatBoost, LGBM, RFR, and
XGBoost) were employed to predict the CS of recycled ag-
gregate concrete—these selections were infuenced by the
study conducted by Rathakrishnan et al. [17], Penido et al.
[19], Nguyen-Sy et al. [21], and Zhang et al. [22]. Each model
was well-trained through 10-fold cross-validation with its best
optimized hyperparameters. To accomplish this purpose,
a global survey was conducted on the use of recycled coarse
aggregate concrete in the literature, and the results of this
survey were used to form a large dataset of over two thousand
observations of the concrete mix group, no study has been
done before, that was used to expand the data representa-
tiveness and, as a result, improve the predictive capabilities of
the model. As opposed to using repeated data in training and
testing, the dataset that has been collected was randomly
separated into the training dataset for creating the model and
the blind evaluation dataset for evaluating the model’s pre-
dictive performance. Furthermore, instead of solely assessing
the model’s general performance, a sensitivity feature analysis
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was performed to identify its weaknesses by carefully ex-
amining each individual error in prediction.

 . Materials and Methods

2.1. Overview. Te objective of this study is to assess the
predictive accuracy of four ML models that are applied to
predicting the CS of recycled aggregate concrete. Figure 1
summarizes the overview of the methods used in this study.
First, the data on mixtures and CS of recycled aggregate
concretes in the literature were collocated and fltered. Te
obtained literature dataset was preprocessed to convert the
nine basic ingredients of concrete mixture to nine features
(including the age of concrete testing) and its compressive
strength. Subsequently, four ML models—CatBoost,
LGBM, RFR, and XGBoost—were employed to extract the
relation between the components of nine features (input
features) and their concrete’s CS in MPa (output). Te
performance of models was evaluated through ten-fold
cross-validation and four statistical metrics: coefcient of
determination (R2), mean absolute error (MAE), root mean
squared error (RMSE), and mean absolute percentage error
(MAPE). Te models were also further optimized with grid
search algorithms to seek the best hyperparameters of each
model. To demonstrate the superiority of the proposed ML
models, two commonly used algorithms—SVM and
ANN—were also built on the same dataset. Finally, unseen
data were used for a blind evaluation procedure (the data
were never used in the training and testing of the model).
Te purpose of this blind evaluation was to fnd out
whether the models could predict CS for concrete that
never participated in the training.

2.2. Machine Learning Techniques. Machine learning is
a method of self-directed learning that involves analyzing
available data to detect existing patterns in the dataset. Tese
patterns can then be applied to make predictions about
future data [35].

A heterogeneous mixture of concrete and highly variable
materials makes predicting concrete’s CS challenging. A
nonlinear regression model is commonly used to address
this type of problem because of its high complexity and
correlation between the concrete components. DL/ML
models have been used to predict concrete’s CS for various
concrete mixtures [18–20, 36]. However, in this study, the
four ML models based on ensemble learning techni-
ques—CatBoost, LGBM, RFR, and XGBoost—were selected
to predict the CS of recycled aggregate concrete.

2.2.1. Ensemble Learning. Ensemble learning is a powerful
machine learning technique that has shown to be an efective
solution for regression problems [37]. Ensemble learning is
the process of combining multiple models to improve the
accuracy and robustness of predictions. In the context of
regression problems, ensemble learning algorithms can
combine the predictions of several models to create a more
accurate and robust prediction than any single model could
achieve alone [37–39]. Tis is particularly useful in cases

where the data are noisy or where the relationship between
the input variables and the target variable is complex and
nonlinear. By combining the predictions of multiple models,
ensemble learning algorithms can reduce the variance of the
predictions and improve the overall accuracy of the re-
gression model. Tus, ensemble learning algorithms have
become a popular and efective solution for regression
problems in a wide range of applications [40], including
fnance, healthcare, and engineering.

While ensemble learning can be achieved in an almost
limitless number of ways, perhaps these fve techniques are
most used and discussed: Bagging ensemble, Bootstrap Ag-
gregating, Gradient-Boosting ensemble, AdaBoost ensemble,
and Voting ensemble—these techniques have been imple-
mented in recent developed ML models such as CatBoost,
LGBM, RFR, and XGBoost. Tese methods are not described
in this paper since they have been well described in the related
literature. It is recommended to refer to [37, 39] for more
details. An ensemble is more reliable than a single model for
two main reasons: reliability—reducing the variance of pre-
dictions—and skill—achieving better performance than single
models as it improves the ensemble’s average prediction
performance [37]. Both aspects are important to consider
when designing a machine learning model, and sometimes
one or both properties are preferred.

