
Research Article
Enhancing Understanding of Hydrologic Processes in the Shafe
Watershed, Ethiopia

Zerihun Makayno Mada1 and Abera Shigute Nannawo 2

1Faculty of Hydraulics and Water Resources Engineering, Arba Minch Water Technology Institute, Arba Minch University,
P.O. Box 21, Arba Minch, Ethiopia
2Faculty of Water Resources and Irrigation Engineering, Arba Minch Water Technology Institute, Arba Minch University,
P.O. Box 21, Arba Minch, Ethiopia

Correspondence should be addressed to Abera Shigute Nannawo; aberashigute@gmail.com

Received 7 September 2023; Revised 31 October 2023; Accepted 20 November 2023; Published 16 December 2023

Academic Editor: Rafael J. Bergillos

Copyright © 2023 Zerihun Makayno Mada and Abera Shigute Nannawo. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Research on the combined impact of watershed attributes on streamflow is crucial in water resources planning and management,
particularly due to the strong link between landscape modification and watershed attributes. However, identifying critical water-
shed attributes remains a challenge. This study focuses on investigating the impact of watershed attributes on streamflow in the
Hare catchment of Ethiopia’s rift valley lakes basin. The Soil and Water Assessment Tool (SWAT) rainfall–runoff model was used,
calibrated, and validated against observed discharge data to identify remedial measures for streamflow generation. The model’s
performance was evaluated using criteria such as R2, NSE, PBIAS, and RSR, which yielded satisfactory values. The study found
significant changes in land cover, with forest and shrub land declining and agricultural land expanding. Comparing mean annual
streamflow between 1998, 2009, and 2021, streamflow at 2021 land use and land cover increased by 13.03% compared to 2009,
which had already increased by 16.05% compared to 1998. The study also examined the impact of climate variations by manipu-
lating meteorological data length and average slope. Overall, this study provides valuable insights into the relationship between
watershed attributes and streamflow, emphasizing the importance of considering land cover changes and climate variations for
effective water resource management in the Hare catchment.

1. Introduction

In Ethiopia, poor cultivation practices, and inadequate land
and water resource systems, leading to increased sediment
transport and soil erosion, and deterioration of water
resources in both quality and quantity [1, 2]. The expansion
of urban areas and agricultural land, and deforestation are the
governing factors for temporal and spatial changes in land use
and land cover (LULC), which has impacts on the sectors like
hydropower, irrigation, and water supply [3–6]. Many basins
in developing economies are deteriorating due to rising popu-
lations and excessive use of natural resources [7–9].

Land and water are crucial resources for social existence,
and influence the persistence and degradation of watersheds
[10]. These hydrologic responses are linked to variations in
infiltration and evapotranspiration rates, which result in

seasonal and long-term river discharge variability [11]. A
decline in vegetation cover and subsequent soil degradation
can also cause many of the threats associated with water-flow
extremes peak and base flow [12]. Physical catchment char-
acteristics (PCCs) have significant influence on water budget
elements such as infiltration, interception, surface and sub-
surface flow. and potential evapotranspiration.

Watershed attributes can aid forest management and/or
policy by indicating where forestry efforts would best be
focused. The effects of forestry activities on water yield are
different in watersheds, so watershed features can be used to
describe the watershed’s appropriateness or unsuitability for
water production, as well as where and how much forestry
should be done [4, 11]. The spatial dynamics of the hydrologic
cycle are directly related to hydrologic modeling and water
resources management studies [13, 14]. The hydrologic cycle,
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which involves the continual movement of water on, above,
and below the earth’s surface, is influenced by many variables,
including climate change, LULC, slope characteristics, and
river shape [15, 16]. Short-term hydrologic fluctuations are
likely to be caused by topography and soil characteristics,
while long-term developments like urbanization and defores-
tation lower evapotranspiration and water recycling, which
can lead to a decrease in rainfall.

LULC are major variables in most hydrological models at
all catchment scales. Changing forest to agricultural land or
constructed areas has a significant impact on runoff, ground-
water recharge, erosion, and sediment transport [4, 11].
Because LULC has such a significant impact on water quality
and quantity, it is critical to understand how it, hydrology,
and water resource management work together [17, 18].

LULC practices throughout a catchment are the major
factor controlling flow and water quality. Settlements, fire-
wood harvesting, agricultural expansion, and charcoal pro-
duction have cleared many mountains and shorelines, as
reported widely. Watershed management is one method of
the conserving healthy, productive rivers. The aim of this
study was to investigate the impact of various watershed

attributes on streamflow in the Shafe catchment, in the Rift
Valley Lakes Basin, Ethiopia. The significant LULC changes
in the watershed were compared with their individual influ-
ences on streamflow, and potential corrective actions
determined.

