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This paper considers the phenomenon of the instability of steel plane frame structures in the elastic–plastic domain. The numerical
analysis uses finite element method, where the corresponding stiffness matrices are based upon the trigonometric and hyperbolic
interpolation functions of normal forces. The tangent modulus concept is applied when buckling occurs in the plastic range. Thus,
the stiffness matrices for nonlinear material behavior are also derived. The procedure for determining effective length factors of
compressed columns, which implies a global stability analysis of entire frames, is established too. It means that the proposed
approach is based on the assumption that the collapse of the structure occurs when the most loaded columns reach their stability
limit. So, the presented procedure enables the calculation of the real critical load of plane frame structures in the elastic–plastic
domain and determines the corresponding effective length factors.

1. Introduction

The analysis of compressed structural elements requires the
investigation of stability phenomena. For example, dominant
compressive stresses may cause structural instability, loss of
load-bearing capacity, and collapse of the structure, even
when allowable stresses are not exceeded. Furthermore, the
problems of instability of steel frame structures are current,
especially considering the engineers’ intentions to design
various types of structures. Therefore, the analysis of these
structures, particularly taking into account their stability,
requires the application of modern and complex numerical
methods. That is why, the inelastic buckling of the steel
frame columns was always interesting to researchers in struc-
tural steel analysis.

The first investigations in this field were based on Euler’s
theory of buckling of isolated columns [1]. They were mainly
based on solving the differential equation of buckling according
to the second-order theory. However, in the case of complex
structures, it was necessary to introduce some approximations.
So, all compressed elements were considered “isolated” from
the structure as a whole. These isolated columns are supported

only by the adjacent columns and beams. Basically, the corre-
sponding boundary conditions introduce the presence of other
structural elements connected to the considered one. Thus, the
stability analysis of columns is simplified, and the results may
be obtained through the corresponding diagrams and approxi-
mate formulas. For example, the results of the elementary case
of a column with rotational restraint of stiffness at the ends and
restraints of stiffness against sway are presented [2]. The critical
loads may be obtained directly from a graph, and the curves are
also marked with a ratio of effective length to the actual length.
Equivalent diagrams also appear in the European Convention
for Constructional Steelwork recommendation [3]. These dia-
grams became the basis of many design codes, especially for
steel structures, for example [4, 5]. Similar approximations also
can be applied to the analysis of multistorey frames. The most
common procedures for such calculation are the slope deflec-
tion method as well as the stiffness distribution method [2, 6].
These hand-calculation methods are easy to apply to simple
frames but become difficult, tedious, and time-consuming for
frames with many joints. Additionally, some other investiga-
tions [7–13] propose methods for analyzing the stability of
multistorey multibay frames.
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The analysis of “isolated” members was applied to many
codes for frame structure stability calculation, such as [4, 5].
The basis of this calculation is the determination of the
effective length factor K. Regardless of its frequent use as
a basis for design, Chen [14] explained that this approach
has significant limitations. The question is whether the coef-
ficient K is determined with adequate accuracy. Namely,
Chen [14] indicated no verification of the compatibility
between the “isolated” member and the member as part of
a whole frame.

That is why, lately, a great effort has been devoted to
improving these approximate calculation procedures. So,
LeMessurier [15] introduced factors that lead to more realis-
tic results, Gantes and Mageirou [16] proposed improved
stiffness distribution factors for effective buckling length cal-
culation, while Tong and Wang [17] considered interstory
and intercolumn interactions for the determination of effec-
tive length coefficients. In their investigations, Choi et al. [18]
used a fictitious axial force factor to determine effective length
factors, and Webber et al. [19] and Gunaydin and Aydin [20]
improved the calculation of the distribution coefficients.

With advances in computing, the finite element method
(FEM) has become one of the most effective methods for
analyzing frame stability. This method has been of interest
to many researchers, such as Gallagher [21] and Bathe [22],
and it is applied in modern commercial software, which deals
with stability analysis of frame structures. The common pro-
cedure for the FEM analysis is based upon the integral struc-
tural model and the geometric stiffness matrix as a part of the
tangent stiffness matrix. This study presents an advanced
procedure that models the stiffness matrices more accurately
by deriving them using the interpolation functions related to
the exact solution of the differential equation of the bending
of a beam according to the second-order theory. Based on the
obtained solutions, the critical load of the frame and the
effective length factors are determined by applying a global
stability analysis.