2.2.2. CatBoost. Developed by Yandex in 2017, CatBoost is
an open-source machine learning algorithm. It belongs to
the family of gradient-boosting decision tree machine
learning (GBDT) ensemble techniques. CatBoost is also well
suited to machine learning tasks involving categorical,
heterogeneous data because it is a decision tree-based al-
gorithm. In CatBoost models, decision trees are constructed
sequentially with each new tree having a lower loss than the
previous tree, and each tree is constructed by computing
splits beforehand, converting categorical features to nu-
merical features, selecting the tree structure, and calculating
leaf values [41]. In addition, overftting is prevented by using
an overftting detector, which uses the starting parameters to
determine the number of trees to be generated.

2.2.3. Light Gradient Boosting Machine (LGBM). LGBM is
a gradient-boosting framework developed by Microsoft that
uses tree-based learning algorithms, a family of GBDT.
Developed on a decision tree algorithm, it is suitable for
regression, classifcation, ranking, and traditional machine
learning approaches. Te LBGM algorithm employs two
novel sampling techniques: gradient-based one-side sam-
pling (GOSS) and exclusive feature bundling (EFB). To
estimate the information gain, GOSS excludes data instances
with small gradients and uses the remainder. A signifcantly
smaller dataset can provide a highly accurate estimate of
information gain since data instances with large gradients
contribute more to the computation.Trough EFB,mutually
exclusive features can be grouped, thereby reducing their
number [42]. In addition, it demonstrates that a greedy
approach can achieve a high approximation ratio when
determining the optimal bundling of exclusive features. Te
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LGBM training process speeds up the conventional GBDT
training process by an average of about twenty times while
maintaining the same accuracy.

2.2.4. Random Forest Regressor (RFR). Te RFR algorithm is
an ensemble learning algorithm that uses ensemble learning
methods to classify and predict. Te random forest is a type
of classifcation or regression tree that is constructed by
using bootstrap samples of the training data along with
random feature selection. To synthesize classifcation results
from a variety of decision trees constructed through learning
and predict them through voting, the bagging technique is
applied [43]. In terms of accuracy, random forest is one of
the most powerful and versatile tools available today.

2.2.5. Extreme Gradient Boosting (XGBoost). In extreme
gradient boosting (XGBoost), gradient boosting is used to

make predictions for unstructured data using decision trees.
XGBoost algorithm was created by Chen and Guestrin [44]
in 2016. Many recent advances have been made possible by
this algorithm, which has been the source of countless in-
novative applications. Its applications are diverse and in-
clude predictingcustomer churn, assessing applicant risk,
detecting malware, selecting stocks,classifying trafc acci-
dents, diagnosing diseases, and even predicting patient-
mortality during Covid-19 treatment caused by SARS-COV-
2. One of XGBoost’s most signifcant advantages is its
scalability across any condition.

2.3. Model Confguration. In this research, the primary tool
used for analyzing data and creating models was the Python
programming language. To simplify the development pro-
cess, open-source ML/DL libraries such as Scikit-learn,
Keras, and TensorFlow were utilized.Te optimized fourML

Data Collection

Split Dataset

Training model with four-
regression model:
CatBoost; LGBM;

RFR; XGBoost

20% 
as blind evaluation set

80% 
as training set 

Training model with other 
algorithms:

SVM & ANN

A total of 2,300 concrete 
mixtures were collocated from 

from 81 studies. 

Quantities of Interests:
- Cement (kg/m3)

- Effective water (kg/m3)
- Fine aggregates (kg/m3) 

- Fly ash (kg/m3)
-Silica Fume (kg/m3) 

- Natural coarse aggregates (kg/m3)
- Recycled coarse aggregates (kg/m3)

- Blast-furnace slag (kg/m3)
- Superplasticizer (kg/m3)

- Age of concrete testing (day)
- Compressive strength (MPa) 

Final model for predicting CS of 
recycled aggregates concrete based on 

nine input features

Blind Evaluation Process
R2, MAE, RMSE, MAPE

Figure 1: Overview of materials and methods used in this study.
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models—CatBoost, LGBM, RFR, and XGBoost—were de-
veloped through fve distinct stages including data collec-
tion, data preprocessing and featuring, model optimization
through grid search algorithms, model validation, and
model evaluation, each of which is elaborated upon in detail
below with concise explanations.

2.3.1. Data Collection. Datasets relating to recycled aggre-
gate concrete mixtures and their CS were initially compiled
from the literature. Te scientifc databases that were
searched were Google Scholar, Science Direct, and Web of
Science.Tis literature survey examined articles published in
journals, conference proceedings, and theses and disserta-
tions. Following this introductory survey, a more thorough
analysis of each paper was carried out. Te references were
narrowed to include only those works that utilized recycled
aggregate as coarse aggregate in concrete and that also in-
cluded both mixtures and respective CS. Many works
conformed to the theme, but had to be excluded due to
incomplete information, such as the proportion of mixture
materials or the dimensions of the specimen, or other
constituent materials used beyond the scope of this study.
Finally, 81 studies from 25 countries across the globe are
included in the fnal literature dataset survey, as shown in
Table 2.

