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Concrete civil infrastructure often suffers severe damage to its internal structure due to insufficient durability in high and cold
complex environments, affecting the service life of the infrastructure. Therefore, a novel method based on nanofillers for self-
healing concrete is proposed to optimize the durability mix proportion of high-performance concrete in complex high and cold
environments, which improves the strength recovery rate of concrete. Moreover, a concrete durability prediction model based on
particle swarm optimization-least squares support vector machine (PSO-LSSVM) and improved NSGA-II (nondominated sorting
genetic algorithm II) algorithm was proposed to quickly and accurately determine the optimization scheme of self-healing concrete
mix proportion. First, the model employs PSO-LSSVM to achieve highly accurate predictions of relative dynamic elastic modulus
and chloride ion permeability coefficient, which are key indicators of the concrete durability. Subsequently, the predicted regres-
sion functions for concrete durability are utilized as fitness functions, and the improved NSGA-II algorithm is employed to obtain
the optimal mix ratio for durable concrete. Finally, the Pareto frontier solution set is processed using the ideal point method
selection approach to determine the optimal concrete mix ratio scheme. To assess the self-healing ability of the proposed concrete,
a concrete durability test study is conducted. Experimental research shows that the durability of the proposed self-healing concrete
has been significantly improved. The optimized PSO-LSSVM model demonstrates excellent generalization capability. The coeffi-
cient of determination between the predicted and actual values in the test dataset is 0.9357, and the root-mean-square error is
0.10267. Building upon this, the enhanced concrete durability prediction model based on the NSGA-II algorithm proves to be
highly effective in predicting the optimal concrete mix proportion scheme. The predicted values of chloride ion permeability
coefficient and relative dynamic elastic modulus of the proposed model differ from the actual experimental values by 1.29% and
0.59%, significantly better than the other prediction models.

1. Introduction

Under the combined effect of load, deformation, and envi-
ronmental factors, concrete may experience tensile stress
that exceeds its tensile strength, resulting in cracking [1].
Concrete cracking is a challenging issue to prevent, as cracks
provide pathways for the ingress of water, carbon dioxide,
oxygen, chlorides, and sulfates from the surrounding envi-
ronment. This ingress further deteriorates the safety and
durability of concrete structures, leading to a vicious cycle
of “concrete deterioration→ concrete cracking→ erosion by
harmful substances→ further deterioration”. Ultimately, this
cycle negatively impacts the safety, durability, and service life
of reinforced concrete structures [2, 3].

Self-healing concrete can repair cracks generated by con-
crete because of its self-healing nature is a current research
hot spot [4, 5]. Self-healing concrete mimics the function of
biological tissue damage healing by compounding special
components in the traditional components of concrete to
form an intelligent self-healing system inside it, which auto-
matically triggers a repair response to heal when cracks or
damage occurs in the concrete material [6]. The self-healing
of concrete can be categorized into natural healing and engi-
neered healing [7]. Natural healing is an inherent phenome-
non in concrete, where small to medium-sized cracks that
occur in the concrete structure are healed through the hydra-
tion reaction of previously unhydrated cement particles with
water and carbon dioxide [8]. The disadvantage of natural
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healing is that it takes too long to act and is not applicable to
some concrete structures with large crack widths. Engineering
self-healing is a technical measure that artificially enhances
the self-healing ability of concrete through the medium of
fibrous materials, microorganisms, and capsules [9]. Compared
to conventional self-healing techniques, the incorporation of the
nanofillers improves the spatial network structure of concrete
and controls the morphology of hydration products at the
microscale. In addition, the nanofillers also improve the spatial
distribution of concrete cracks [10]. It has been shown that
nucleation effect, water absorption effect, and very good filling
effect of nanofillers. Therefore, when appropriate amounts of
nanofillers are incorporated into concrete, the nanoparticles can
fill the pores inside the concrete and improve its compactness,
which in turn improves the concrete strength. However, the
research results of self-healing concrete based on nanofillers
are relatively few [11]. A new method of self-healing concrete
based on nanofillers is proposed for improving the durability
and extending the service life of the civil infrastructure.

The durability of concrete is closely related to the mix
ratio of raw materials, and scholars at home and abroad have
been conducting extensive research on the durability of con-
crete and the optimization of the mix ratio of raw materials.
Geng et al. [12] conducted experimental research on the
early strength of prefabricated silica fume concrete. Cao
et al. [13] optimized the mix proportion of high-strength and
high-performance concrete. The traditional experimental meth-
ods for predicting the durability and strength of concrete, as
well as optimizing the mix ratio, have many limitations and
low efficiency. With the development of computer technology
and the popularization of machine learning algorithms, a new
approach has been provided for studying the durability and
strength prediction of concrete, as well as the optimization of
mix proportions. Tu et al. [14] used the Genetic Algorithms
Back-Propagation optimized neural network model to predict
the impermeability performance of concrete.Wu [15] and Abu-
nassar et al. [16] used radial basis funtion-artificial neural net-
work (ANN) and support vector machine (SVM)-ANN network
models to predict and analyze the compressive strength perfor-
mance of concrete, respectively. The above research usedmachine
learning algorithms to predict and analyze the impermeability
and strength of concrete, but rarely combined concrete perfor-
mance prediction with mix ratio optimization. The constructed
model considers fewer influencing factors during the prediction
and has a relatively single objective during optimization.