Besides the geometrical nonlinearity, this study also con-
siders the physical (or material) nonlinearity. There are vari-
ous methods to solve this kind of problem. This paper
presents tangent modulus theory [23] as one of the most
suitable methods for solving such problems. In this method,
the tangent modulus, denoted by Et, represents the slope of
the stress–strain curve. It is used to describe the stiffness of a
material in the plastic range. Its value is a function of the
axial load in the observed member, and it can be determined
from the capacity specification equations of the column.
Therefore, this analysis derives the stiffness matrices of the
axially loaded elements using their tangent modulus.

Based on the above description, the most crucial aspect of
this paper mainly refers to the investigation of suitable
numerical methods for obtaining the solution of the corre-
sponding transcendental stability equation. After finding the
appropriate algorithm, the problem was extrapolated to the
inelastic material behavior, i.e., to the stability problems in
the plastic or the elastic–plastic range. Finally, this study
aimed to determine the most appropriate methodology for
determining the effective length factors.

2. Buckling Analysis of Plane Frame Structures
in the Inelastic Domain

The FEM, as the most convenient for the analysis of the
stability of frames, is used in this analysis. In the FEM, the
critical load can be obtained as the nontrivial solution of
the homogeneous matrix equation:

K½ � ⋅ qf g ¼ 0: ð1Þ

In Equation (1), [K] represents a global stiffness matrix
for the entire frame, including the corresponding boundary
conditions, while {q} is the vector of generalized coordinates.
This matrix equation can be solved incrementally by increas-
ing the load at specified increments until it reaches the criti-
cal value, i.e., until det [K] = 0. When the elastic stability
problem is considered, Young’s modulus (E) has a constant
value. Thus, having in mind Euler’s formula for the critical
load, the member’s critical stress can be given as a function of
the elasticity modulus and the slenderness ratio:

σcr ¼
Pcr
A

¼ π2EI
l2i A

¼ π2
E
λ2i
; ð2Þ

where λi ¼ li=i is the slenderness ratio of the member, li is the
effective length of the member, i ¼ ffiffiffiffiffiffiffiffi

I=A
p

is the radius of
gyration, I is the moment of inertia, and А is the cross-
sectional area. Equation (2) represents a hyperbolic curve,
and this function is valid until the critical stress is less than
the proportionality limit (σp), as shown in Figure 1. This
stability formulation for elastic buckling is given by Allen
and Bulson [2] and widely applied in engineering practice.
Therefore, regulations for the design of steel structures in the
section related to their stability are also based on such an
approach [4, 5].

However, this analysis becomes more complex when
some compressed columns enter into the phase of nonlinear
material behavior, although the critical load still needs to be
reached. It means that the stresses in such members exceed
the proportional limit value, and buckling occurs in the plas-
tic domain. For that reason, in addition to geometric

Tetmajer
Johnson
Engeser–Karman
Shanely
Engeser

λp

λ

σcr

σy

σp

Euler hyperbola

FIGURE 1: Buckling curves in the plastic domain.
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nonlinearity, material (or physical) nonlinearity should be
considered.

This problem has been of interest in many studies. The
first test results related to this problem were presented by
Bauschinger [24], and von Tetmajer [25] later continued this
work and carried out his investigations. As a result, he pro-
posed a linear relationship between critical stress and slen-
derness ratio in the plastic domain. His solution is still used
in engineering practice, and it is shown in Figure 1, where the
proportional limit is marked as σp, yield stress with σy, and
λp ¼ π

ffiffiffiffiffiffiffiffiffiffi
E=σp

p
is the slenderness ratio at the proportional

limit.
Johnson et al. [26] also proposed a formula that was an

alternative to Euler’s solution for low slenderness ratio con-
ditions. In his investigations, Engesser [27] involved changing
the modulus of elasticity in the plastic domain by introducing
a tangent modulus of elasticity. So, he replaced Young’s mod-
ulus E with the tangent modulus Et in the expression for
Euler’s critical load. This problem was also interesting for
many other investigations. For example, Von Karman [28]
proposed the reduced modulus theory, Shanley [29] claimed
that the tangent modulus is correct for buckling beyond the
proportional limit, Ramberg and Osgood [30] established an
equation that relates Young’s modulus to the tangent modu-
lus, etc. Figure 1 also presents some of these significant buck-
ling curves in the plastic range.