2. Materials and Methods

2.1. The Study Area. The Shafe catchment is in the
Abaya–Chamo subbasin of the Rift Valley Lakes Basin, on
the edge of the Great Rift Valley, and drains into Lake Abaya
(Figure 1). The 23.8-km long watershed covers about
144 km2, and lies between 6°15′ and 6°25′N, and 37°35′
and 37°45′E. Its altitude ranges from 1,259 to 3,056m above
mean sea level. According to Roth et al. [19] (Figure 1 and
Table 1), the terrain slope was categorized, with the majority
of it falling into the extremely steep (33.9%) and steep
(33.7%) categories. Only roughly 4.2% and 2.4% of the area
are classified as gently sloping or sloping, respectively, with
0.43% of the area being flat near Abaya Lake.

2.2. Climate. The catchment climate varies from tropical to
alpine. The intertropical convergence zone (ITCZ) governs
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FIGURE 1: Study area showing: (a) Ethiopian basin, (b) Rift Valley Lakes Basin, and (c) Shafe catchment slopes by class.
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the bimodal rainfall system, carrying humid winds from the
Indian Ocean. Rainfall distribution in the area is also affected
by altitude. There are four traditional climate zones in the
Shafe catchment. About 70% and 25%, respectively, of the
catchment are characterized as semihumid and cold humid
(Table 2).

The bimodal rainfall distribution incorporates an
extended rainy season from early March to late June, with
maximum rainfall occurring around April, and a shorter one
from mid-August to mid-October. The other months are
generally dry, with intermittent rainfall. The minimum
monthly rainfall is recorded in January as can be seen in
Figure 2.

2.3. Temperature. The study area’s long-term temperature is
based solely on data from Arba Minch station (from 1995 to
2021). Figure 3 shows that the highest temperature is
recorded between February and April, the lowest between
May and September.

2.4. Data Collection and Analysis. In order to enhance the
quality of data collected from Ethiopian Ministry of Water
and Energy, missing data were estimated, and the data’s
availability, consistency, and homogeneity were checked.
Meteorological data were obtained from the National Mete-
orological Agency of Ethiopia (NMAE) [20]. The study
area’s proximity led to the selection of Arba Minch,
Chencha, and Mirab Abaya climatic data stations. Unfortu-
nately, the time-series data are insufficient, inconsistent, and
include several breaks. A record’s consistency may be
affected by data missing for a variety of causes, but data
from neighboring stations can be used to make estimates
of the missing data. Various techniques have been used to
approximate missing rainfall data, but the inverse distance
method—Equation (1)—is the most accepted in scientific
investigation and was used in this study as follows:

PX ¼ ∑n
i¼1Pi

∑n
i¼1Wi

; ð1Þ

where Wi is calculated using Equations (2) and ((3)) as fol-
lows:

wi ¼
1
D2 ; ð2Þ

D2 ¼ ΔX2 þ ΔY2: ð3Þ

In Equations (1)–((3)), Px=missing precipitation item;
Pi= precipitations at the index stations,Wi= station weight-
ing, and D2= station distance from that with missing data.

2.5. LULC Evaluation and Satellite Image Classification.
Remote sensing techniques were used to detect general
LULC patterns from 1998 to 2021. USGS satellite images
were downloaded and the study period divided into three
sets: 1998, 2009, and the period 2010–2021. A false-color
composite (RGB) image was created from bands 1, 2, and
3 as the background for the supervised classification of all
1998, 2009, and 2021 images (Figure 4). ArcGIS was used to
prepare the LULC data for SWAT input, to enable the detec-
tion of changes [1, 21].

“Supervised-classification” uses a chosen raster and coor-
dinates from actual LUs to color-code different LULC

TABLE 2: Shafe catchment climate zones—Ethiopian classifications
based on elevation.

Altitude range (m) Zone Covered (%)

0–500 Hot or arid 0
500–1,500 Semiarid 3.5
1,500.1–2,500 Semihumid 71
2,500.1–3,000 Cold humid 25
>3,000 Moist mild 0.2
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FIGURE 2: Mean monthly rainfall, Shafe subcatchments (1995–2021).
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TABLE 1: Slope classifications (based on FAO, 1985).

No. Slope (%) Classification

1 0–2 Flat
2 2–5 Gentle slope
3 5–8 Sloping
4 8–15 Moderately steep
5 15–30 Steep
6 30–60 Very steep
7 >60 Extremely steep
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groups. The method enabled existing land uses to be grouped
into four main categories, and the multilabel classification
algorithm was used to derive their signatures. Four land
classes were created: agricultural land, grassland, forest,
and shrub land (Table 3).

2.6. Streamflow Prediction in the Ungauged Shafe Catchment.
Streamflow prediction in ungauged basins plays key role for
water resources planning and environmental managements
[22, 23]. Reliable streamflow data contains valuable informa-
tion for various purposes, including environmental impact
assessment, estimation of hydrologic extremes, low-flow esti-
mation, design of hydraulic structures, and water resources
planning [24]. The International Association of Hydrological
Science gave significant attention to the prediction of stream-
flow in ungauged basins from gauged basins during the
period of 2003–2012 [25]. Therefore, generating streamflow
data in ungauged catchments are a fundamental task before
conducting any environmental impact assessment [26].

