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The vibrating of concrete is one of the most important procedures that directly determines the quality of construction projects. The
concrete vibration quality in field construction is mainly judged by the experience of workers, lacking quantitative indicators, and
necessary supervision. However, the lack of research about concrete vibration quality led to these problems are still existing. There
are some methods are proposed that are too difficult, or too expensive to use in field construction. Combined with the pouring
project of Jianquan Pumped Storage Power Station in Yunyang, China, this research developed an intelligent detection system for
concrete vibration time. The system took the convolutional neural network as the basic framework, and divided the concrete
vibration process into three different states: vibrating, not vibrating, and no vibration tube, realized the concrete vibration time
through the analysis of concrete vibration video data. The detection of concrete vibration process video with multiple stages in the
actual project shows that the detection error of the system for each state is kept within 1 s, the accuracy is high, which can meet the
quality management requirements of the construction process. The system can be quickly deployed to the construction site by
using mobile phones, cameras, and other common equipment. It has the advantages of simple frame structure, low hardware
requirements, and accurate detection results. In addition, the current system training process is only for the concrete pouring
process of Jianquan Power Station, and the training sample can be further expanded in the future to enhance the applicability and
accuracy of the system in other engineering applications in order to play a better role.

1. Introduction

Concrete is widely used in the field of hydropower engineer-
ing, civil engineering, and other construction engineering as
a basic material, and its quality control has become one of the
most important things that needs to paying attention in the
construction process. Vibration is a key control process in
the concrete pouring process. Suitable vibration can enhance
the concrete compactness and improve durability. If the
vibration is not sufficient, excessive internal bubbles will
lead to the reduction of concrete strength, while excessive
vibration will lead to the segregation of aggregates and
cementitious materials, which will seriously affect the con-
struction quality [1–3]. Generally, the concrete pouring qual-
ity is evaluated by the concrete compressive strength, which

is realized by drilling and sampling test of concrete after
consolidation. This method needs to be carried out after
construction, which is difficult to timely correct construction
quality defects, poor timeliness, and cannot reflect the whole
pouring process. In the pouring process, the vibration quality
control is often based on the experience judgment of the on-
site construction personnel. With strong subjectivity, experi-
ence judgment is difficult to achieve quantitative judgment,
and it needs continuous long-term monitoring by manual.
Therefore, it is necessary to develop a tool to realize rapid
quantitative analysis of concrete vibration quality to meet the
needs of mechanization and rapid construction.

Existing researches on automatic vibration quality mon-
itoring mainly adopt positioning tracking, image analysis,
and other methods, which are realized by global positioning
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system (GPS) [4–8], radio frequency identification (RFID)
[9, 10], ultra wide band (UWB) [11–13], computer vision
[14–22], and so forth.

The concrete vibration positioning tracking method
mainly judges the movement track of the vibrating tube
through location-sensing technology to realize the monitor-
ing of the overall pouring and vibration quality of the ware-
house surface. Tian and Bian [7] installed the GPS antenna
and inductive electrode on the vibrator, drew the vibration
plan by computer and evaluated the quality of vibration
construction combined with the depth of vibration. Denghua
et al. [8] measured the insertion depth of the vibrating tube
through the ultrasonic rangefinder, and combined the depth
data with GPS positioning data to evaluate the concrete
vibrating construction quality with information entropy
and random algorithm. Su and Liu [10] judged the progress
of the pouring process by placing RFID sensors at the fixed
boundary. Gong et al. [11, 12] set UWB labels on the tip of
the vibrating tube, tracking the track of the vibrator, and
visualized the vibrating process by representing the energy
accumulation process with the duration. Combining UWB,
Quan and Wang [13] realized the real-time tracking of the
concrete vibration process, and based on this, the hybrid
neural network recognition model was used to realize the
automatic derivation of relevant control indicators. The posi-
tioning tracking mainly focuses on the whole pouring quality
of concrete, which is relatively lacking of the details of each
vibration process.