Although numerous theoretical and experimental inves-
tigations have been carried out, the problem of buckling of
frame structures in the elastoplastic domain has yet to be
completely solved. However, the rapid development of com-
puter technology in the last decades has enabled the possi-
bility of finding a comprehensive solution to this issue. So,
many researchers have continued to deal with this problem,
and Chen [14] presented the potential of design procedures
in this field. Izzuddin [31] proposed a rotational spring anal-
ogy as a simplified method for formulating the geometric
stiffness matrix. Furthermore, Yoo and Choi [32] suggested
a new method of inelastic buckling analysis, where the con-
cept of modified bifurcation stability using a tangent modu-
lus approach and the column strength curve is applied.
Farshi and Kooshesh [33] derived the buckling capacity
from a buckling analysis valid for the whole structure and
not considered separately and isolated from the rest of the
structure.

In order to find an appropriate solution for the buckling
problem in the elastoplastic domain, this study applies the
tangent modulus theory. Such an approach makes it possible
to find the critical load that more closely represents the actual
limit state of the structure under pure axial load [23, 34]. So,
for each new load increment in all members where the pro-
portional limit is exceeded, the stiffness of the member must
be changed. It means that the corresponding tangent modu-
lus Et has to be used for these members. This modulus repre-
sents the slope of the tangent on the stress–strain diagram at
any point.

Performing numerical stability analysis in the inelastic
domain requires knowledge of the material’s mechanical
and physical characteristics. It is well known that for building

materials such as steel, the σ–ε relationship is linear, while it
is in the elastic domain of the material. However, this rela-
tionship becomes nonlinear with higher load levels, i.e.,
above the proportional limit. Experimental investigations
are the most suitable method of determining this relation-
ship. Figure 2 presents a notional curve that shows the rela-
tionship between stress and strain of the axially loaded
member before the load-bearing capacity is so reduced that
the fracture of structure elements occurs. The notations for
σp and σy are the same, as shown in Figure 1. Up to a pro-
portional limit σp, Young’s modulus of elasticity E is constant
and is only a function of the material characteristics. With a
further load increase, this modulus also becomes a stress-
dependent function called a tangent modulus Et [35]. It repre-
sents the slope of material’s stress–strain curve above the
proportional limit. Values of Et can be obtained using either
semiempirical formulas derived from inelastic column curves
or those derived from the assumed residual stresses in the
member [36].

Partskhaladze et al. [37] explained that the problem of
using an adequate expression for the tangent modulus is
relevant. However, this analysis uses an empirical relation-
ship between the two moduli that are suggested in many
relevant investigations [34, 38, 39]:

Et ¼ 4E ⋅
σ

σy
1 −

σ

σy

 !" #
: ð3Þ

In Equation (3), σ is normal stress in axially loaded col-
umns that can be calculated as the quotient of the axial force
applied on the column and the cross-sectional area of the
column. The material’s yield stress σy is the amount of stress
that a material can withstand before undergoing plastic defor-
mation. This empirical formula was derived from inelastic
column curves representing the behavior of structural steel
columns in the inelastic domain. It was applied in the pre-
sented analysis to develop the corresponding computer pro-
gram that can be used for the nonlinear, i.e., elastoplastic
stability analysis of frames.

Since the primary goal of this investigation is the formu-
lation of the exact matrix stability analysis, it is necessary to
obtain the corresponding stiffness matrices.
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FIGURE 2: Tangent modulus concept.
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It is well known that during the member buckling, the
axial force causes the bending of the member. Thus, the
fundamental differential equation of this stability problem
in the case when the member is subjected to the axial com-
pressive force P is:

viv þ k2v00 ¼ 0; ð4Þ

where v represents lateral deflection, and k is equal to
ffiffiffiffiffiffiffiffiffiffi
P=EI

p
in the case when buckling occurs in the elastic domain.