Predicting streamflow in ungauged basins is one of themajor
concerns in water resources studies, especially in regions with
high-spatial variability of hydrological environment. Because

several parts of the world streamflow measuring networks are
decreasing due to the impacts of climate and anthropogenic
issues [27]. Several researchers [28–30] have suggested that
regionalization is the most common way to address the pro-
blems of ungauged catchments by transferring the information
from gauged to receivers because it considers hydrological pro-
cess, integrates different catchment characteristics, and relatively
better estimation.

The prediction of streamflow in ungauged basins is a
major concern in water resources studies, particularly in
regions with high-spatial variability of hydrological condi-
tions. This is due to the decline in streamflow measurement
networks in several parts of the world as a result of climate
change and human activities [31]. Recently, regionalization
has been conducted and suggested by several researchers for
instance [32] conducted excess streamflow prediction in the
Sebou basin for an interbasin water transfer, Purvis and
Dinar [33] did streamflow prediction in ungauged catch-
ments for an interbasin water transfer sustainable policy
intervention to alleviate water scarcity. Also, Rientjes et al.
[34] performed regionalization for hydrological balance in
Upper Blue Nile basin, Ethiopia. Different methods have
been developed for predicting streamflow data in ungauged
catchments. However, the major one being used in this study
is regional model method through rainfall–runoff modeling
tools and physical catchments characteristics [35, 36].

Streamflow generation in the Abaya Chamo lakes subbasin
is influenced by various catchment characteristics. In this study,
a 30× 30m resolution digital elevation model (DEM) was uti-
lized to delineate catchments within the study area. Four major
categories of PCCs were considered, including geography and
physiography (e.g., area, perimeter, basin shape, average slope,
elongation ratio, and longest flow path), geology and soil (e.g.,
drainage density, bifurcation ratio, and percentage cover of dif-
ferent soil types), land use land cover (LULC) (e.g., percentage
cover of different LULC types), and climate (e.g., annual average
rainfall and average annual evapotranspiration).

Hydrological regionalization involves transferring hydro-
logical information from gauged basins to ungauged basins or

(a) (b) (c)

FIGURE 4: Landsat imagery 1998 (a), 2009 (b), and 2021 (c).

TABLE 3: Main LULCs.

Major land cover Description

Agricultural land
Annual and perennial crop cultivation;
scattered rural settlements with some
pasture and plantations around them

Forest
Trees and other plants in a large, densely

wooded area that can be evergreen,
deciduous or mixed

Shrubland
Sparsely located trees with brush and
shrub types, including bushes and

woodland

Grassland
Land where the potential natural

vegetation is predominantly grasses and
grass-like plants
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transferring optimized model parameters from donor catch-
ments to target catchments [37]. In this study, multiple
regression-based hydrological regionalization was selected
due to its widespread usage and better results [29, 38]. This
technique utilizes model parameters as dependent variables
and physical catchment attributes as independent variables.

For regionalization in the Abaya Chamo lakes subbasin,
four gauged catchments (Bilate, Bedessa, Hare, and Gidabo)
were used. These catchments are neighboring watersheds to
the Shafe catchment, sharing similar geographical landscapes
and draining into Lake Abaya. They exhibited good perfor-
mance, with the objective function of relative volume error
(RVE) ranging from +10% to −10% and the Nash–Sutcliffe
efficiency (NSE) value greater than or equal to 0.60. The
HBV–IHMS hydrologic model was calibrated using these
catchments, and their model parameters and PCCs were inter-
correlated to determine the parameters for the ungauged Shafe
catchment. The multiple regression method, implemented in
ArcGIS, was used to establish the relationship between PCCs
and model parameters.

Correlation analysis was conducted between each model
parameter and all PCCs. The PCCs exhibiting a higher corre-
lation with the model parameters were selected as regression
inputs. The PCCwith the highest correlation was entered first,
and its statistical significance was assessed to determine its
suitability as a potential candidate for the regional model. The
collinearity of the PCCs was evaluated based on the statistical
significance (p-values≤ 0.1 for a 95% confidence interval) and
coefficient of determination (R2≥ 0.80).

Once the first PCC was selected based on its statistical
significance, the second PCC with the next highest correla-
tion was included in the multiple regression. The optimized
model parameters and PCCs of the gauged catchments were
used to establish these correlations. The development of the
regional model involved using the multiple linear regression
method, with the PCCs as independent variables and the
model parameters as dependent variables. Stepwise multiple
regression, performed using Excel data analysis, was
employed to select the best independent variables. The fol-
lowing Equation (4) provides a brief description as:

M ¼ β0þ β1 × P1þ β2 × P2þ……βn × Pn; ð4Þ

where, β1, β2, and βn are the coefficients of regressions, P1,
P2, and Pn are independent variable (PCCs),M is dependent
variable (MPs), and βo is intercepting of regression line.

Both forward selection and backward elimination were
used in multiple regression analysis for this study, and the
sample multiple regression equation between model param-
eters and PCCs. Figure 5 shows transferred model parame-
ters, simulated flow and the Shafe catchment HBV–IHMS
transferred model parameters better estimated streamflow,
because in the high-rain reasons high-streamflow volume
and in low-rain seasons minimum flow is generated.