Image analysis of concrete vibration quality based on
digital image processing through monitoring videos, images,
to achieve the vibration tube and concrete surface state judg-
ment, which can reflect the local vibration details better.
Hacıefendioğlu et al. [14] studied the relationship of
masonry structures between the change of strength and sur-
face properties characteristics after high temperature and
used convolutional neural network (CNN) to carry out clas-
sification training on samples of different temperatures taken
by portable microscopes, realized the prediction of structural
strength loss under high-temperature environment. Simi-
larly, considering the temperature characteristics of the con-
crete surface in the process of vibration, Burlingame [15]
developed a concrete vibration quality monitoring system
based on thermal imaging technology. Liu [16] located the
position of the vibrator in the concrete vibrating video, based
on YOLO v2 [17] image recognition algorithm, and judged
the track and quality of the vibration process in combination
with the vibration depth. Xu et al. [18] and Makantasis et al.
[19] respectively considered the multiscale features of steel
box girders of bridges crack images and the multidimen-
sional features of tunnel defects in the actual engineering
environment, and carried out bridge crack detection and
tunnel defect analysis using CNN, which verified the feasi-
bility of the application of the neural network model in the
detection and analysis of material surface properties. Fur-
thermore, Wang et al. [20] classified concrete surface states
as unqualified, middle, qualified, combined with Internet of
Things technology and neural networks, and evaluated the
vibration quality with residual neural network (ResNet) [21].

Ren et al. [22] installed an industrial camera on a vibrator,
also used ResNet to process the video image of concrete
vibrating, and combined with a semisupervised learning
method (Co-MixMatch) to simplify the preprocessing pro-
cess of the neural network, achieved a good accuracy.

In addition, experts and scholars are also trying to explore
some new detection methods, such as 3D laser scanning, 3D
modeling, new detection equipment, and algorithms [23–26].
However, the analysis of the existing research of automatic
vibration quality monitoring shows that the current research
in this field is relatively lacking, most of them need to upgrade
the existing tools at a high cost, or add highly refined profes-
sional instruments which increases the difficulty of construc-
tion. It is too difficult to promote those methods in practical
projects.

This research develops a concrete vibration time detec-
tion system based on image analysis. With CNN as the main
framework of this system, the rapid analysis of concrete
vibration quality can be achieved through the concrete vibra-
tion video collected by the camera. The detection and
reminder of the concrete vibration time length can be real-
ized only by adding cameras, mobile phones, or other
recording devices in the construction process without addi-
tional auxiliary facilities, and the system could provide sug-
gests for construction management personnel. Through the
analysis of video from the pouring project of Jianquan
Pumped Storage Power Station in Yunyang, China, the sys-
tem realized the vibration time accurately, proved that the
system is useful for the pouring construction process.

2. Methodology of Concrete Vibration Time
Intelligent Detection System

2.1. Convolutional Neural Network. CNN can extract feature
information from images through convolution structure,
which is widely used in image data classification processing
[27, 28]. As shown in Figure 1, a neuron is the basic structure
of a neural network, simple neuron structure can form a
corresponding result sequence {f1; f2; ⋅⋅⋅; fn}, by nonlinear
mapping of the sample sequence {x1; x2; ⋅⋅⋅; xn} in the form
shown in Equation (1), then feedback the error sequence {e1;
e2; ⋅⋅⋅; en} to the neuron in the form of gradient by comparing
the result sequence with the real value result sequence {y1; y2;
⋅⋅⋅; yn} and adjust the weight in the neuron, realize the map-
ping between the input result and the target result finally.

f xið Þ ¼ Activation function wixi þ bið Þ: ð1Þ
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FIGURE 1: Mapping structure of simple neurons.

2 Advances in Civil Engineering



During image processing, it is necessary to establish the
mapping relationship between the 2D data and the target
results, which requires considering the influence of sur-
rounding data in a certain range on the basis of the scale
of the unit data itself. Convolution is a mathematical method
to sum the product of 2D data in the form of translation and
inversion, which meet the needs of 2D image data processing
[29]. The neural network formed by convolution is called
CNN. As shown in Figure 2, when image convolution analy-
sis is processing, the 2D data matrix of the image Ml−1 is
formed into a submatrix Ul−1, according to the range of the
convolution window, which has the same size with the con-
volution kernel Kl−1

pq . Summing the product of Ul−1 and Kl−1
pq ,

according to Equation (2) to form a feature result ulpq. By
sliding the convolution window, multiple feature results are
formed and their combination is the output of the CNN unit.

ulpq ¼ Activation function ∑
i2n;j2m

kl−1i j ul−1i j þ bl−1i j

� �( )
;

ð2Þ
where ulpq means output of the convolution process at row p
and column q in the convolution process at layer l−1, kl−1i j is
the size of convolution kernel Kl−1

pq at row i and column j in
the convolution layer l−1, bl−1i j is the offset at row i and
column j in the convolution layer l−1, and ul−1i j is the size
of submatrix Ul−1 at row i and column j in the convolution
layer l−1 [30].