Therefore, aiming at the problems of considering fewer
influencing factors and a single optimization objective in the
prediction model, the article selects the dual objectives of
frost resistance and permeability resistance as the main indi-
cators of concrete durability, and constructs an evaluation
model based on particle swarm optimization-least squares
support vector machine (PSO-LSSVM) and improved non-
dominated sorting genetic algorithm II (NSGA-II) algorithm
to quickly and accurately determine the mix proportion opti-
mization plan. As an intelligent algorithm, LSSVM can effec-
tively overcome nonlinear problems. The algorithm is global
and suitable for small sample data. Regarding the regulariza-
tion parameter C and the kernel function width parameter σ,

which significantly influence the classification and recognition
performance of the LSSVM model, we acknowledge the con-
cern about random settings potentially leading to the subopti-
mal solutions. To address this issue, we have introduced the
PSO algorithm to enhance the LSSVM model [17–19]. This
optimization technique aims to find better solutions and
improve the classification and recognition accuracy of the
model, ensuring that it meets the required performance stan-
dards. The NSGA-II algorithm is one of the most popular
multiobjective genetic algorithms, which can effectively handle
multiobjective optimization problems and has the advantages
of fast running speed and good convergence of the solution set.
To explore the self-healing ability of new self-healing concrete,
this article conducted durability experiments to explore the
trend of the influence of the content and type of nanofillers
on the self-healing performance of the concrete. In order to
obtain the optimal combination of concrete mix ratio parame-
ters and reduce the resource consumption of manpower, mate-
rial resources, and time in the design of mix ratio schemes, this
article combines intelligent algorithms with mix ratio design to
achieve intelligent and precise concrete mix ratio design, which
has a certain guiding role for engineering practice, especially for
high-performance concrete mix ratio optimization in alpine
complex environment.

The innovation of this article is as follows:

(1) A novel method of self-healing concrete based on
nanofillers has been proposed to extend the service
life of civil infrastructure.

(2) An evaluation model based on PSO-LSSVM and
improved NSGA-II algorithm has been constructed
to evaluate the durability of self-healing concrete.

(3) To solve the problem of traditional NSGA-II falling
into local optimization, an improved NSGA-II algo-
rithm is proposed, which introduces a Tent chaotic
map to initialize the population and adopts an adap-
tive crossover operator to avoid the algorithm falling
into local optimization.

2. Research Significance

Concrete mix design is a complex process that traditionally
relies on extensive knowledge and experience in the concrete
technology. Currently, obtaining concrete mix proportions
that meet specific requirements still involves a significant
amount of trial and error and relies heavily on the experi-
ence. This trial mixing approach consumes considerable
manpower, material resources, and time. With the rapid
development of artificial intelligence technology in the
21st century, it has found widespread applications in various
research domains. Intelligent algorithms offer remarkable
adaptability and fitting capability, making them well-suited
for predicting the concrete properties accurately. In this
study, we propose a concrete mix proportion optimization
model based on the intelligent algorithms. By integrating
intelligent algorithms with mix proportion design and utiliz-
ing a vast amount of mix proportion data, we can simulate
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and optimize the concrete mix proportion design. As a result,
the resource consumption of manpower, material resources,
and time in the trial mixing process is significantly reduced.
This not only saves costs but also achieves an intelligent and
precise concrete mix proportion design.

3. State of the Art

3.1. Nano Self-Healing Concrete. Currently, one of the com-
mon methods to improve the performance of concrete is the
compounding of materials. The nanomaterials incorporated
into concrete can improve and enhance the physical and
mechanical properties of concrete to a certain extent [20].

Abousnina et al. [21] used nanoparticles for self-healing
cement paste first. Stefanidou et al. [22] incorporated nano-
SiO2 into concrete to verify the feasibility of self-healing of
nanoconcrete. Stefanidou et al. [23] found that the addition
of nanoparticles to cement slurry facilitated the healing of
cement slurry and accelerated the healing rate in water. Gohar
et al. [24] and Rajasegar and Kumaar [25] found that silica
nanoparticles increased the strength of concrete. Evangelia
and Maria [26] found that the addition of calcium oxide
nanoparticles reduced the water penetration through cracks
and increased the self-healing efficiency.

3.2. Self-Healing Concrete Ratio Optimization. Concrete
durability is the main factor that determines the service life
of concrete. In recent years, in the actual project because of
the lack of concrete durability and structural damage has
occurred repeatedly, bringing huge loss of life and property.
The early durability of concrete is mainly determined by the
concrete ratio. Therefore, it is important to study the ratio of
concrete to service life of concrete.