2.3.2. Data Preprocessing and Featuring. Based on the
practices and standards employed in each region, each study
exposed the results and measurement unit diferently. It was,
therefore, necessary to convert various units, as well as to
convert mixed proportion data to consumption data, par-
ticularly in kg/m3. As a result, nine selected interested
constituents as well as age of testing and their CS were
chosen and converted into the following units: cement (kg/
m3), efective water (kg/m3), fne aggregate or sand (kg/m3),
fy ash (kg/m3), silica fume (kg/m3), blast-furnace slag (kg/
m3), superplasticizer (kg/m3), natural coarse aggregate (kg/
m3), recycled coarse aggregate (kg/m3), age of concrete
testing (day), and compressive strength (MPa).

Te complete literature dataset includes 2,300 instances
(concrete mix group) of research projects that have been
conducted between the years 2000 and 2022 in 25 countries
from a range of backgrounds.Te total dataset was randomly
split into two subsets—1840 instances (80% of the total
dataset) for training and testing model and 460 instances
(20% of the total dataset) for the blind evaluation process.
Tere was also a great deal of diversity in the specimens
assessed since they are of varied sizes and shapes. Tose
results were converted into their equivalents for
100× 200mm cylindrical specimens—as it is universally
accepted in both Korea and the United States—using cor-
rection factors developed by Zabihi and Eren [123] which is
original for normal and high-strength concrete made from
the natural aggregate. Tis standardization led to a complete
dataset that included recycled coarse aggregate concrete with
CS ranging from 3.91 to 89.70MPa.

To improve learning results, the nine ingredients of the
concrete mixture were converted into eight features based

on the work of Zeng et al. [18]. To predict CS of recycled
aggregates concrete, nine features including the age of
testing were selected or combined as model input. Te
features were water-binder ratio (W/B), water weight (W),
sand-aggregate ratio (S/A), fy ash to cement ratio (FA),
recycled coarse aggregate to aggregates ratio (PA/A), silica
fume to cement ratio (SF), superplasticizer content (SP),
blast-furnace slag to cement ratio (BFS), and the age of
concrete testing. Figure 2 illustrates diagonal correlations
between input and output parameters. Seaborn, a Python
module, was used to develop diagonal correlation heatmaps
between multiple inputs (nine features) and concrete CS.
Values for correlation coefcients are indicated by colors
ranging from light green to dark green. A high correlation
coefcient exists between the input (nine features) and
output parameters (concrete CS). Terefore, all parameters
were included in a probabilistic framework for predicting CS
of concrete to improve accuracy. Table 3 summarizes the
limitation values of nine input features and their respective
CS. Te CS of recycled aggregate concrete can only be
predicted by this model only when the input features fall
between the limiting values.

2.3.3. Model Optimization through Grid Search Algorithms.
Grid search is a widely adopted optimization algorithm for
enhancing ML models. Tis method involves exploring
a hyperparameter grid that contains all feasible combina-
tions of hyperparameter values [124]. For each hyper-
parameter combination, the algorithm trains and evaluates
a model, and then returns themodel that performed the best.
By tuning the hyperparameters through grid search, the
model can be fne-tuned to obtain optimal performance on
a validation set. However, this procedure can be time-
consuming, particularly when working with large datasets
or numerous hyperparameters. Nonetheless, it is a critical
step in ensuring that the model performs well on new data.
Cross-validation is often integrated with grid search to
produce more dependable estimates of model performance.
Overall, grid search is an essential tool for machine learning
practitioners who seek to optimize their models and achieve
superior performance.

2.3.4. Model Validation Using K-Fold Cross-Validation.
Cross-validation using K-fold is a common model evalu-
ation technique because it gives us a more insightful look
at our data and model. In this study, a total of ten folds or
a k value of 10 were used based on works that have been
similarly done by Rathakrishnan et al. [17] and Penido
et al. [19]. In this cross-validation procedure (as shown in
Figure 3), the dataset was randomly divided into 10
groups. One of the groups was used to validate the model,
and the remaining groups were used to train the model. In
addition, the grid search algorithm was also embedded in
the K-fold validation process to optimize the model’s
hyperparameters in each fold for every model. By training
and verifying the model several times, K-fold cross-
validation allows for an accurate model with less over-
ftting. As the last step, the model performance was
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zá
le
z-
Fo

nt
eb
oa

et
al
.[
10
6]
,a
nd

T
om

as
et

al
.[
10
7]

8
st
ud

ie
s

11
0
co
nc
re
te

m
ix

gr
ou

ps
Sp
ai
n

Li
n
et

al
.[
10
8]

an
d
Sh

ee
n
et

al
.[
10
9]

2
st
ud

ie
s

66
co
nc
re
te

m
ix

gr
ou

ps
Ta
iw
an

Ta
ng

ch
ir
ap
at

et
al
.[
11
0,

11
1]

an
d
So
m
na

et
al
.[
11
2–
11
4]

5
st
ud

ie
s

11
9
co
nc
re
te

m
ix

gr
ou

ps
T

ai
la
nd

Ç
ak
ır
[1
15
],
D
ilb

as
et

al
.[
11
6]
,T

uy
an

et
al
.[
11
7]
,a
nd

Şi
m
şe
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Figure 2: Correlation plot of nine input features and outputs (compressive strength).