In the usual approaches based on the FEM, the solutions
of the differential Equation (4) can be written as cubic poly-
nomials, suitable for linear static analysis since they are
derived from the solution of the differential equation of
bending of a beam according to the linear theory. However,
the outcome of such investigations showed [40] that signifi-
cant errors for Pcr might be obtained if an insufficient num-
ber of finite elements are used. In that case, it is always
necessary to control how many finite elements are needed
for a convergent solution.

The presented analysis uses interpolation functions in
the trigonometric form, related to the exact solution of the
basic differential equation of the stability problem. Many
other studies dealing with similar topics, such as Rodrigues
et al. [41], also apply the same functions. These trigonomet-
ric or hyperbolic functions of the axial load in the element
are used in the presented form:

v xð Þ ¼ α1 þ α2kx þ α3 sin kxð Þ þ α4 cos kxð Þ; ð5Þ

where α1, α2, α3, and α4 are integration constants. In the case
of the inelastic behavior k ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

P=EtI
p

, where Et is equal to E
for the buckling in the elastic domain. Applying such shape
functions makes it sufficient to use one finite element for an
axially loaded column or beam. However, there are certain
disadvantages related to the application of this approach.
Namely, instead of the generalized eigenvalue problem, for
which there are several well-established methods, the buck-
ling problem is reduced to the solution of the transcendental

equation that depends, in a highly complex way, upon the axial
forces in the columns and beams. So, an essential aspect of this
research was devoted to the investigation of suitable numerical
methods to obtain the solution of the corresponding transcen-
dental stability equation. These solutions were implemented in
a self-developed computer program [40], representing this
paper’s one of the most important contributions.

The procedure for obtaining the corresponding stiffness
matrices for the members subjected to compressive or ten-
sion forces is already known, and it will be only briefly pre-
sented here. First, it is necessary to determine the values of
the integration constants depending on the boundary condi-
tions (see Figure 3).

Then, the displacements within the element are displayed
as a function of the generalized displacements at the member
ends. This is followed by the calculation of the matrix of
interpolation functions. Its elements represent the elastic
line of a member clamped on both sides, subjected to the
compressive axial force at the ends, due to a unit generalized
displacement, while all other displacements are equal to zero.
At the end of the procedure, the stiffness matrix [K] makes a
correlation between the vector of generalized displacements
(i.e., element end shear forces and bending moments) and
the vector of generalized displacements (i.e., translational
deformations and rotation angles), presented in Figure 3.

So, the matrix for the buckling of the member type “k”
(i.e., clamped at both ends), subjected to compressive force in
the elastic region, is derived as:

K½ � ¼ EI
l3Δ

ω3sinω ω2l 1 − cosωð Þ −ω3sinω ω2l 1 − cosωð Þ
ω l2 sinω − ω cos ωð Þ −ω2l 1 − cos ωð Þ ω l2 ω − sinωð Þ

ω3sinω −ω2l 1 − cosωð Þ
symm: ω l2 sinω − ω cos ωð Þ

2
66664

3
77775; ð6Þ

where ω= k·l and Δ = 2 (1 – cos ω) – ω · sin ω.
There are many other studies of buckling of Euler–

Bernoulli beam columns using this matrix type, for example
[42, 43].

This analysis also includes calculating the stiffness matrix
when the member buckles in the inelastic domain. In that
case, the member stiffness is obtained using the tangent

modulus for each member that is consistent with the axial
force in the member at the critical load [36]. These matrices
have the same form as matrices for linear material behavior
but are basically very different. First, it means that a stress-
dependent tangent modulus Et replaces a constant modulus
of elasticity E. In addition, the values ωt and Δt replace ω and
Δ, respectively. So, for the member that is clamped at both
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FIGURE 3: Assumed forces and displacements.
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ends (so-called type “k”) and subjected to compression load,
the stiffness matrix can be written as:

K½ � ¼ EtI
l3Δt

C11 C12 C13 C14

C22 C23 C24

C33 C34

sym: C44

2
66664

3
77775; ð7Þ

where is:

Et ¼ 4E ⋅
σ

σy
⋅ 1 −

σ

σy

 !" #
¼ 4E ⋅

Pi
A ⋅ σy

⋅ 1 −
Pi

A ⋅ σy

 !" #
;