Alfa=−0.34+1.61×drainage density+ 0.01× Solonchak
soil+0.039×barren land

Beta=−1.09+ 0.56× bifurcation ratio− 0.02×Xerosol
soil+ 0.74× elongation ratio−0.23× forestland

Perc=−3.25− 0.61×Leptosol soil− 0.01× basin shape+
0.005× annual potential evapotranspiration.

3. Trend Analysis

3.1. Mann–Kendall (MK) Test. The MK test is a nonpara-
metric trend analysis test that uses Kendall’s tau statistic
[39–42]. The test was first initiated by Mann (1945). In
this study, the MK test statistic has been derived using
Sen’s slope estimator to indicate the slopes’ outcomes
[41, 43–46] Equation (5). However, it only considers the
slope’s sign, not its magnitude Equation (6). Hence, the
MK test statistic, S, is calculated from the sum of the signs
of the slopes:

S¼ ∑
n−1

i¼1
∑
n

j¼iþ1
sgn Xj − Xi

À Á
; ð5Þ

where n=number of data points, Xj = the jth observation,
and xi = the ith observation where j> i. the sgn can be esti-
mated as follows:
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sgn Xj − Xi

À Á¼
1 if Xj − Xi

À Á
>0

0 if Xj − Xi

À Á¼ 0

−1 if Xj − Xi

À Á
<0

8>><
>>:

: ð6Þ

If the null hypothesis H0 is accepted at the significant
level α, then the mean and variance of S are given by Kendall
(1975), and, as it is approximately normally distributed,
mean (S) is zero mean (S)= 0.

Where there are no ties in either ranking, the distribution
of Smay be approximated well by a normal distribution, with
mean zero and variance as stated in Equation (7)):

Var sð Þ ¼ n n − 1ð Þ 2nþ 5ð Þ
18

: ð7Þ

The normal approximation, Z statistics, is stated in
Equation (8) as follows:

Z ¼

S − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var sð Þp  if  S>0

0 if  S>0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var sð Þp if  S<0

8>>>>><
>>>>>:

: ð8Þ

S values that are positive or negative represent an upward
or downward trend, respectively. Subsequently, the absolute
value of Z must be compared with the typical, regular accu-
mulated distribution to ascertain whether a statistically sig-
nificant trend exists at the chosen level of significance (0.05)
Equation (8). The trend is increasing if Z is positive, declin-
ing if negative. The absolute value of Z must be bigger than
Z/2 to reject the null hypothesis of no trend (H0), where is
the selected level of significance (for example, 5%), and Z
0.025= 1.96, which can be found in conventional normal
cumulative distribution tables.

3.2. SWAT Model Application and Governing Equations. The
SWAT model is flexible and can incorporate a variety of
environmental processes, etc., so it is used frequently. In
smaller catchments where the vegetation, soil, and land uti-
lization class are uniform, elementary hydrologic response
structures are mainly square. The model requires spatial
data, such as slope, soil, land use and cover maps, and
DEM data, as well as temporal meteorological data, such as
precipitation, temperature, relative humidity, solar radiation,
and wind speed, as inputs.

3.3. SWAT Model Watershed Delineation. The Shafe water-
shed covers 144.47 km2 with 11 subbasins, and was delin-
eated using manually added outlet and automatically
delineated catchment area (Table 4). Once the watershed is
delineated, hydrologic response unit (HRU) analysis takes
place. The input for HRU is land use, soil and slope data,
and divides each subbasin into HRUs with a unique LULC,
soil, and slope combination (Figure 6). The delineated water-
shed and soil map overlap 100%.

In HRU, the Shafe watershed was further classified
into five slope categories—0%–2%, 2%–10%, 10%–15%,
15%–30%, and 30%–99%—using the SWAT interface. All
three maps (land use, soil, and topography) were overlaid
to create a total of 128, 153, and 152 HRUs with unique land
cover/soil and slope classes for 1998, 2009, and 2021 LULC,
respectively. The land use, soil, and slope datasets were
imported, overlaid, and linked with the SWAT databases
(Figures 6(b), 7, and 8(a)). The HRU definition options used
a 5% land use, 10% soil, and 5% slope thresholds as the defini-
tion basis (Figure 8(b)). The LULC symbols (SWAT codes) are
presented in Table 5.

3.4. SWAT Model Simulation and Sensitivity Analysis. In this
study, SWAT model streamflow parameter sensitivity analy-
sis was performed using SWAT CUP with the SUFI-2 algo-
rithm. The analysis was carried out over 17 years, including a
3-year warm-up period (January 1, 1998–December 31, 2000)
and a 14-year calibration period (January 1, 2001–December
31, 2014). The t-stat provides a measure of sensitivity, larger
values indicating greater sensitivity, and the p-values deter-
mine the sensitivity’s significance (p-values close to 0 indicat-
ing greater significance) [47].