CNN formed a neural network hidden layer through
multiple convolutional neurons, and established the corre-
sponding relationship between input and output data
through a large number of nonlinear mapping relationships.
Similar to a simple neuron, CNN feedback the error between
the output result and the target value result into the neuron
in the form of gradients, and finally realized the mapping
between the input result and the target result by adjusting the
size of the convolution kernel kij in each convolutional
neuron.

2.2. Activation Function, Softmax, and Loss Function. The
neural network establishes the nonlinear mapping relationship

between samples and targets through an activation function,
which could project values of any size into a fixed range [31].
As shown in Equations (3)–(5), the commonly used activation
functions mainly include Sigmoid, Tanh, Relu, and so forth
[32, 33]. Sigmoid function maps data to the range of (0, 1),
Tanh function maps data to the range of (−1, 1), and Relu
function maps data to the range of (0, +1).

Sigmoid xð Þ ¼ 1
1þ e−x

; ð3Þ

Tanh xð Þ ¼ ex − e−x

ex þ e−x
; ð4Þ

Relu xð Þ ¼max 0; xð Þ: ð5Þ

Softmax method is used to determine the classification
probability of CNN output. As shown in Equation (6), the
softmax function can be used to convert the feature results of
the neural network into a probability distribution within the
range of [0, 1], and the sum of probabilities is 1, which
determines the probability that the feature results belong to
a certain class [28].

Si ¼ Softmax xið Þ ¼ exi

∑
n

i¼0
exi

; ð6Þ

where Si represents the possible probability of the ith result, n
represents the number of output nodes by the neural net-
work, which means the number of categories classified by the
neural network, and xi represents the output of the ith node.

The result of softmax means the probability of the cate-
gory of the image, and the difference between softmax result
and training target is the accuracy of the classification
prediction of CNN. Usually, the difference between the pre-
dicted result and the real value is judged in the form of loss
function in neural networks. In this study, the cross entropy
loss function is used as the basis for the evaluation of classi-
fication accuracy, as shown in Equation (7), which represents
the information entropy difference between the probability
distribution of the neural network predicted and the
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FIGURE 2: Convolution operation and mapping structure of convolutional neural network. (a) Convolution operation of 2D matrix and (b)
mapping structure of convolutional neurons. Ml−1 is the characteristic matrix of last convolution output, that is, the input matrix of this
convolution process, Ml is the output matrix of the layer convolution l−1, Ul−1 is the submatrix of Ml−1, which has the same size as the
convolution kernel Kl−1

pq , and the remaining symbols are the same as before.
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probability distribution of the true value of the sample. Feed-
ing back the cross entropy loss to the hidden layer of the
neural network, adjusting the size of the convolution kernel
in each neuron, uniting the prediction result and the training
objective, and then the image classification process is realized
[34].

L¼ Cross entropy loss Sð Þ ¼ −∑
n

i¼0
yi log Sið Þ; ð7Þ

where L is the cross entropy loss, yi is the true probability of
the class i appearing, and Si is the output of softmax, which
represents the probability of picture belongs to class i.

3. Framework of Concrete Vibration Time
Intelligent Detection System

3.1. System Framework. The concrete vibration time intelli-
gent detection system based on CNN includes four parts:
concrete vibration video preprocessing, CNN analysis, vibra-
tion video analysis, and concrete vibration time analysis, as
shown in Figure 3.

(1) Concrete vibration video preprocessing part is mainly
used for video reading and editing, combining multi-
ple independent video files into one video file, or edit-
ing a long single video into multiple independent files
of a certain length of time, and then according to the
time sequence, slicing the file into image for neural
network training;

(2) The CNN analysis part is used for the system prepara-
tion process before concrete vibration time detection,
by the training of CNN, the system can realize the
ability of concrete vibration image detection and anal-
ysis. In this part, the system first organizes the number
of concrete vibration images from the last part into
neural network training data by means of gray-scale,
image scaling, image enhancement, and data augmen-
tation, and then through the marking, training, and
verification process, the system is equipped with clas-
sification ability of concrete vibration state;

(3) The vibration video analysis part can analyze and
sort the concrete vibration video frame image based

on the training of the neural network. In the field
detection process, the concrete vibration video data
from the detector is transmitted to this part, similar
to the first part, which is edited and sliced in the
order of time to forming the concrete vibration
image data that could be analyzed by the system,
and then the results are passed to the next part after
the CNN classification;

(4) The concrete vibration time analysis part can establish
the concrete vibration timeline, realize the detection
of concrete vibration time, and give the construction
prompt and early warning. Since the concrete vibra-
tion state detected by CNN cannot be completely
accurate, in this part, the system corrects the output
results in chronological order to ensure the accuracy
of the concrete vibration time detection. The specific
and detailed correction principles will be described
below.