ð8Þ

Δt ¼ 2 ⋅ 1 − cosωtð Þ − ωt ⋅ sinωt; ð9Þ

ωt ¼ k ⋅ l ¼
ffiffiffiffiffiffiffiffiffiffi
Pi

Et ⋅ I

r
⋅ l ¼ 1

2
A σy l ⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

EI Aσy − Pi
À Á

s
;

ð10Þ

C11 ¼ C33 ¼ −C13 ¼ ω3
t sinωt; ð11Þ

C12 ¼ C14 ¼ −C23 ¼ −C34 ¼ ω2
t l 1 − cosωtð Þ; ð12Þ

C22 ¼ C44 ¼ ωt l
2 sinωt − ωt cosωtð Þ; ð13Þ

C24 ¼ ωt l2 ωt − sinωtð Þ: ð14Þ

In these equations, Pi is an axial force for the observed
element. Column length is denoted by l, I is the moment of
inertia, А is the cross-sectional area, and σy is the yield stress.
The stiffness matrix of the member that is clamped at one
and hinged at the other end (so-called type “g”) is given by
Ćorić [40]. When the element is subjected to a tensile load,
stiffness matrices have a similar form; only the hyperbolic
functions are used instead of the trigonometric one.

As was already emphasized, the calculation methodology
used in this analysis relates to the global stability analysis of
plane frame structures. It means that first, it is necessary to
determine the critical buckling load for the whole structure
(Pcr,gl). Then, it is possible to find the critical force for each
column of the analyzed frame (Pcr,i) when the whole frame
buckles.

It should be noted that this investigation assumes that all
members reach their buckling limits when the buckling of
the overall structure occurs. So, when the critical load of the
whole structure is obtained, the buckling load of each mem-
ber in the frame can be found as follows:

Pcr;i ¼ n ⋅ Pcr;gl; ð15Þ

where n denotes the ratio of the axial force in the column in
relation to the load parameter P. For example, if the axial
force in the column is 2P, then n = 2, etc.

Based on the presented approach, for the elastic stability
analysis, the effective length coefficient of the individual col-
umn is given by:

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π2EI
Pcr ⋅ l2

s
: ð16Þ

When the buckling occurs in the plastic range, this
expression for K has the same form, as shown in Equation
(16), but Pcr refers to the critical load obtained in the inelastic
stability analysis, denoted as Pcr,inel. In the same way, the
tangent modulus Et replaces the elastic modulus E:

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2EtI

Pcr;inel ⋅ l2

s
: ð17Þ

A computer program in the C++ programming language
was developed to implement the presented theoretical
approach. Two steps perform the proposed analysis. The first
step requires stability calculation in the elastic domain. The
critical buckling load is obtained from the roots of the tran-
scendental equation, representing the condition that the
determinant of the corresponding stiffness matrix is equal
to zero. This calculation is performed iteratively. Namely, the
initial values of the load factor are set, and the calculation is
repeated until a preset accuracy is reached. Finally, the criti-
cal force in the elastic domain is obtained. Then, the critical
stress for all members is calculated as the ratio of the critical
normal force and the cross-sectional area of the analyzed
element, as shown in Equation (2). For the axially loaded
columns in which the critical stress exceeds the proportion-
ality limit (σp), it was necessary to change their stiffness. So, a
new tangent modulus (Et) was taken in the form (3). On the
other hand, columns with critical stress, which did not reach
the proportionality limit, keep their “old characteristics.” So,
the stiffness matrix for this element is the same as in the first
part of this calculation.

Additionally, possible geometric imperfections can be
simulated by a further reduction of member stiffness. As sug-
gested by Chen [14], it can be achieved by an additional
reduction of the tangent modulus (E0

t ¼ 0:85Et). The calcula-
tion is again performed iteratively, and the obtained reduced
stiffness matrix must satisfy the condition for the existence of
the nontrivial solution. As a result of this procedure, the cor-
responding critical load factor, effective length coefficient, and
the value of tangent modulus for all elements buckling in the
inelastic domain are obtained.