3.5. Model Calibration and Validation. The SWAT model
was calibrated by adjusting the values of the model-sensitive
parameters until the simulated results matched the observed
data. For this study, a 3-year LULC map (1998, 2009, and
2021) was prepared, and calibration was based on the water-
shed characteristics, including the evaluation of climate char-
acteristics, and rainfall and slope effects in the catchment area.
In addition to good model performances, the simulated and
observed hydrograph well captured in the Shafe catchment.

3.6. Evaluation of SWAT Model Performance. To assess the
quality and reliability of the SWAT predictions, statistical
measures were used to evaluate its performance compared
to observed and values (Equation (8)).

Coefficient of determination (R2): measures the strength
of the relationship between the observed and simulated
values.

R2 ¼ ∑n
i¼1 Qsim−Qsim

À Á
Qobs−Qobs

À ÁÂ Ã
2

∑n
i¼1 Qsim−Qsim

À Á
2 Qobs−Qobs

À Á
2 : ð9Þ

The NSE is a measure of how well the simulated values fit
the observed values on a 1 : 1 line. If the simulated and mea-
sured values are the same, NSE is 1 (Equation (11)). If NSE is
between 0 and 1, it shows some deviations between the two.

TABLE 4: Shafe soil types.

Soil type Area (km2)

Chromic vertisols 2.70
Dystric fluvisols 38.63
Dystric nitisols 36.79
Orthic acrisols 66.35
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The percent bias (PBIAS) measures the average tendency
of the simulated data to be larger or smaller than the observed
values. A PBIAS of zero is ideal, and low-magnitude values
indicate accurate model simulation (Equation (11)).

The root-mean-square error observation standard devia-
tion ratio (RSR) is an error index indicator. RSR ranges from
0 to 1, with values closer to zero indicating better model
performance (Equation (11)). In the equations, Qobs repre-
sents observed flow, as the mean of n observed values, and
Qsim simulated flow, as the mean of n simulated values.

According to Moriasi et al. [48], each model statistical
indicator should be checked after each simulation, and cali-
brated to at least the minimum recommended values of
R2> 0.6, NSE> 0.5, PBIAS<+20, and RSR< 0.7.

NSE¼ 1 −
∑n

i¼1 Qobs − Qsimð Þ2ð Þ
∑n

i¼1 Qobs − Q obs

À Á
2

À Á ð10Þ

PBIAS¼ ∑n
i¼1Qsim − ∑n

i¼1Qobs

∑n
i¼1QObs

� �
× 100 ð11Þ

RSR ¼ RMSE
STDEVob

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Qobs − Qsimð Þ2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Qobs − Qsim

À Á
2

q ð12Þ

4. Results and Discussion

To evaluate how watershed factors affect streamflow, three
sets of LULC and soil maps (Figure 7(b)), rainfall, and tem-
perature data were used. LULC satellite images were analyzed
in monthly time steps in the SWATmodel (Figure 7). When-
ever the model ran, the variables were checked, and the simu-
lation results used to determine how the LULC change
affected the hydrologic processes and streamflow. Ultimately,
the streamflow that the model had simulated was assessed.

5. Historic LULC

5.1. LULC Maps (1998, 2009, and 2021). According to the
1998 LULC map, the area’s dominant LULC is shrub land
(38%), forest (22%), and agricultural land (21%)—the pro-
portional areas have been rounded to the nearest whole
number percent. The remaining areas are covered by grass-
land (19%) (Figure 7(a)). The LULCmap for 2009 shows that
the LULC pattern had changed: agriculture (28%), grassland
(25%), shrub land (30%), and forest (18%). There was, thus, a
4% decline in forest coverage between 1998 and 2009, and a
small rise in agricultural regions (Figure 7(b)). The map for
2021 showed further changes: agriculture (35%), shrub land
(29%), grassland (22%), and forest (14%). In general,
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FIGURE 6: Study area and soil reclassified in the SWAT database: (a) watershed subbasins and (b) soil map.
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FIGURE 7: Land use reclassified in SWAT model 2009, 2021, and 1998.
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therefore, the area of agricultural land increased between
1998 and 2021, while the forest area decreased (Figure 7(c)).

5.2. Identification of Autocorrelation. Prior to implementing
trend tests, the autocorrelation of the RF, Qobs, PET, and
Tmean data were examined for the research period—Lag-1
autocorrelation coefficient value were calculated for all sea-
sonal series and all stations. Calculating Lag-1 for each
hydroclimatic variable and season, including annual time-
series data, enabled the significance of Lag-1 autocorrelation
to be evaluated. As a result, autocorrelation was shown for
the winter season time-series for all hydroclimatic variables
in the watershed for the period 1998 to 2021. The summer
season time-series data were not autocorrelated, however.
For the spring season time-series only Qobs and PET were
found to have autocorrelations. The annual Qobs, Tmean, and
PET series, as well as the autumn season RF, Qobs, and PET
series, were shown to be autocorrelated at the catchment’s

station (Figure 9(a)–9(h). The series’ remaining seasons and
the full set of stations were unrelated.