3.2. CNN in Concrete Vibration Time Intelligent Detection
System. In the CNN analysis part, the detection system estab-
lished a five-layers deep learning network in the form of
supervised deep learning to train and learn the concrete
vibration video frame image data after slice processing, so
that the system could have the ability to classify the vibration
image.

Before the neural network training, it is necessary to slice
the concrete vibrating video according to the time frame to
form the vibrating image and establish the original dataset.
As shown in Figure 4, according to the working state of the
vibrating tube, the concrete vibrating images can be divided
into three different categories: vibrating, not vibrating, and
no vibration tube, which can be labeled to [1, 0, 0], [0, 1, 0],
[0, 0, 1] in the form of one-hot coding. Taking each concrete
vibration image as the training sample and the correspond-
ing one-hot label as the training target, the training dataset of
the neural network is formed.

The CNN architecture in the detection system is shown
in Figure 5, which mainly includes three parts: input layer,
middle hidden layer, and output layer. In the input layer, the
system feeds the concrete vibration image into the neural
network. In the middle hidden layer, a convolution operation
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FIGURE 3: Concrete vibration time analysis system framework.
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is carried out on the image with 7× 7 size convolution kernel
according to step 1 to form a 32-channel feature image, then,
the feature matrix is pooled according to the scale of 3× 3 size
of pooled kernel and step 2 in the way of Maxpool to extract
the main features in the feature image. After Maxpool, the
feature image is also convolved with the convolution kernel
size of 7× 7 and step size of 1 to form an 8-channel feature
image. In the output layer, 8-channel feature images are
extracted in a fully connected layer and the 1× 3 size predic-
tive coding is output. The classification probability of output
results is analyzed through Softmax, which achieves the fea-
ture extraction and classification of concrete vibration images
by CNN.

4. Concrete Vibration Time Intelligent
Detection System Test

4.1. Preparation of Detection System. Because of the super-
vised deep learning method, it is necessary to collect certain
video data of concrete vibration as the samples of system
training and learning which make the system have the ability
to detect concrete vibration state before using the detection
system. This research relies on the pouring project of

Jianquan Pumped Storage Power Station to carry out the
test of the concrete vibration time detection system.

Jianquan Pumped Storage Power Station is located in
Yunyang, Chongqing, China, where is a tributary of the
Yangtze River. The station consists of upper reservoir, lower
reservoir, water conveyance system, and switching station.
The installed capacity of the project is 1,200MW. Both upper
reservoir and lower reservoir are concrete-faced rockfill dams
with a rated head of 332m, the maximum dam height of 98
and 78m, respectively, and the design strength of concrete is
35MPa. The power station is built for improving the peak
shaving and valley filling, frequency and phase modulation,
and emergency standby capacity of Chongqing power grid.

The video samples of concrete vibration are collected in
the pouring construction site of the power station, and the
vibration process from the insertion of the concrete vibrator
tube to the complete pulling out is taken as one complete
vibration process. The sample dataset includes 13 complete
vibration processes, three incomplete vibration processes
(only including the vibrating with the vibrator, no pulling
process) and three concrete pouring processes without vibra-
tion. By slicing video data in the unit of frame, a total of 2,477
video slicing image data of concrete vibration were obtained.
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Due to the similarity of images in the vibration process, although
thousands of sample images have been formed, the scene feature
information is relatively simple, which is insufficient to extract
the unified feature information in the concrete vibration image.
Therefore, in the dataset preparation part before CNN training,
random methods were used to augment the image data, which
included image flipping, random angle rotation, random size
clipping, and mirror image. As shown in Figure 6, a total of
8,276 concrete vibration images were formed to meet the
requirements of neural network training.

After the image data augmenting, the size of the dataset is
shown in Table 1. The trainset data contained 7,366 images,
which were used for the learning and training of neural
network. The validation dataset contains 910 images to verify
the accuracy of the current neural network for image recog-
nition, which does not participate in model training. The

accuracy of CNN is judged in the way of Equation (8), which
represents the percentage of correct image data of a certain
scale verification set.