At present, researchers have conducted some studies on
concrete impermeability and ratio optimization. Wang et al.
[27] investigated the early strength and durability perfor-
mance of concrete under the effect of multiple factors based
on orthogonal tests for freeze–thaw environment. He et al.
[28] investigated the mechanism of highland environmental
influence on the strength and permeability of concrete. Guo
et al. [29] optimized the concrete mix ratio design by simu-
lation test based on the crack resistance performance of
bridge deck slab concrete in alpine region. Gong et al. [30]
optimized the mix ratio of C50 concrete for island concrete
engineering. Leite and Santana [31], based on the analysis of
concrete material combination mixing effect, the optimiza-
tion of the mix ratio design for high-performance concrete
was achieved. Xu et al. [32] optimized the mix ratio of precast
concrete from the perspective of precast concrete and
through orthogonal tests. The above research adopts tradi-
tional experimental methods to study the impermeability of
concrete and optimize the mix ratio, which is not only time-
consuming and labor-intensive, but also the obtained opti-
mal mix ratio is not accurate enough. With the development
and application of machine learning algorithms, some scho-
lars began to try to solve the objective optimization problem
by machine learning algorithms. Zhang et al. [33] success-
fully obtained the dual-objective mix ratio optimization
problem and Pareto frontier for high-performance concrete

using a multiobjective optimization model, and used machine
learning and random forest methods to optimize the solution.
Huang et al. [34] established a new Firefly algorithm SVR
model, which makes the optimization of steel fiber concrete
mix ratio more refined. Xue [35] used PSO-LSSVM model to
predict the compressive strength of concrete, and verified the
reliability of the model. Han et al. [36] put forward a multi-
objective optimization model of wet-sprayed concrete mix-
ture ratio parameters based on BP-NSGAⅡ to obtain the
optimal design scheme of wet-sprayed concrete parameters.
Taking BP neural network as fitness function, the improved
NSGA-Ⅱ method is used to find Pareto optimal solution of
decision variables in fitness function, so as to obtain the best
wet sprayed concrete parameters. In order to achieve fast and
accurate determination of the mix optimization scheme, Liu
et al. [37] proposed a hybrid intelligent prediction model
integrating random forest and LSSVM algorithms for predict-
ing the permeability of concrete. On this basis, Liu et al. [38],
Wu et al. [39], and Chen et al. [40] introduced the double
objectives of frost resistance and impermeability as durability
evaluation indicators, and, respectively, adopted SVM-NSGA-II
algorithm, random forest-NSGA-II algorithm and LSSVM-
NSGA-II algorithm for multiobjective optimization to obtain
the optimal concrete mix proportion scheme.

4. Methodology

4.1. PSO-LSSVM Model

4.1.1. Least Squares Support Vector Machines. The basic prin-
ciple of the mathematical model of the LSSVM algorithm is
as follows: assume that the training sample set D= {(xi, yi),
i= 1, 2, …, n}. Then the regression function at this point is

yi ¼ ωφ xið Þ þ b; ð1Þ

where yi denotes the i-th predicted value with d-dimension,
xi denotes the i-th input vector with d-dimension, ω is the
weight vector of the regression function, and b is the bias.

Unlike SVMs, LSSVM utilizes the error in the optimiza-
tion objective ξi squared as the loss function of its model.
Also, by converting the constraints into formula constraints,
its optimization problem becomes:

min
1
2
∥ ω∥2 þ u

1
2
∑
n

i¼1
e2i

st:ωφ xið Þ þ bþ ei ¼ yi;
ð2Þ

where c is the regularization parameter and ei is the error
vector. Lagrangian function is established to solve the above
problem, i.e.,

L ω; b; e; ξð Þ ¼ 1
2
∥ ω∥2 þ u

1
2
∑
n

i¼1
e2i − ∑

n

i¼1
ξi ωφ xið Þ þ bþ ei − yi½ �:

ð3Þ

The optimal solution satisfies the Karush–Kuhn–Tucker
(KKT) optimization condition. The ω; b; e; ξ in Formula (3)
are calculated as the partial derivative, and then make them
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equal to zero.

∂L
∂ω

¼ 0→ ω¼ ∑
n

i¼1
ξϕ xið Þ

∂L
∂b

¼ 0→ ∑
n

i¼1
ξi ¼ 0

∂L
∂e

¼ 0→ ξi ¼ uei

∂L
∂ξ

¼ 0→ ωφ xið Þ þ bþ ei − yi ¼ 0:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

The elimination of the variables ω and e after the homo-
geneous solution transformation of the above conditions
yields b and ξ the optimal solution matrix.