Table 3: Range of selected nine features as input and their compressive strength (output).

Variable Min. value Mean value Max. value Standard dev. Type
X1: W/B (%) ≥20.01 45.53 ≤81.01 10.87 Input
X2: W (kg/m3) ≥67.62 182.25 ≤277.01 30.64 Input
X3: S/A (%) ≥12.97 39.74 ≤63.09 7.73 Input
X4: FA (%) ≥0.01 15.90 ≤150.01 29.44 Input
X5: PA/A (%) ≥0.01 31.95 ≤75.19 24.91 Input
X6: SF (%) ≥0.01 1.07 ≤29.82 3.46 Input
X7: SP (kg/m3) ≥0.01 2.14 ≤15.01 3.63 Input
X8: BFS (%) ≥0.01 7.15 ≤233.25 27.83 Input
X9: Age (day) 1 — 90 — Input
y: Fck (MPa) 3.91 35.08 89.70 15.91 Output
∗Binder: cement, fy ash, silica fume, and BFS (blast-furnace slag) or GGBS.

80% 
training set 

Training 
fold: 2~10, 
validation 

fold: 1

Training 
fold: 1, 3~10, 

validation 
fold: 2

Training 
fold: 1~9, 
validation 

fold: 10

GridSearch GridSearchGridSearch

Model 1 Model 2 Model 10

Selected the best model 
with the smallest RMSE

20% 
blind evaluation set 

Figure 3: Ten-fold cross-validation procedure used in this study.
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evaluated after ten repetitions of the training process by
the average error from all the training folds, while
a model’s predictive performance is determined by blind
evaluation data not included in the training.

2.3.5. Model Evaluation Metrics. A total of four statistical
measurement parameters were used to evaluate the pre-
diction efciency of the models in this paper. An evaluation
parameter measures the accumulated error in predictions
based on actual observations. Statistical measures include
the coefcient of determination (R2), mean absolute error
(MAE), root mean square error (RMSE), and mean ab-
solute percentage error (MAPE). Equations (1)–(4) defne
these mathematical formulations; here, n is the total
number of test dataset records and y and y′ are the pre-
dicted and measured values. In general, R2 values range
from 0 to 1, and the closer it is to 1, the better the model’s
ftting optimization will be. On the other hand, to assess
modeling error, MAE, RMSE, and MAPE values are
used—the smaller the value, the less error between pre-
diction and measurement.

R
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3. Results and Discussion

3.1. Evaluation of the Model Performance. Initially, the Cat-
Boost, LGBM, RFR, and XGBoost algorithms were modeled
using their default hyperparameter settings. Te performance
of each model was evaluated in terms of metric evaluation
accuracy and error rates, specifcally R2, MAE, RMSE, MAPE,
and accuracy index, which are presented in Table 4.

Among all the proposed models, XGBoost exhibited the
highest level of accuracy in prediction and the lowest pre-
diction errors. In the initial phase of modeling, XGBoost
showed an R2 value of 0.926 on the test dataset. Other
models like LGBM and RFR also demonstrated good per-
formance, with R2 values of 0.863 and 0.877, respectively, on
the test dataset. XGBoost model’s evaluation metrics were
comparatively better, as it had the lowest MAE, RMSE, and
MAPE values of 3.010, 4.320, and 9.855, respectively, for the
test dataset. Te RFR model was the second best in terms of
prediction errors, with MAE and RMSE values of 3.874 and
5.544, respectively. Even though the initial modeling yielded
reasonably accurate prediction results, each model was
further enhanced using the GridSearch algorithm to obtain
the optimal performance.

Te model was initialized and then optimized using the
grid search algorithm. Te focus of the optimization was on
the combined use of hyperparameters to improve the
model’s performance. Several hyperparameters were opti-
mized, such as n_estimator, learning_rate, and max_depth.
Table 5 presents the values of the hyperparameters used for
all models before and after the optimization process.

To evaluate the performance of the proposed models
after optimizing, ten-fold cross-validation results were
generated with four ML models namely CatBoost, LGBM,
RFR, and XGBoost. Te accuracies of each model were
presented using boxplots. Each fold achieves an accuracy
that does not difer greatly from the other for all four
proposed ML models, as shown in Figure 4. Across all folds,
CatBoost, LGBM, RFR, and XGBoost, respectively, had the
lowest accuracies of 90.182%, 90.171%, 85.323%, and
90.229%; these values were also shown in their boxplot; no
outliers were found. Terefore, the model performed well
across 10-fold cross-validation. Te results of all training
fold of each model are summarized in Table 6. Furthermore,
the performance of the four ML models (CatBoost, LGBM,
RFR, and XGBoost) was further assessed by the average error
of all training folds using the four evaluation metrics and the
accuracy index presented in Table 7. Based on the obtained
results, tuning the hyperparameters, which are adjustable
settings that afect the performance and behavior of eachML
model, led to a signifcant improvement in their respective
performances.