Accuracy ¼ Correct classification data size
Validation data size

× 100%; ð8Þ

ðaÞ ðbÞ ðcÞ ðdÞ

ðeÞ ðfÞ ðgÞ ðhÞ
FIGURE 6: Image data augmentation in concrete vibration time analysis system. (a) Concrete vibration image-1; (b) image flip; (c) image
random rotation; (d) image random clipping; (e) concrete vibration image-2; (f ) image flip; (g) image mirroring; and (h) image random
rotation.

TABLE 1: The augmentation dataset in concrete vibration time anal-
ysis system training.

Dataset Vibrating Not vibrating No vibration tube Total

Train 3,631 539 3,196 7,366
Validation 390 130 390 910
Total 4,021 669 3,586 8,276
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where correct classification data size is the number of verifi-
cation sets for which the model classification is correct. Vali-
dation data size is the total size of the sample data.

4.2. Training and Learning of Detection System. On the basis
of image augmented dataset, the system learns and trains the
vibration image through deep learning, and obtains the fea-
tures of targets through the analysis and summary of differ-
ent images. For the concrete vibrating detection, the target
characteristics are the working state of the concrete vibrating

tube. The main parameters of neural network that affect the
accuracy of system detection include: convolution kernel,
batch size, and epochs. The size of the convolution kernel
represents the range of local feature extraction of CNN in the
process of image feature extraction, which changes with the
scale of the input image. Batch size represents the number of
concrete vibration images put into each neural network
training process. Epochs represent the training times of all
sample data in the neural network. During the system train-
ing, all three parameters have a certain impact on the final

TABLE 2: Concrete vibration time analysis system training parameter and result.

No Convolutional kernel Batch size Epoch Test accuracy

1 3× 3 16 20 0.7975
2 3× 3 32 20 0.85625
3 3× 3 64 20 0.75375
4 7× 7 16 20 0.915
5 7× 7 32 20 0.91875
6 7× 7 64 20 0.90625
7 7× 7 16 30 0.9025
8 7× 7 32 30 0.91375
9 7× 7 64 30 0.875
10 11× 11 16 20 0.87875
11 11× 11 32 20 0.89375
12 11× 11 64 20 0.905
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FIGURE 7: The system training process in 12 kinds of different training parameters. (a) No. 1–3 system training process; (b) no. 4–6 system
training process; (c) no. 7–9 system training process; and (d) no. 10–12 system training process.
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accuracy. Different parameter combinations are set in this
research, and the corresponding results are shown in Table 2.
The learning rate of the CNN is set at 0.00001. During the
training, 500 concrete vibration images are randomly taken
from 910 of the verification dataset each time as the judg-
ment basis for the accuracy of the network in each epoch,
and the training process is shown in Figure 7. In the accuracy
testing part, 800 concrete vibrating images that did not par-
ticipate in the training were used as the evaluation basis,
including 350 pictures of vibrating, 100 pictures of not
vibrating, and 350 pictures of no vibration tube.

The system training in 12 parameter combinations
showed that the loss of the system became smaller at epoch
2–3, and oscillates slightly within the range of 100, then it
was closed to 0 at epoch 9–11. The accuracy at epoch 0–10
was relatively large, and it was basically stable at epoch 10–20
with a stability near 0.9 and a maximum value of 0.91875.
The accuracy of the system fluctuated greatly in small

convolution kernel (3× 3), and it was better and the stability
after the convolution kernel being modified to a larger value.
According to the system testing result, the system parameters
were finally set as No. 5 parameter combination, convolution
kernel size was 7× 7, batch size was 32 and epoch was 20.

4.3. Concrete Vibration Time Detection and Results Analysis.
With the training and learning process of CNN, the intelli-
gent detection system of concrete vibration time has the
ability to extract and classify the features of concrete vibra-
tion image. The weight, which was obtained from network
training, was transferred to the vibration video image analy-
sis part of the detection system, and then the concrete vibra-
tion video analysis can be started.

In the vibration video image analysis part, the system
first slices the video data according to the time axis which
is similar to the vibration video preprocessing part, and the
slice interval can be set freely according to the frame rate of

ðaÞ ðbÞ ðcÞ ðdÞ
FIGURE 8: The different state of vibration tube in pulling out and inserting process. (a) State of vibrating in pulling out process; (b) state of not
vibrating in pulling out process; (c) state of not vibrating in inserting process; and (d) state of vibrating in inserting process.
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the video. The interval of the slices represents the allowable
time error range of the system detection. For example, an
image data is taken every 6 frames in a 30 frames per second
video, the allowable error range of the system detection time
is 0.2 s. The state of concrete vibration can be judged by
analyzing the state of each vibration image on the time axis.