Table 6 is a full comparison of zsb and zsa, and shows that
zsa is lower than zsb in all seasons, indicating a more negative
trend in the RF and Qobs time series between 1998–2021.
This suggests that zsa is a more sensitive indicator of the
trend in the variable than zsb. Comparing p-value with ṗ, it
can be seen that ṗ is lower than p-value for all seasons,
suggesting that ṗ is a more significant indicator of the trend
in the variable’s statistical significance than p-value.

Winter, spring, summer, autumn, and annual hydro cli-
matic variable mean seasonal and annual trends are shown in
Table 7 for the research area. The MK analysis in R-package
and R-studio was used to look at regional patterns and hydro
climatic variability in the watershed. The mean seasonal tem-
perature trends showed statistically significant increases on
average in all seasons except winter, at a 95% level of signifi-
cance. There were statistically significant downward seasonal
trends on average, however, in all seasons except spring.

In the watersheds, the mean seasonal streamflow revealed
declining trends that were statistically significant in winter
and spring, but nonsignificant at the 5% level of confidence
in summer and autumn (p-value 0.05). The seasonal PET
patterns show that there were upward tendencies throughout
the year.With the exception of the spring PET trend, there is a
strong upward tendency in every season (Table 7). The aver-
age annual temperature is increasing but not significantly.
While the mean annual PET was significantly rising during
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FIGURE 8: Reclassified slopes and full HRUs map of the Shafe catchment: (a) area slope and (b) HRU.

TABLE 5: LULC classifications.

LULC type SWAT code

Agricultural land AGRL
Forest FRST
Shrubland RNGB
Grassland RNGE
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the trends analysis (Table 8), the streamflow and rainfall
showed significantly declining trends. A statistical analysis
of the trends’ significance is also provided in the table, with
the symbol, ∗∗, designating trends that are statistically signifi-
cant at levels of 0.05.

5.3. Hydrologic Model Sensitivity, Calibration, and
Validation

5.3.1. Sensitivity Analysis. The SWAT hydrologic model sen-
sitivity analysis was done using SUFI-2 and identified the
most sensitive model parameters in the watershed over the
warmup, calibration, and validation periods. Three of the 19

variables evaluated—CN2, ALPHA_BF, and CH-K2—dis-
played substantial sensitivity, the other five showed low sen-
sitivity. As demonstrated in Table 9 and Figure 10, just four-
variables exhibited a small degree of sensitivity, and the
remaining variables had little or no influence on the
result [49, 50].

5.3.2. SWAT Calibration and Validation. SWAT’s perfor-
mance was evaluated using default SWAT CUP parameters
before calibration. The simulated flow captured the observed
hydrograph poorly. Figures 11–13 are the catchment’s simu-
lated and observed monthly hydrographs for the calibration
and validation periods. The model captured the hydrograph

TABLE 6: Trends before and after autocorrelation.

Stations zsb zsa p-Value ṗ S1 S2

Tmean

Winter 2.03 1.63 0.00 0.10 21.4 1.30
Annual 1.86 1.44 0.08 0.07 13.1 4.10

RF
Winter −1.41 −2.82 0.08 0.02 4.6 −2.54
Autumn −2.16 −2.52 0.01 0.00 3.6 −1.85

PET
Winter 3.96 2.39 0.09 0.00 2.4 −2.57
Spring 3.22 1.60 0.22 0.11 8.7 −1.12
Autumn 3.56 2.6 0.60 0.00 1.81 −1.85
Annual 2.52 2.27 0.03 0.00 1.57 −6.70

Qobs

Winter −1.647 −2.67 0.08 0.02 1.17 −15.45
Spring −2.02 −2.8 0.04 0.00 2.1 −12.71
Annual 3.284 −1.97 0.15 0.01 2.8 1.27

TABLE 7: Mean seasonal trends of climatic variable in the watershed.

Season Z p Value S Sig. Season Z p Value S Sig.

Tmean RF

Winter 1.63 0.10 0.01 – Winter −2.82 0.02 −2.54 ∗∗

Spring 2.53 0.01 0.01 ∗∗ Spring −0.92 0.36 −1.55 –

Summer 2.52 0.01 0.01 ∗∗ Summer −3.52 0.00 −1.85 ∗∗

Autumn 2.07 0.00 0.01 ∗∗ Autumn −2.52 0.01 −1.21 ∗∗

PET Observed flow

Winter 2.39 0.00 0.48 ∗∗ Winter −2.67 0.01 15.45 ∗∗

Spring 1.60 0.11 −1.12 – Spring −2.02 0.04 12.711 ∗∗

Summer 2.22 0.00 −1.23 ∗∗ Summer 1.43 0.15 3.01 –

Autumn 2.27 0.00 −1.85 ∗∗ Autumn 1.06 0.29 11.00 –

TABLE 8: Mean annual climatic variable trends.

Z p Value S Sig. Z p Value S Sig.