As shown in Table 7, the model based on CatBoost
reached the coefcient of determination R2 of 0.941, which
indicates that CS of recycled aggregates’ concrete can be
accurately predicted with this model. Te XGBoost and
LGBM models also showed satisfactory results, with R2

values of 0.939 and 0.934, respectively. An R2 value of 0.883,
however, shows the inferior performance of the RFR model
compared to the other models (CatBoost, LGBM, and
XGBoost) that were evaluated in this study.

In addition, the other evaluation metrics such as
RMSE and MAPE followed the same trend, with the RFR
model having a higher value and the CatBoost model
having a lower value. During this analysis, it was evident
that the proposed models performed well, mainly because
the RMSE and MAE values were similar among the
models.

3.2. Evaluation of Predictive Capability of the Models. Te
proposed models were blindly evaluated to identify their
predictive performance by predicting the CS of concrete
using a blind evaluation dataset. Figures 5(a)–5(d) illus-
trate the results of the four ensemble models developed in
this study for predicting the concrete CS of unseen data. A
vertical axis represents the predicted CS of concrete,
whereas a horizontal axis represents the observed CS.
Tere is an elevated level of clustering near the diagonal
line, indicating an accurate prediction of concrete CS. Te
model’s predictive performance was also measured using
the four evaluation metrics and the accuracy index shown
in Table 8.

Advances in Civil Engineering 9



Among all models, ensemble learning models based on
CatBoost achieved 90.617% accuracy in predicting CS of
recycled aggregates’ concrete, suggesting that it is capable
of accurately predicting CS of concrete. With an accuracy
of 90.594% and 90.155%, respectively, XGBoost and
LGBM models also delivered satisfactory results in pre-
dicting CS. RFR, on the other hand, performed poorly in
comparison to the other proposed models (CatBoost,
XGBoost, and LGBM), with an accuracy of only 85.557%.
Aside from that, the other evaluated metrics, for example,
MAE and RMSE, were found to be low for prediction
using the CatBoost model, which is about 2.730 and 4.090,
respectively.

Along with these macroscopic metrics, histograms are
plotted in Figures 6(a)–6(d) to illustrate how absolute error
was distributed on concrete CS prediction of unseen data
(blind evaluation datasets). Tere is a maximum absolute
error generated by CatBoost of 17MPa in predicting the
concrete CS, which is unacceptable for any real application.
Te other models also generated a similarly large absolute
error, specifcally 20, 21, and 23MPa for XGBoost, RFR, and
LGBM, respectively. Tis is because the data used for the
training model comes from diferent sources across the
globe, and the data is disproportionately unbalanced be-
tween each country as well as diferent specimen shapes and
sizes used in laboratory tests for measuring the concrete

Table 4: Summary of metric evaluation performance of initial models.

Model R2 MAE RMSE MAPE Accuracy∗

CatBoost 0.747 6.064 7.967 20.520 79.480
LGBM 0.863 4.169 5.585 13.582 86.418
RFR 0.877 3.874 5.544 13.155 86.975
XGBoost 0.926 3.010 4.320 9.855 90.145
∗Accuracy� 100−MAPE (in %).

Table 5: Summary of hyperparameter-tuned values of each model.

Hyperparameters Model
CatBoost LGBM RFR XGBoost

Default value

n_estimator — 100 100 —
learning_rate 0.009 0.10 — 0.3
max_depth 3 6 — 6
l2_leaf_reg 3 — — —

Optimized value

n_estimator — 1000 1000 —
learning_rate 0.1 0.1 — 0.8
max_depth 7 7 — 4
l2_leaf_reg 1 — — —

CatBoost LGBM RFR XGBoost

Ac
cu

ra
cy

 sc
or

e (
%

)

84

86

88

90

92

94

Figure 4: Boxplots representing the accuracy of each training fold for each model.
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Table 6: Model performance of all 10-fold cross-validation process.

Fold
Model

CatBoost LGBM RFR XGBoost
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Fold 1 3.741 8.609 3.699 9.115 5.323 14.677 3.863 8.913
Fold 2 4.125 8.900 4.452 8.836 5.204 12.785 3.853 8.538
Fold 3 3.524 8.198 3.749 8.404 5.58 13.167 3.374 7.464
Fold 4 3.652 7.375 4.088 8.188 5.455 11.695 3.925 7.769
Fold 5 3.763 8.316 4.378 8.765 5.479 11.974 4.141 8.339
Fold 6 3.89 7.831 3.677 7.655 5.148 12.179 4.096 8.011
Fold 7 4.046 9.818 3.756 9.124 5.374 14.056 3.879 9.771
Fold 8 4.054 9.317 4.305 9.659 5.793 13.703 4.006 8.682
Fold 9 3.647 9.120 4.259 9.829 5.337 14.038 3.725 8.917
Fold 10 3.898 8.930 4.142 9.464 5.596 13.177 4.085 9.516
Average 3.834 8.641 4.051 8.904 5.429 13.145 3.895 8.592
Std. deviation 0.201 0.729 0.303 0.681 0.194 0.990 0.225 0.731

Table 7: Model performance through 10-fold cross-validation process.