3. Behavior of Frame Structures in the
Elastoplastic Domain

Due to its complexity, the stability calculation of the frame
structure in the elastoplastic domain is not represented in
standard engineering calculations. Therefore, this kind of
calculation is not required by the current codes for the design
of steel structures. Namely, to obtain the critical load and

Advances in Civil Engineering 5



stresses in the plastic range, the regulations suggest that cal-
culation in the elastic domain should be carried out first.
Then, it is necessary to apply the corresponding buckling
expressions and curves that arise from numerous experimen-
tal investigations related to the behavior of the isolated mem-
bers in the plastic domain. This study will show that the
stability analysis of the frame structures in the elastoplastic
domain could be performed more correctly using the pre-
sented theoretical approach.

In order to illustrate the proposed method, a three-bay
plane frame of six stories is considered. Figure 4 shows that
this sway frame is clamped at the base, and external loads P, i.e.,
P/2, are applied to each column at each story in the frame. In
this numerical example, the axial load in the columns increases
from the upper stories to the primary level. It means that the
elastoplastic analysis of stability can result in the different
behavior of the columns in different stories.

The considered frame is made of steel with a modulus
of elasticity E = 210,000,000 kN/m2 and yield stress σy =
240,000 kN/m2. From the tangent modulus formula,
Equation (3), it follows that the proportional limit is half the
yield point, i.e., σp= 0.5·σy= 120,000 kN/m2 [34, 38, 39]. In
other words, this tangent modulus formula adjustment affects
members with σ/σy> 0.5, as indicated by Ziemain [36]. Several
different types of sections are assumed for the columns in this
numerical example (IPB140, IPB180, IPB220, IPB260, IPB300,
IPB340), while IPE360 is used for all girders.

The stability analysis results for this frame are given in
Tables 1 and 2. First, Table 1 shows the critical load values
for all considered cross-sections in the case of elastic and
proposed elastoplastic stability analysis.

It is clear that elastoplastic stability analysis, compared to
the classical elastic analysis, gives smaller values of the criti-
cal force, as expected. Moreover, this difference in the results
rises with the increase of the stiffness of the axially loaded
columns.

Based on these results, it is obvious that only inelastic
stability analysis is acceptable for the analyzed example. In
that case, the physical characteristics of the steel are changed,
and the corresponding tangent modules Et should be consid-
ered. Table 2 summarizes the results for these two modules
when buckling occurs. As the columns are stiffer, they can
receive a greater load, so their tangent modulus values are
lower. So, Table 2 contains the results only for the three most
loaded stories of the analyzed frame structure. The results are
given for the inner columns, considering they are loaded
with the double axial forces loading than the outer ones
within one floor.

4. Determination of Effective Length Factors of
Compression Members

Investigating the collapse of some buildings, particularly steel
ones, has shown that it often occurs due to the fracture of
their compression elements. These elements suffered a pre-
mature fracture, so their load-bearing capacity was exhausted
even before the allowable stresses were reached. Generally,
for most of the compression members made of steel, the
ultimate bearing capacity is determined by the stability
criterion.

Many standards for the calculation of centrally loaded
steel members, as well as European standards EC3 [5], are
based on the application of the so-called “buckling curves.”
These curves are obtained from the theoretical buckling
curves considering the geometric imperfections and residual
stresses in real members. They are represented in the buck-
ling analysis by a reduction factor and the slenderness ratio
[5]. So, to use these curves properly and get the correct
results, it is necessary to calculate the analyzed members’
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FIGURE 4: Geometry and the loading data for the six-story three-bay
plane sway frame.

TABLE 1: Critical load values for the six-story three-bay sway frame
(kN).

Elastic analysis Elastoplastic analysis

IPB140 Pcr,el = 405.59 Pcr,inel= 168.58
IPB180 Pcr,el = 905.27 Pcr,inel= 255.98
IPB220 Pcr,el = 1,524.52 Pcr,inel= 359.19
IPB260 Pcr,el = 2,119.72 Pcr,inel= 467.61
IPB300 Pcr,el = 2,652.27 Pcr,inel= 591.86
IPB340 Pcr,el = 3,049.66 Pcr,inel= 682.16

TABLE 2: Comparison of the tangent modulus for the six-story three-
bay sway frame Et (kN/m

2).