Tmean Rainfall

Annual 1.44 0.15 0.01 – Annual −2.42 0.02 −8.04 ∗∗

PET Observed flow

Annual −1.98 0.00 −6.70 ∗∗ Annual 2.38 0.01 1.27 ∗∗

Advances in Civil Engineering 11



recession limb and base flow well, but underestimated some
peak flows. The general pattern of the observed hydrograph
was not captured perfectly due to poor quality and sparsely
distributed rain gauges, which might cause rating curve pro-
blems, and a combination of the significant increase in agri-
cultural activity, and deterioration of the catchment’s forest-
land, trees, and shrubs. Figure 13 depicts the maximum
streamflow rate for the LULC reported for 2021. The mod-
eled streamflows were, however, only moderate for the
LULCs of both 1998 and 2009 (Figures 11 and 12).

The SUFI-2 uncertainty measure for each LULC was
determined. For LULC 1998, the p-factor of 0.78 and r-factor
of 0.92, for LULC 2009, the p-factor of 0.70 and r-factor of
0.88, and for LULC 2021, the p-factor of 0.70 and r-factor of
0.77 were obtained. This showed that, the 95 PPU band
incorporated about 78% of the 1998 LULC data, and 70%
of the 2009 and 2021 LULC data, with a better strength of
estimation (r-factor< 1) for all cases (Table 10).

Table 11 shows the catchment’s SWAT object func-
tions in the three LULC scenarios. During calibration,
the NSE exceeded 0.6 for each LULC period. This sug-
gested that the very good performances of model simu-
lated flow in capturing the observed hydrograph pattern.
For the 1998 LULC, the PBIAS values were within Æ 5 5%,
indicating that the model reproduced observed streamflow
volumes well. The model assessment of performance
requirements for stream calibration and verification for
the three LULCs demonstrated good performance with
R2 greater than 0.72, NSE greater than 0.66, and RSR
within the permissible range.

5.3.3. Hydrologic Process Responses to LULC Change. LULC
change has significant impact on watershed hydrologic pro-
cesses including runoff, groundwater flow, infiltration, ero-
sion, and evapotranspiration. Monthly simulation runs were
conducted using the 1998, 2009, and 2021 LULC maps. A
comparison of model-simulated streamflow for 1998, 2009,
and 2021 and average annual observed streamflow from the
watershed showed significant changes, and the results were
presented in a table. The findings indicated a 16% increase in
2009′s median annual stream discharge compared to that of
1998. Additionally, LULC 2021 simulated mean annual
streamflow increased by 13.03% from 2009 LULC (Table 12).
The increases in agricultural land between 1998, 2009, and
2021, reduced infiltration and increased runoff. Streamflow
decreased when afforestation increased.

The features of different kinds of land cover have been
demonstrated to be directly related to the watershed’s yearly
mean streamflow. While the frost area dropped every eleven
years between 1998 and 2021, the amount of cultivated and
agricultural land expanded in the study area, during the
study period. By lowering infiltration in the watersheds,
the extension of agricultural land increased streamflow
(Figure 14). However, as observed by Sun et al. [51] shrub
and woodland have the potential to reduce streamflow due to
decreased infiltration.

5.4. Meteorological Data Effect on Streamflow

5.4.1. PET Effect on Streamflow. The length of a meteorolog-
ical dataset can affect runoff through evapotranspiration and
rainfall in the catchment. The humidity index (HI) is used in

TABLE 9: Shafe watershed sensitive model parameters and ranks.

Parameter name Description t-Stat p-Value Rank Sensitivity

ALPHA_BF Alpha base flow recession constant −107.30 0.001 1 High
CN2 SCS runoff curve number −17.29 0.009 2 High

CH_K2
Effective hydraulic conductivity in main

channel
10.96 0.010 3 High

ESCO soil evaporation compensation factor −1.62 0.106 4 Moderate
EPCO Plant uptake compensation factor −1.56 0.119 5 Moderate
SOL_AWC Available water content of soil −1.13 0.259 6 Moderate
SLSUBBSN Average slope length 1.10 0.272 7 Moderate
SOL_Z Soil depth (for each layer) 0.87 0.387 8 Moderate
SURLAG Surface runoff lag time −0.73 0.468 9 Low

GWQMN
Threshold depth of water in the shallow

aquifer
−0.66 0.511 10 Low

RCHRG_DP Deep aquifer percolation fraction −0.56 0.574 11 Low
GW_REVAP Groundwater “revap” coefficient −0.56 0.577 12 Low

REVAPMN
Threshold depth of water in the aquifer

for “revap” to occur
−0.53 0.596 13 Least

CH_S2 Average slope of main channel 0.49 0.627 14 Least
CANMX Maximum canopy storage −0.37 0.712 15 Least
SOL_K Saturated hydraulic conductivity 0.35 0.725 16 Least
PPERCO Phosphorus percolation coefficient 0.35 0.726 17 Least
CH_N2 Manning’s n” value for the main channel −0.31 0.759 18 Least
GW_DELAY Groundwater delay 0.20 0.842 19 Least
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FIGURE 10: Sensitive flow parameters depending on p-value and t-test.
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this study to represent the mean annual rainfall divided to
mean annual evapotranspiration. It indicates how much
atmospheric moisture demand is satisfied by precipitation.
The climate index is an essential parameter to analyze the
effect of climate on streamflow by comparing the climate
index value. The higher the climate index, the more stream-
flow discharge is generated by the watershed, while lower
values show that the watershed generates little discharge.
In this study, the climate index effect on streamflow was
evaluated using a 12-year climate data interval.