Model
Average metric evaluation of all folds

R2 MAE RMSE MAPE Accuracy∗

CatBoost 0.941 2.639 3.834 8.641 91.359
LGBM 0.934 2.727 4.051 8.904 91.096
RFR 0.883 3.841 5.429 13.145 86.855
XGBoost 0.939 2.596 3.895 8.892 91.408
∗Accuracy� 100−MAPE (in %).
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Figure 5: Continued.
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strength. Terefore, it is inevitable that there will be dif-
ferences in the natural properties of the constituent materials
across diferent countries.

It was found, however, that almost 90% of the pre-
dictions generated absolute errors that were less than 5MPa,
as shown Figures 6(a)–6(d); and that the maximum absolute
errors exceeding 5MPa accounted for only 10% approxi-
mately of the total prediction when using the CatBoost
model. Furthermore, the CS prediction made by the LGBM
model had the highest absolute error, about 23MPa, even
though only 10% of the total prediction had an error that
exceeded 5MPa. It is apparent from all of these observations
that there is a validity to these four ensemble models for
predicting CS of recycled aggregates’ concrete. Among the
proposed ML models in this study, CatBoost produced the
most accurate ensemble model out of the four, even though
it generated large errors in some predictions. Tere is a low
performance of the model based on RFR; however, it does
reach a suitable coefcient of determination R2 value of 0.872
and has a MAE value similar to the other models as well.

3.3. Comparison Model Performance with Other Algorithms.
A further demonstration of the superiority of these ensemble
models was conducted by comparing them with two popular
machine learningmodels including support vector machines
(SVMs) and artifcial neural networks (ANNs). A similar
process was used to train both models, in which several
numerical experiments were conducted to determine the
optimal model’s performance.

By blindly evaluating the two machine learning
models, Figures 7(c) and 7(d) illustrate their predictive
performance for predicting the concrete strength of un-
seen data. As a result, the ensemble models were able to
generate predictions that closely matched the observed
data and demonstrated greater accuracy compared to
SVMs and ANNs, as shown in Figures 7(a)–7(d). Te
evaluated metrics representing the predictive perfor-
mance of four models are presented in Table 9, including
CatBoost, RFR, SVM, and ANN. Te error metrics in-
dicate that ensemble models perform better than either of
these two models (SVM or ANN) in terms of accuracy and
efciency. Te RFR model, for example, generated the
highest error among the proposed ensemble models, but it
outperformed SVM and ANN on the basis of four eval-
uation metrics.

Overall, compared to other ML models like SVMs
and ANNs, which have been prepared in this study, the
four ensemble models—CatBoost, LGBM, RFR, and
XGBoost—that have been proposed performed better
in predicting the CS of recycled aggregates’ concrete
and were able to handle multinational datasets from
diferent sources despite large errors in some
prediction.
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Figure 5: Predictive performance of the proposed ML models for blind evaluation dataset: (a) CatBoost, (b) LGBM, (c) random forest
regressor (RFR), and (d) XGBoost.

Table 8: Predictive performance of the proposed models for all
datasets.

Model
Metric evaluation for the blind evaluation score
R2 MAE RMSE MAPE Accuracy∗

CatBoost 0.932 2.730 4.090 9.383 90.617
LGBM 0.929 2.822 4.174 9.845 91.155
RFR 0.872 3.968 5.610 14.443 85.557
XGBoost 0.930 2.785 4.145 9.406 90.594
∗Accuracy� 100−MAPE (in %).
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3.4. Sensitivity Features Analysis. Even though the models
achieved reasonable R2, MAE, and RMSE (as shown in
Table 8), they produced a small portion of prediction, with
maximum prediction errors of 17.91, 23.36, 21.67, and
20.77MPa for CatBoost, LGBM, RFR, and XGBoost, re-
spectively. To understand the factors leading to these highest
errors, the authors calculated the errors for each individual
prediction and divided them into two groups based on the
types of errors. Te purpose of the classifcation was to
identify whether specifc feature values and high error rates

are related. A distinction is also made between the highest
error group and the majority group to get a deeper
understanding:

(1) Extreme Error Group. Large absolute errors ex-
ceeding 5MPa, roughly 10% of all predictions (blind
evaluation dataset)

(2) Majority Group. Te remainder of the pre-
diction—this group should have a near-zero
absolute error
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Figure 6: Histogram of absolute error achieved with actual and predicted values for blind evaluation: (a) CatBoost, (b) LGBM, (c) random
forest regressor (RFR), and (d) XGBoost.
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Figure 8 illustrates the relationship between the nine
input features and the output (CS). Tere appears to be
a correlation between the water-binder ratio, paste-

aggregate ratio, and sand-aggregate ratio among these
nine features. A comparison of the feature distributions of
the majority group and the extreme error group is shown in
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Figure 7: Comparison of predictive performance of ML models based on other algorithms (SVM and ANN): (a) CatBoost, (b) random
forest regressor (RFR), (c) SVM, and (d) ANN.