As shown in Table 2, the accuracy of the neural network is
stable at 90% for the dataset of Jianquan power station con-
crete pouring process, there are still some errors in the classi-
fication results of concrete vibration image. The analysis of
results shows that errors are mainly found at the moment
when the vibration tube is pulled out or inserted into the
concrete, which is the beginning or end of a vibration process.
Figure 8 shows the pulling out and inserting process of the
vibration tube, which clearly shows that due to the influence
of resolution, distance, and other factors, sometimes it is dif-
ficult to divide the boundary of the vibration state. Therefore,
it is necessary to correct the error in the part of vibration time
analysis to improve the accuracy of detection.

Compared with the vibrating process, the duration of
vibration state changing is extremely short, which means
the main purpose of result correction is to determine the
boundary point of the vibrating state, avoiding the result of
consecutive and overlapping occurrence of “Vibrating” and
“Not Vibrating” states. Based on the purpose, the principles
of vibration state vibration state correction are:

(1) If the state of the current frame is inconsistent with
the state of the previous time frame, check the next
five frame images states since this time frame. If the
state is consistent with three or more of the five
vibration image states, it is considered that the vibra-
tion state has changed. If not, it is considered that the
state of vibration has not changed and corrected the
vibration state of this frame to the vibration state of
the previous frame.

(2) Analyzing the duration of each vibrating state. If the
duration is less than 0.3 s, adjust the part of the
vibrating state into the previous vibrating state.

Taking a 26 s concrete vibration video in the project site
as an example to test the accuracy of the concrete vibrating
time detection system. The sample video includes three com-
plete vibration processes, one incomplete vibration process,
and one concrete pouring without vibration. The test results

are shown in Figure 9 and Table 3. As Table 3 shows, the
detection system has realized accurate identification of ran-
dom working states in the concrete vibration, and the maxi-
mum time error of each state duration is 0.9 s, which can be
used in construction quality control of concrete pouring
engineering, and the system has realized automatic intelli-
gent identification of concrete vibration time.

5. Conclusion and Discussion

Based on the CNN, this research established a five layers deep
learning network in the form of supervised deep learning and
divided the concrete vibration process into three categories
according to the working state of the vibrator: vibrating, not
vibrating, and no vibration tube. With the different states of
the vibration tube, the concrete vibration time detection sys-
tem could analyze and divide vibrating time automatically.
Combined with the pouring project of Jianquan Pumped
Storage Power Station, the system effectiveness was verified
through field sampling test, and the error of the detection of
concrete vibration time was within 1 s.

The advantages of the detection system are the simple
hardware requirements and frame structure, it can be quickly
deployed to the actual construction site through cameras,
mobile phones, and other devices, without adding redundant
processes which might reduce the construction efficiency. It
can provide a reliable reference for the quality management
process of concrete vibration site construction

However, there are still some defects that need to be
further improved in subsequent studies, including: the sys-
tem adopts the deep learning model of supervised neural
network, before application and deployment, a certain
amount of the samples need to be collected for model train-
ing and system preparation before the detection process can
be carried out. In the actual construction process, the envi-
ronment of video, light, angle, and other factors will affect
the quality of video imaging, but the main object “Vibrating
Tube” detected by this system has not changed, therefore,
2–3min of vibrating videos for several different typical work-
ing environments, such as daytime, night, and distant con-
struction sites, are necessary to collect, then the state of the
concrete vibrating tube in different time periods in each
video is input for system preprocessing, which can ensure
the accuracy of system detection. Similarly, this research
focuses on the development of the concrete pouring process

TABLE 3: The test result of concrete vibration time analysis system.

Working states Real time (s) Systems analysis time (s) Error (s)

No vibration tube 12.43 12.43 0
Vibrating-1 1.63 2.30 0.67
Not vibrating-1 1.2 0.30 0.90
Vibrating-2 4.61 5.00 0.39
Not vibrating-2 0.76 0.60 −0.16
Vibrating-3 2.17 2.17 0
Not vibrating-3 1.06 0.90 0.16
Vibrating-4 2.14 2.30 0.16
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of Jianquan power station. Before deployment, it experienced
the typical environmental data collection process in advance,
and achieved good results after system training. But the cur-
rent sample dataset is still relatively small, which means that
the accuracy may decline due to environmental changes in
the deployment process of other projects. In the future, the
sample data of the system can be expanded for specific pro-
jects to enhance the environmental adaptability of the sys-
tem, and play a better role in project construction.
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