0

Y

" #
¼ 0 ZT

Z K þ c−1E

" #
b

ξ

" #
; ð5Þ

where ξ¼ ξ1; ξ2; …; ξn½ �T is the Lagrange multiplier. Z= [1,
1,…, 1]T and y= [y1, y2,…, yn]

T. e is the unit matrix of order
n and k denotes the kernel function matrix defined by

K ¼ K xi; xj
À Á¼ φ xið Þφ xj

À Á
: ð6Þ

The LSSVM decision function is expressed as follows:

y xð Þ ¼ ∑
n

i¼1
ξiK x; xið Þ þ b; ð7Þ

K x; xið Þ ¼ exp −
∥x − xi∥2

2σ2

� �
; ð8Þ

where σ2 denotes the width parameter and x denotes the
output variable.

4.1.2. Parameter Preferences.The choice of LSSVM parameters
determines the performance of the model prediction. The
width parameter σ2 and the regularization parameter u of
the Gaussian kernel function both have some influence on
the prediction effect of LSSVM. In this paper, we choose the
PSO algorithm to find the optimal combination of the
regularization parameter u of LSSVM and the kernel width
coefficient σ to build a prediction model based on PSO-
LSSVM. The construction process of the model is shown in
Figure 1.

The steps to construct the PSO-LSSVM-based model are
as follows:

Step 1: Organize and collect samples, and preprocess the
raw data.

Step 2: Particle swarm parameters initialization. Set the
appropriate range of values for (c, σ), determine the number
of particle swarms q, the maximum number of iterations
tmax, the learning factors c1 and c2, the inertia weight factors
ωmax and ωmin, and randomly generate the initial particle
swarms.

Step 3: The parameter combinations generating different
c and σ are input to the PSO-LSSVMmodel training, and the
particle swarm fitness values for each generation are deter-
mined using the fitness function, and the root-mean-square
error (RMSE) is chosen to evaluate the goodness of the func-
tion of particle fitness, as shown in Formula (9):

Selection of LSSVM
parameter range

Start

Data input

Obtain optimal parameters

Train LSSVM model

Verifying model
performance by test sets

Output results

End
No Yes

Initializing particle swarm
using chaos

Train LSSVM model

Calculate the ftness function
value of particle swarm

Update the current individual
and global optimal solutions

Update the velocity and
position of particles

Terminate or not

FIGURE 1: PSO-LSSVM flowchart.
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RMSE¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
y − yið Þ2

s
; ð9Þ

where yi represents the predicted value of the sample,
y represents the actual value, and n represents the number.

Step 4: The current fitness value f(xi) of each particle is
compared with the fitness value f(Pbest) of the historical opti-
mal position for analysis. If f(xi)≤ f(Pbest), then update Pbes=
xi. Compare the magnitude of the fitness value f(xi) of the
optimal position of each particle and the fitness value f(Gbest)
of the optimal position of the whole particle population, if
f (xi)≤ f(Pbest), then update Gbes= xi. Repeat the above opera-
tion until the optimal combination of solutions is obtained.

Step 5: Build PSO-LSSVM training model.

4.2. Improved NSGA-II Algorithm Implementation. The tra-
ditional NSGA-Ⅱ has the problem of falling into local opti-
mum. The improved NSGA-II algorithm is used for the
optimization of mix parameters to determine the Pareto
optimal solution set of the optimal mix parameters for
both permeability and frost resistance of the concrete. To
address the shortcomings of the traditional NSGA-II algo-
rithm, the Tent chaotic mapping is introduced to initialize
the population and adopts an adaptive crossover operator to
avoid falling into a local optimum.

(1) Initialized population strategy based on Tent chaotic
mapping

In the field of intelligent optimization, chaotic mappings
are often used to initialize populations with better results
than pseudorandom numbers. There are many chaotic map-
pings, among which Tent mapping is more convenient due
to its simple structure and also it can produce uniformly
distributed individuals. Therefore, in this paper, the Tent
mapping is cited as an improved method for initializing
the population of NSGA-II algorithm, whose expression is
given by Formula (10).

xmþ1 ¼ f xmð Þ ¼
xm
a
; xm 2 0; a½ Þ

1 − xm
1 − a

; xm 2 a; 1½ �;

8><
>: ð10Þ

where a= 0.499. xm denotes the m-th chaotic number.

(2) Adaptive crossover operator

The conventional NSGA-II uses analog binary crossover
operator, which has a small moving space for crossover and
is easy to fall into the local optimum. The normal distribu-
tion crossover operator and the arithmetic crossover opera-
tor are introduced. In the early iteration of the algorithm, the
normal distribution crossover operator is used with greater
probability to improve the search ability of the algorithm in
the early stage and avoid falling into the local optimum. The
arithmetic crossover operator is used in the later stage of
the algorithm to reduce the search space and accelerate the

convergence speed of the algorithm. The normal distribution
crossover operator and the arithmetic crossover operator are
given by Formulas (11) and (12).