Table 9: Comparison of the predictive performance of the proposed model with other models.

Model
Metric evaluation for the blind evaluation score

R2 MAE RMSE MAPE Accuracy∗

CatBoost 0.932 2.730 4.090 9.383 90.617
RFR 0.872 3.968 5.610 14.443 85.557
SVM 0.709 6.540 8.450 24.261 75.739
ANN 0.787 4.939 7.218 17.681 82.319
∗Accuracy� 100−MAPE (in %).
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Figure 9; the comparison between the feature distributions
of the training dataset (referent dataset) and the extreme
error group is shown in Figure 10.

Regarding the “W/B” feature, it is evident that the model
produced large errors in predicting concrete strength when
the water-binder ratios are between 0.30 and 0.55 (as shown
in Figure 9). However, the same range was observed in the
majority group that the models can predict concrete CS with
high accuracy. Tese values were also seen in our training
dataset (as shown in Figure 10) that is covered, but the
error is unbiased and similar across all samples. Te
other features were found to be similar when comparing
the feature distribution of the extreme error group to the
majority group, as well as to the training dataset (ref-
erence dataset for creating the model). In this case, the
feature distribution of the model does not afect this
small portion of the extreme error in CS prediction, as
the model generated a large prediction error even though
the features are in the range of feature of data used in
training the model.

It is important to note that, even if a certain feature value
falls within the range of features of the data that were used
during the training of the model, there are still a great deal of
errors presented in some results of the CS prediction. It is
probably this factor that is most likely to compromise the use
of ML in real-world applications, for predicting the concrete
CS replacing the laboratory test.

Te large error prediction might be partly due to the fact
that the data used for the trainingmodel come from diferent
sources across the globe, and the data are disproportionately
unbalanced between each country as well as diferent
specimen shapes and sizes used in laboratory tests for
measuring the concrete strength. Terefore, it is inevitable
that there will be diferences in the natural properties of the
constituent materials across diferent countries. In addition,
MLmodels are generally ftted to datasets and predict output
based on quantity features without considering the natural
properties of constituent materials; this could lead to errors
in the prediction as the training data lack
representative data.
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Figure 8: Pair-plot representing the relationship between nine input features and the compressive strength.
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As part of this stage, the dataset was reduced to deal with
the unbalanced data and a lack of representative data from
each country present in the dataset. For this analysis, only
data from Hongkong and China were considered, and there
was a total of 464 instances totaled in both from Hongkong
and China (as can be seen in Table 2). Besides the reduction
in the size of the dataset, in this new training model, the
exact same procedure and method are repeated as in the
previous models. A 10-fold cross-validation evaluation of
the model during training is presented in Table 10, as well as
the predictive performance of the new model for predicting

the concrete CS of the blind evaluation dataset is presented
in Table 11.

Te overall performance of all-ensemble models (Cat-
Boost, LGBM, RFR, and XGBoost) was improved. For ex-
ample, the predictive performance of the CatBoost model
was higher than previous models, as it achieved an R2 value
of 0.971; it also reported a lower mean absolute error in the
CS prediction, which is about 2.035. Tere was a similar
improvement in other models namely LGBM, RFR, and
XGBoost which are evaluated in this study. In addition, each
of the ensemble models has identifed a decrease in the
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Table 10: Model performance through 10-fold cross-validation
using dataset from Hongkong and China.

Model
Average metric evaluation of all folds

R2 MAE RMSE MAPE Accuracy∗

CatBoost 0.972 2.062 2.953 6.737 93.263
LGBM 0.959 2.556 3.598 8.026 91.974
RFR 0.937 3.357 4.523 11.362 88.638
XGBoost 0.956 2.781 3.723 8.863 91.137
∗Accuracy� 100−MAPE (in %).

Table 11: Predictive performance of the proposed models using
dataset from Hongkong and China.