First floor Second floor Third floor

IPB140 18,375,849 126,718,202 190,251,891
IPB180 16,437,448 125,752,069 190,245,012
IPB220 10,943,660 122,726,142 189,066,054
IPB260 7,732,187 120,952,255 188,368,916
IPB300 5,801,178 119,883,901 187,946,789
IPB340 2,257,235 117,919,839 187,166,919
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buckling length precisely. It means that the accurate value of
the effective length factor (K) can be a critical parameter for
the design of steel frame structures.

From the physical viewpoint, this “effective buckling
length” is the length of an equivalent end-hinged member
with the same critical force as the member under consider-
ation. The critical force is given by:

Pcr ¼
π2EI
K ⋅ Lð Þ2 ; ð18Þ

where the effective length of the column is determined as the
multiplication of the effective length factor (K) and the unsup-
ported length of the column (L). Mathematically speaking,
“effective buckling length” is the distance between the inflec-
tion points of the member subjected to the compression force.
This length depends on the support conditions at the end of
the column.

The effective length factor was determined using the theo-
retical approach described in Section 2 of this paper instead of
the approximate procedure from the codes. Namely, structural
design codes for the stability calculation of steel structures use
simplified static schemes to analyze the compressed column
within a frame. It means that only “isolated” columns sup-
ported by the adjacent beams and columns are considered. In
essence, the corresponding boundary conditions introduce the
presence of other structural elements connected to the consid-
ered one. In many studies [16, 19, 40], however, it has been
shown that these simplified solutions are not accurate enough
to calculate columns within frames.

The selected test model for calculating the effective
length factors for axially loaded columns is presented in
Figure 5, and it has been considered and investigated by
Farshi and Kooshesh [33].

It is a five-story three-bay sway frame that is clamped at
the base. The used material is steel with properties:
E= 210,000,000 kN/m2 and σy= 240,000 kN/m

2. The frame
dimensions and the applied loads are shown in Figure 5,
with length in meters (m) and loads in kN. The left-side
and right-side columns on the three higher floors are
IPB300, while the first two are IPB340. The middle columns
on the three higher floors are IPB340, while the middle on
the first two floors are IPB400. The girders of the left, middle,
and right bays are 2IPE240, 2IPE270, and 2IPE300, respec-
tively. The columns are numbered from the lower to the
upper floors (1–4 first level and, respectively to, 17–20 on
the highest level), and within each floor from left to right
(e.g., on the first floor, 1 is the left column, 2 and 3 are the
inner ones, and 4 is the outer right column).

As in the previous example, the initial analysis assumes
that all members are elastic, i.e., have a constant modulus of
elasticity E. Considering that some columns have the critical
stress that exceeds the proportionality limit (σp), it was neces-
sary to perform an inelastic analysis. The calculation was car-
ried out according to the procedure presented in Section 2. The
buckling load factor and the tangent modulus were calculated
for all columns that behave inelastically. As expected, the less
axially loaded columns continue to behave elastically. These
are those columns on the upper floors and the outer ones on
the left side of the frame. Also, girders with low axial stress
would continue to behave elastically. However, more loaded
columns, i.e., those on the lower levels, primarily the inner
ones, enter into the plastic range. So, they changed their char-
acteristics and the corresponding tangent modulus Et was
calculated.

The effective buckling length factors were calculated
using Equations (16) and (17). These values are compared
with the results from Farshi and Kooshesh [33] and with the
results from regulation EC3 [5], and they are presented in
Table 3. Farshi and Kooshesh’s [33] procedure also consid-
ered that many columns show inelastic behavior at the buck-
ling stage. Also, design parameters related to the buckling
capacity are derived from the buckling analysis that is valid
for the whole structure and not considered separately and
isolated from the rest of the structure. Table 3 also gives
differences between the proposed and other two approaches
(in %). These differences are calculated according to the
formula for relative error, as done in [44]: (K#−K)/K·100%,
where K is the result of the presented analysis and K# is the
result of the Farshi procedure and EC3 code.

First, there is quite a good correlation between the pro-
posed and Farshi study results. Namely, both methods have a
similar approach based on the global stability analysis using
the FEM. Interestingly, the best matching results with these
two methods are for the first (most loaded) floor. Specific dif-
ferences in the effective length factors are observed for columns
with higher floors. The authors believe that this is because the
expression for the tangent modulus used in this analysis, as
shown in Equation (3), better describes the material’s behavior
than the reduced modulus used by Farshi and Kooshesh [33].