xtþ1
1;i ; x

tþ1
2;i ¼

xt1;i þ xt2;i
2

Æ 1:481
xt1;i − xt2;i

2
N 0; 1ð Þj j; v ≤ 0:5

xt1;i þ xt2;i
2

∓ 1:481
xt1;i − xt2;i

2
N 0; 1ð Þj j; v>0:5

8>><
>>:

ð11Þ
tþ1
1;i ¼ λ × xt1;i þ 1 − λð Þ × xt2;i
xtþ1
2;i ¼ 1 − λð Þ × xt1;i þ λ × xt2;i;

ð12Þ

where xtþ1
1; i and xtþ1

2; i denote the two individuals in the t+ 1-th
generation of the i-th variable. N 0;ðj 1Þj represents a random
number subject to normal distribution, v denotes a random
number between (0, 1), and λ denotes the variable associated
with the dominance rank, whose expression is given by For-
mula (13).

λ¼ xt2;i ⋅ rank
xt1;i ⋅ rank þ xt2;i ⋅ rank

; ð13Þ

where rank denotes dominance rank.
The crossover operator selection factor is a variable related

to the number of iterations and represents the probability of
selecting a normally distributed crossover operator. Let it be P
(t), where t is the number of current evolutionary generations.
Consider that more normally distributed crossover operators
should be selected at the beginning of the algorithm and more
arithmetic crossover operators at the end of the algorithm.
Referring to the cooling mechanism of simulated annealing,
the value of the crossover operator selection factor is dynami-
cally adjusted by the annealing factor. The expression is given
by Formula (14).

P 1ð Þ ¼ 1

P t þ 1ð Þ ¼ β × P tð Þ; ð14Þ

where β denotes the annealing factor, which generally takes a
value between 0.8 and 0.99.

The flowchart of the improved NSGA-II algorithm is
shown in Figure 2.

5. Self-Healing Concrete Ratio
Optimization Model

In real life, the relationship between concrete mix materials
and durability is highly nonlinear. We propose a multiobjec-
tive optimization intelligent algorithm based on PSO-LSSVM
and improved NSGA-II to optimize the fit ratio, replacing the
traditional mathematical function with the SVMmodel as the
fitness function in the multiobjective genetic algorithm. First,
frost resistance and impermeability are used as durability
evaluation indicators. The PSO-LSSVMmodel is used to learn
the concrete mix ratio and obtain the nonlinear prediction
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relationship between concrete durability and mix ratio. Then,
the predictive regression function of the two indicators is
taken as the fitness function of the improved NSGA-Ⅱ algo-
rithm. The Pareto frontier solution set determines the combi-
nation of concrete mix ratio parameters that meet both frost
resistance and impermeability performance. Finally, the opti-
mal concrete proportioning scheme is selected by the ideal

point method. The flowchart of proposed method is shown in
Figure 3.

5.1. Data Normalization Process. The optimization objective
of this article is to obtain the optimal mix ratio of concrete
that meets the conditions of frost resistance and imperme-
ability durability. Ten factors, including water cement ratio,

Preprocessing of sample datasets

Determine the kernel function of
LSSVM

Optimizing LSSVM parameters
using PSO

Building a durability prediction
model based on LSSVM

PSO-LSSVM prediction model for
concrete durability

Determine durability optimization goals

Determine ftness function

Initializing population using Tent
chaotic mapping

Optimization of self-healing
concrete mix proportion

Select appropriate genetic
operators

Optimization of mix ratio for self-healing
concrete based on improved NSGA-II

FIGURE 3: The flowchart of proposed method.

Start

End

Evolutional generation t = 1

Terminate or not

Yes

Not = t + 1

Select suitable individuals to form
a new parent population Pt

Initializing population using Tent chaotic mapping

Initial parent population P0

Evolutional generation t = 1

Generation of ofspring population Qt based on
adaptive crossover and mutation operators

Population merging Rt = Pt–1∪Qt

Nondominated sorting and calculating congestion

FIGURE 2: Flowchart of improved NSGA-Ⅱ algorithm.
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sand ratio, fly ash, cement, fine aggregate, nanosilica, coarse
aggregate, water reducing agent, expansion agent, and air
entraining agent, are selected as input variables for the multi-
objective genetic algorithm in the concrete mix proportion.
The above 10 variables are represented as x1, x2, x3, x4, x5, x6,
x7, x8, x9, and x10, respectively.

Different concrete ratio indexes have different scales, and
some data in the sample are too large or too small will
increase the burden of the algorithm in the training process,
resulting in data overwhelm or network nonconvergence.
Therefore, it is necessary to normalize the sample data.
Data normalization can make the input data in a certain
interval, such as (0, 1), (−1, 1) etc., which eliminates the
influence of different sample eigenvalue dimensions on the
prediction efficiency and accuracy. In this paper, we choose
to normalize the sample input data to the interval (−1, 1).