In Case 1, using station data from 1998 to 2011, the long-
term 12-year average annual rainfall was 1,095mm, and the
potential evapotranspiration, from the SWAT model, was
1,227mm. The climate index was calculated by dividing the

average annual rainfall by the evapotranspiration, giving 0.89.
The annual streamflow was estimated as 39.03mm/year. In
Case 2, using climate data from 2012 to 2021 the long-term
annual rainfall was 1061.0mm/year, and the annual evapo-
transpiration from the SWAT model was 1,143.8mm/year.
The climate index was calculated as above and was 0.93.
The simulated annual streamflow from the SWAT model
was recorded at 40.81mm/year. According to Seong et al.
[52]), a higher humidity index indicates a wetter watershed
than a lower one. The model output showed that when the
humidity index was higher, the annual watershed streamflow
was 40.81mm, but streamflow was reduced to 39.03mm at
the lower HI. From the first 13 years of meteorological data to
the second 13 years of meteorological data, the average yearly
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FIGURE 11: Observed and simulated hydrograph for LULC 1998.
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FIGURE 12: Observed and simulated hydrograph for LULC 2009.
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FIGURE 13: Observed and simulated hydrograph for LULC 2021.

TABLE 10: Suggested and calibrated flow parameters.

Parameter name
Effects of parameters in runoff when it

increases
Manual range Calibration range Fitted value

CN2 Increase surface runoff 35–98 Æ25% 0.36
ALPHA_BF Increase groundwater flow 0–1 0.01–0.135 0.06
GWQMN Decrease baseflow 0–5,000 3,000–4,000 3,837.00

GW_REVAP
Decrease baseflow by increasing water

transfer in shallow aquifer
0.02–0.2 0.1–0.15 0.14

RCHRG_DP Decrease baseflow by deep aquifer 0–1 0.95–1 0.99
SOL_AWC Increase groundwater recharge 0–1 0.96–1 0.98
SOL_Z Increase groundwater 0–3,500 Æ25% 0.99
CH_K2 Saturated hydraulic conductivity 0–500 98–108 106.22
SLSUBBSN increase surface runoff 10–150 25–30 28.16
ESCO Decrease evaporation 0–1 0.96–1 0.97
EPCO Decrease transpiration 0–1 0.0–0.1 0.07
SURLAG Decrease runoff arrival time to outlet 0.05–24 14–15 14.37

TABLE 11: SWAT performance in the calibration and validation periods.

Calibration (2001–2014) model performance Validation (2015–2021) model performance

p-Factor r-Factor R2 NSE PBIAS RSR R2 NSE PBIAS RSR

LULC 1998
0.78 0.92 0.76 0.74 4.4 0.52 0.72 0.72 7.0 0.53

LULC 2009
0.70 0.88 0.76 0.72 11.0 0.53 0.85 0.66 16.7 0.58

LULC 2021
0.70 0.77 0.76 0.73 10.9 0.52 0.84 0.66 16.4 0.58
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flow of streams of the watershed declined by 2.87%. This
indicates that meteorological data in and around the catch-
ment can affect stream flow.

5.4.2. Rainfall Effects on Streamflow. By only changing the
rainfall data intervals, the effect on streamflow was evaluated.
The model output for the first 13 years (1998–2011) was
37.21mm/year, and for the next 13 years (2012–2021), it
was 35.86mm/year. The mean annual precipitation fell
between 1,095.6 and 1,061.0mm throughout the course of
the first 13 years to the second 13 years, a 3.2% loss. The
yearly streamflow also fell by 3.76% in addition. These results
imply that rainfall intensity has a substantial impact on
streamflow in the Shafe catchment.

6. Conclusions

This study assessed the Shafe catchment in the rift valley lakes
basin physical and climate catchment characteristics effect on
stream. The SWATmodel was used to investigate the influence
of watershed variables. The model successfully reproduced the
reported hydrograph patterns and volumes under various
LULC conditions. Twelve model parameters were found for
calibration by sensitivity analysis, which led to excellent model
performance with high R2 and NSE values, and low PBIAS and
RSR. According to the study, changes in LULC, particularly the
increases in agricultural land and deforestation, had a major
impact on monthly flow in the watershed. The study suggested
that the optimum land use management techniques for reduc-
ing streamflow were to decrease agricultural land and increase

afforestation. Watershed influences on streamflow should be
taken into account in water resource planning and manage-
ment. For a variety of water resource studies, including water
budget studies, physical catchment features can be employed as
an alternative data source. To lessen the detrimental effect on
streamflow, LULC changes should be monitored and con-
trolled efficiently.
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TABLE 12: Simulated mean annual streamflow.

LULC 1998 LULC 2009 LULC 2021

Simulated streamflow (mm) 39.40 46.93 53.92
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FIGURE 14: Simulated monthly streamflow (by LULC).
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