Model

Metric evaluation for the blind evaluation score

R2 MAE RMSE MAPE Accuracy
Maximum

AE
(MPa)

CatBoost 0.971 2.035 2.765 5.965 94.035 8.101
LGBM 0.958 2.627 3.295 7.788 92.212 10.947
RFR 0.938 3.146 4.015 8.740 91.260 11.904
XGBoost 0.945 2.800 3.797 7.513 92.487 14.891
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maximum absolute error of the individual CS prediction for
CatBoost, LGBM, RFR, and XGBoost, which are 8.1, 10.9,
11.9, and 14.8MPa, respectively. In this case, the value in-
dicates an increase in the model’s predictive performance
when the data sources are balanced, and they come from
similar sources. An illustration of the comparison between
measured and predicted CS of recycled aggregates concrete
is shown in Figure 11. Based on the results, the all-ensemble
models can accurately predict the CS of concrete regardless
of the proportions in the concrete mixture. While there are
several obvious errors near the extremes of CS prediction,
the optimized models based on ensemble learning algo-
rithms accurately track the variation trend, indicating
a potential application of the model for predicting concrete
CS as a function of diferent mixture ingredients.

Tere is, however, a possibility that this problem—an
unacceptably large error in some prediction—could be re-
solved by either increasing the number of representatives
included in the training model or by adding additional
features related to the natural properties of the constituent
materials to improve the learning process. In this work, ML
techniques, specifcally the four ensemble model including
CatBoost, LGBM, RFR, and XGBoost, have been found to be
promising for real-world application in predicting concrete
CS replacing the laboratory test, as long as the datasets are
sufciently large and representative.

Te proposed model can accurately predict CS of
recycled aggregates’ concrete made from similar sources of
data used during the training, provided that their features
fall within the limitation value range in Table 3. However,

due to signifcant variations in the properties of recycled
aggregates, the model may not perform well for concrete
which is from diferent sources of data used in training this
model. Terefore, it is important to take caution when
applying the model to diferent sources of data and to
consider the variability of the recycled aggregates. In ad-
dition, the accuracy of the model can be impacted by the
quality of the data used during the training and it may not be
able to capture all the complexities and factors that infuence
the CS of recycled aggregates’ concrete. Hence, continuous
improvements and updates to the model using new data and
features are crucial for enhancing its performance and
reliability.

4. Conclusion

Te goal of this study was to clarify some important aspects
regarding the use of machine learning tools using ensemble
learning algorithms for predicting the compressive strength
(CS) of concretes based on the composition of their mix-
tures. As a result, four regression machine learning models
(CatBoost, LGBM, RFR, and XGBoost) were applied to
predict the compressive strength of concrete made with
recycled coarse aggregate, which was either fully or partially
substituted for natural aggregate. For the training and
evaluating these four regression models, 2,300 datasets were
globally collected from the literature. To avoid biased
splitting and overftting, all four models were well trained
through 10-fold cross-validation with the best optimized
hyperparameters. A blind evaluation process was conducted
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Figure 11: Predictive performance of the proposed ML models (reduced dataset): (a) CatBoost, (b) LGBM, (c) RFR, and (d) XGBoost.
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to evaluate the predictive capabilities of the model. To
quantify the infuence of important features on the com-
pressive strength of concrete and to identify the weaknesses
of this model, a feature sensitivity study was conducted in
terms of data sources and feature distribution. Based on the
results of this study, the following conclusions can be drawn:

(1) Tese four proposed ensemble models predict
concrete’s compressive strength reliably and accu-
rately, despite some parts showing large errors. For
the blind evaluation set, the CatBoost model’s MAE
and MAPE are 2.730MPa and 9.383%, respectively,
indicating that the prediction error is acceptable and
that the model is generalizable.

(2) Ensemble learning methods improve prediction
performance compared to traditional methods in
four proposed MLmodels. Both the MAE and RMSE
of each ensemble model predicting concrete com-
pressive strength are signifcantly lower than those of
traditional approaches. Although random forest
regressor (RFR) performs the least well among the
four proposed models, it is more efcient than the
SVM and ANN.

(3) A sensitivity feature study showed that even though
the model showed acceptable performance, some
error prediction could still occur due to the lack of
representative data used for creating the model.

In conclusion, ML techniques are indeed promising for
real-world application in predicting concrete compressive
strength replacing the laboratory test, but mitigating factors,
including limited representation (small dataset), make them
impractical to be implemented on a global scale. Since
concrete is an extremely complex system encompassing
many phases (i.e., cement paste, fne and coarse aggregates,
and chemical and mineral admixtures), the author recom-
mends that further research be conducted to include more
features for the development of a comprehensive predictive
model, for example, considering the natural properties of
constituent materials. In addition, it would be benefcial to
conduct more quantitative studies regarding the general-
izability of machine learning-based models for concrete
properties to implement concrete safety.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te research described in this paper was fnancially sup-
ported by the National Research Foundation of Korea (NRF)
grant funded by the Korean Government (MSIT) (no.
2019R1A2C1003007).

References

[1] J. D. Brito and N. Saikia, “Recycled aggregate in concrete,” in
Green Energy and Technology,Springer London, Berlin,
Germany, 2013.

[2] S. A. Deloitte, Construction and Demolition Waste Man-
agement in United Kingdom, Member of Deloitte Touche
Tohmatsu Limited, London, 2014.

[3] R. Crawford, A. Stephan, André, and F. Prideaux, EPiC
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