5.2. Multiobjective Optimization

5.2.1. Construction Based on LSSVM Fitness Function. In the
modified NSGA-II algorithm, there are two objective func-
tions set, namely, the relative dynamic elastic modulus F and
the chloride ion permeability coefficient θ. These two objec-
tive functions are output by the PSO–LSSVM-based concrete
frost durability function. According to the experimental
experience, F≥ 85% was set after 300 freeze–thaw cycles of
concrete. To meet the good durability of concrete against
permeability, the coefficient θ≤ 3. 5× 10−8 cm2/s was set
after 28 days.

The problem of complex nonlinear relationships between
input variables and output targets, as well as the inability
to provide specific function expressions, was solved—which
using the PSO-LSSVM model. The SVM-based regression
function is as follows.

svm Xð Þ ¼ ∑
10

i¼1
αi − α∗ið Þexp −

∥xi − x∥2

2σ2

� �
þ b; ð15Þ

where X= (x1, x2, x3, x4, x5, x6, x7, x8, x9, and x10), the αi and
α∗i are Lagrangian multipliers.

Two objective functions are defined as follows:

F svm Xð Þ½ �>85%; ð16Þ

θ svm Xð Þ½ �<3:5 × 10−8cm2=s: ð17Þ

5.2.2. Range of Indicator Limits. To make the generated
scheme more reasonable and feasible, the indicator con-
straints are added. The general form of the constraints is as
follows.

sil<xi<siu; ð18Þ

where sil are the lower limits of the i-th input variable. siu are
the upper limits.

5.2.3. Optimum Ratio Selection. The Pareto optimal solution
set obtained by the improved NSGA-II algorithm is not a

unique solution, but a set of solutions that match the Pareto
optimal state decision variables. In the optimization of con-
crete durability ratio, the ideal optimal solution needs to be
obtained. Therefore, this paper uses the ideal point method
to obtain a compromise solution from the optimal solution
set. The ideal point is a correspondence point consisting of
the optimal value corresponding to the optimal value using
each objective pair E ηEpoint ;

�
ZEpoint Þ. The ideal point is the

point of correspondence between the optimal values of each
objective pair. After finding the corresponding equilibrium
points, the distance between each optimal solution and the
ideal point in the Pareto optimal solution diagram is calcu-
lated by the formula.

Un ¼
ηPareto−ηEpoint

� �
ηEpoint

0
@

1
A2

þ ZPareto−ZE pointð Þ
ZEpoint

� �
2

2
4

3
51=2

;

ð19Þ

where ηPareto;ð ZParetoÞ are the coordinates corresponding to
the optimal Pareto front point. ηEpoint ;

�
ZEpointÞ are the coor-

dinates corresponding to the ideal point.
By calculating the distance function (Formula (20)), it

can be seen that the optimal point is the point with the
minimum distance from the ideal point, therefore, the ideal
point method can be used to determine the set of optimal
solutions from the Pareto front solution set that makes the
multiobjective function optimal.

Uopt ¼min Unð Þ: ð20Þ

6. Example Analysis

6.1. RawMaterials and Specimen Preparation. The raw mate-
rials used in this article include P.O42.5 grade ordinary Port-
land cement produced by China National Materials Anhui
Cement Co., Ltd., with a density of 3,050 kg/m3, a specific
surface area of 332m2/kg, an initial setting time of 194min,
and a final setting time of 261min. The fly ash is selected
from Class F Grade I fly ash produced by Anhui United
Power Generation Co., Ltd., with a density of 2280 kg/m3,
a fineness of 6.1%, and a loss on ignition of 2.95%. Fine
aggregate is selected from Anhui medium sand fine aggre-
gate, with a fineness modulus of 2.7. The coarse aggregate is
selected from natural crushed stones with a continuous grad-
ing of 5–31.5mm from Chaohu scattered soldiers, with small
stones accounting for 20% and large stones accounting for
80%. The slag powder selected is Anhui Yangtze River slag
powder with the specification model of S95. The expansion
agent selected is UEA concrete expansion agent from Long-
sheng of Laiyang. The longitudinal limited expansion rate of
the concrete at 15 days is >0.02%, and the longitudinal lim-
ited dry shrinkage rate at 180 days is <0.02%. The waterproof
performance is good, reaching grade P12 or above. Nano-
SiO2 is selected from Hebei Keze Metal Co., Ltd. at 20 nm,
with an average particle size purity of 99.9%, a specific
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surface area of 240m2/g, a volume density of 0.06 g/cm3, and
a density of 2.2–2.6g/cm3. The PWR-S model of polycarbox-
ylate high-performance water reducing agent from Wuhan
Port Company is selected as the water reducing agent. The
air entraining agent is selected from Toho, Japan.

The self-healing concrete proportions were developed
according to the “Ordinary Concrete Proportioning Design
Regulations” (JGJ 55-2011) and prepared according to the
specific proportions in Table 1. A total of 71 sets of sample
data were collected through accelerated laboratory tests.
Among them, 56 sets of samples were randomly selected to
form the training set, and the remaining 15 sets of samples
were used as the test set, and the input and output feature
indicators were normalized to the interval (−1,1) to avoid
flooding the features of the input vector.