Moreover, it is clear that there is a significant difference
between these results and the results obtained using the codes
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FIGURE 5: Numerical example—five-story three-bay sway frame [33].
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for steel structures. Likewise, the AISC procedure [45] gives
similar results to the Eurocode. It is understandable because
those procedures, according to the regulations, are based on
many simplifications. First, as already emphasized, they only
consider the stiffness of the structural elements connected to
the analyzed one. In addition, codes do not consider the value
of the axial force in the observed element. Also, EC3 proposes
only the elastic stability analysis for determining effective
length factors.

5. Conclusions

The presented procedure suggests a global stability analysis
of the whole steel frame structure. First, it is necessary to
determine the critical load for the structure as a whole. Then,
each member’s critical force and effective length factors can
be obtained based on the relationship between the global
critical force and the axial forces in the individual elements.
Matrix analysis applied to this analysis is based on applying
trigonometric shape functions. So, the presented method is
not unknown, but the way it is formulated and implemented
here has not been used so far in any software dealing with the
stability calculation of frame structures.

The previously mentioned approach has also been used
for inelastic analysis, where the nonlinear material behavior is
also developed apart from geometric nonlinearity. In this case,
the corresponding stiffness matrices have been derived using
the tangent modulus theory. These matrices were implemen-
ted in the self-developed computer code. An example of the
six-story three-bay frame was used to present the advantages
of such analysis.

This analysis also investigated the methodology for deter-
mining the effective length factors. Namely, the concept of an

effective length is most commonly used to calculate axially
loaded columns. So, it is necessary to accurately calculate
effective length factors, both in the elastic and inelastic
domains. A five-story three-bay frame already used in other
investigations was chosen as a benchmark numerical exam-
ple. Based on the obtained results, the validity of the recom-
mended inelastic buckling analysis can be verified.

The results obtained in this analysis confirm that the pro-
posed inelastic buckling approach is convenient for determin-
ing the critical load and the effective buckling length of the
steel frame structures. Therefore, it can be used as a good
alternative for estimating the load-bearing capacity of axially
loaded elements in the design of steel frames.

Finally, it should be emphasized again that the primary
goal of this research was to formulate suitable methods to
obtain more efficient and reliable solutions to stability pro-
blems to frame structures in the inelastic domain. So, its
main contribution is related to the calculation algorithm
that is implemented in the self-developed code. This algo-
rithm results in more precise buckling calculations both in
the elastic and the inelastic domains. Furthermore, it enables
monitoring the loss of structural stability in the plastic range
and determining the critical load when the frame structure
buckles.

Data Availability

The data used to support the findings of this analysis are
available from the corresponding author upon request.
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TABLE 3: Comparison of the effective length factors K for all columns of the numerical example (Figure 5) obtained by different methods.

Column number Presented analysis Farshi [33] (difference) EC3 [5] (difference)

1 2.20 2.01 (−9%) 1.42 (−36%)
2 1.46 1.37 (−6%) 1.29 (−12%)
3 1.25 1.19 (−5%) 1.29 (3%)
4 1.58 1.46 (−8%) 1.44 (−9%)
5 3.52 2.95 (−16%) 2.04 (−42%)
6 2.45 2.05 (−16%) 1.65 (−33%)
7 2.11 1.77 (−16%) 1.65 (−22%)
8 2.48 2.18 (−12%) 2.08 (−16%)
9 4.27 3.16 (−26%) 2.05 (−52%)
10 3.04 2.25 (−26%) 1.64 (−46%)
11 2.58 1.93 (−25%) 1.66 (−36%)
12 3.18 2.38 (−25%) 2.05 (−36%)
13 5.44 3.82 (−30%) 2.00 (−63%)
14 3.93 2.76 (−30%) 1.63 (−59%)
15 3.35 2.36 (−30%) 1.63 (−51%)
16 4.14 2.93 (−29%) 1.99 (−52%)
17 5.66 4.61 (−19%) 1.73 (−69%)
18 4.15 3.36 (−19%) 1.47 (−65%)
19 3.48 2.84 (−18%) 1.48 (−57%)
20 4.38 3.59 (−18%) 1.73 (−61%)
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