6.2. PSO-LSSVMModel Prediction. The experimental machine
configuration is 64-bit Win10 operating system. The CPU
is Intel Core i5-12400F and RAM is 64GB. The GPU is
trained with NVIDIA GeForce RTX 2080 Ti with 11GB
video memory. The training network is built in Python
3.9 using the Pytorch module.

6.2.1. PSO-LSSVM Model Training. The important parame-
ters in the LSSVM prediction model to determine the
effectiveness of the model’s prediction, such as regularization
parameters and function width parameters. The regularization
parameter u in the LSSVM model determines the model
tolerance for errors. Generally speaking, the larger the u, the
better the classification result, but it is prone to overfitting,
which leading to a decrease in the model generalization
ability. The smaller the u, the greater the error tolerance of
the model, but it is prone to underfitting. Therefore, the value
of u sets the regularization parameter range to u= (0.01, 5).
Kernel width parameter σ2 determines the distribution of the
model after high-dimensional mapping of low-dimensional
samples to the new feature space. When σ2 value sets too
small, the Gaussian distribution will only act near the support
vector samples, and there is a possibility that the accuracy of the

training samples is high while the accuracy of the test samples is
low, whichmeans that overfitting occurs.When σ2 value sets too
large, the smoothing effect of themodel will be too large,making
it difficult to obtain high accuracy in the training set samples,
thereby affecting the accuracy of the test set. Therefore, the value
of σ2 sets the kernel function width parameter range to σ2=
(0.05, 2).

The PSO parameters in this article are set as follows:
maximum iteration number k= 60, population size n= 30,
initial learning factor c1= c2= 2, initial inertia weight w1= 0.8,
and termination inertia weight w2= 0.5. The PSO algorithm
and fivefold cross-validation were used to optimize the width
parameter σ2 and regularization parameters u of the PSO-
LSSVM prediction model for impermeability and frost resis-
tance, respectively. About 56 sets of training set samples were
input into the PSO-LSSVM model for the optimization pro-
cessing. The iterative process of impermeability and frost
resistance experiments is shown in Figures 4 and 5. In the
impermeability experiment, it can be seen from the optimi-
zation curve in Figure 4 that the PSO-LSSVM model can

TABLE 1: Sample information of endurance test data.

Variable Parameter
Value

Min Max Average

Water/binder ratio, x1 Input 0.33 0.41 0.36
Sand radio, x2% Input 45 36 40
Cement content, x3 (kg/m

3) Input 327 379 352.59
Flyash content, x4 (kg/m

3) Input 44 89 68.58
Fine aggregate content, x5 (kg/m

3) Input 652 900 763.15
Nano-SiO2 content, x6 (kg/m

3) Input 4.7 5.2 4.96
Coarse aggregate content, x7 (kg/m

3) Input 1,020 1,198 1104.52
Water reducer content, x8 (kg/m

3) Input 3 4.6 4.29
Air-entraining agent content, x9 (%) Input 0 0.848 0.33
Expansive agent content, x10 (kg/m

3) Input 26 29 27.58
Chloride ion permeability coefficient
(10−8 cm2/s)

Output 3.05 3.26 3.15

Relative dynamic elastic modulus (%) Output 87.11 93.48 90.32
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FIGURE 4: Optimal fitness curve in impermeability experiment.
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jump out of local optima multiple times and quickly obtain
the global optimal solution. When the number of iterations
reaches 32, the optimal applicability value stabilizes at
0.05861, and the population update is basically completed.
After PSO optimization, when the inertia weight w= 0.6493
and the learning factor c1= c2= 1.12, the model parameters
reach the optimal value, u= 1.776, σ2= 0.1923. Similarly, in
the frost resistance experiment, it can be seen from the
curve in Figure 5 that when the number of iterations reaches
26, the inertia weight of PSO algorithm w= 0.6924, and the
learning factor c1= c2= 1.36, the optimal applicability value
stabilizes at 0 07143, and the optimal model parameters are
u= 1.021 and σ2= 0.3988.

6.2.2. Analysis of Forecast Results. In this paper, the PSO
algorithm combined with fivefold cross-validation was used
to optimize the width parameter σ2 and the regularization
parameter u for the PSO-LSSVM prediction models for frost
resistance and permeability resistance, respectively. In order
to quantify the prediction effect of PSO–LSSVM model, the
coefficient of determination (R2), RMSE, and mean absolute
error (MAE) indexes are used to evaluate the prediction
error. Below are the calculation Formulas (21)–(23) for three
evaluation indicators.

The coefficient of determination (R2) is defined as follows:

R2 ¼
∑
n

i¼1
di − dmeanð Þ2 − ∑

n

i¼1
di − yið Þ2

∑
n

i¼1
di − dmeanð Þ2

; ð21Þ

where yi and di represent the i-th predicted value and the true
value, respectively, n represents the total number of samples,
and dmean represents the average of the actual values.

The RMSE is defined as follows:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
di − yið Þ2

r
: ð22Þ

The MAE is defined as follows:

MAE¼ 1
n
∑
n

i¼1
yi − dið Þj j: ð23Þ

In the permeability resistance experiments, the model
parameters were learned and optimized using the chloride
permeability coefficient training set data, and the results are
shown in Figure 6. From the figure, it can be seen that the
PSO-LSSVM model can accurately express the decision law
between the input and output. When the regularization
parameter u is 1.776. The kernel function parameter σ2 is
0.1923, the error between the predicted and actual values is
minimized. After calculation, the R2 between the actual value
and the predicted value in the training set is 0.97933, RMSE
is 0.05861, and MAE is 0.00125. The closer the R2 is to 1, the
closer the RMSE, and the MAE are to 0, which means that
the better the performance of the prediction model is, and
the closer the predicted value is to the actual value.

On this basis, the parameter-optimized model was used
to process the test set data, as shown in Figure 7. It can be
seen from the figure that the predicted values of the test set
samples match very well with the experimental values. The
coefficient of determination (R2) between the actual value
and the predicted value in the test set is 0.93575, the
RMSE is 0.10267, and the MAE is 0.00511. The results
show that the PSO-LSSVM prediction model can well reflect
the nonlinear relationship between the raw material mix
ratio and the chloride ion permeability coefficient, and has
a good generalization ability.

Similarly, it can be seen from Figures 8 and 9 that the
LSSVM prediction model can predict the relative dynamic
elastic modulus very well. In the frost resistance experiments,
the RMSE of the test results was minimized when the regu-
larization parameter u was 1.021 and the kernel function
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parameter σ2 was 0.3988. The coefficient of determination
(R2) between the actual value and the predicted value in the
training set is 0.98127, and the RMSE is 0.07143, the MAE is
0.00232. The coefficient of determination (R2) between the
actual value and the predicted value in the test set is 0.97792,
and the RMSE is 0.09491, the MAE is 0.00458. The results
showed that the optimized model had a very good agreement
between the predicted values of the test set samples and the
experimental values, and the proposed model also had good
performance in predicting the frost resistance of concrete.

6.3. Optimization of Concrete Durability Mix Ratio. The pre-
dicted regression functions of frost resistance and permeabil-
ity indexes are used as the fitness functions. The improved
NSGA-II algorithm is used to optimize the multiobjective

function, and determine the optimal concrete mix ratio
scheme by the ideal point method.

6.3.1. Improving NSGA-II for Multiobjective Optimization.
For the improved NSGA-II algorithm, the population type
is set to a bidirectional variable. Tent chaotic mapping is
introduced to initialize the population, and adaptive cross-
over operator is used to increase the diversity of the genetic
algorithm and avoid falling into the local optimum. The
parameters of the algorithm are set as follows: the initial
population size is set to 40, the maximum number of genetic
generations is set to 60. The crossover probability is set to 0.7,
and the variation probability is set to 0.01. The optimal
combination of Pareto frontier is obtained after 60 iterations
of updating by the multiobjective genetic algorithm, consid-
ering that the concrete has good frost and permeability dura-
bility, as shown in Figure 10.

Figure 10 gives the image points of the Pareto fronts in
the target space obtained by the genetic algorithm after
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computing the objective function values 2,400 times. The 38
optimization results that satisfy the conditions are calculated
based on the prediction model, as shown in Table 2. It can be
seen from the figure that the Pareto front is uniformly dis-
tributed. The relative dynamic elastic modulus gradually
decreases with the decrease of chloride ion permeability coef-
ficient. The minimum chloride ion permeability coefficient
can reach 2.36m2/s. The corresponding relative kinematic
modulus is 88.0%, respectively. The maximum value of rela-
tive kinematic modulus is 96.6%. This indicates that the
chloride ion permeability coefficient and the relative kine-
matic modulus are in conflict with each other (Table 2). In
the process of moving from the left end to the right end of the
optimal Pareto front in the figure, the NSGA-II algorithm
nondominated solution moves from the optimal solution for
the chloride ion permeability coefficient to the optimal solu-
tion for the relative kinetic elastic modulus.

6.3.2. Optimal Pareto Selection. Among the obtained optimal
Pareto fronts, there is uniqueness in the optimal solution. In
order to obtain the optimal solution, the ideal point method
is generally used to determine it, as shown in Figure 11. The

optimal value of the chloride permeability coefficient and the
relative dynamic elastic modulus constitute the ideal point
with the coordinates E (2.35, 88.00). After the ideal point is
obtained, the 38 points in the optimal Pareto front are substi-
tuted into the ideal point formula, and the optimal solution P
(3.15, 94.09) is finally obtained, i.e., the optimal solution is
obtained when the chloride ion permeability coefficient is
3.15× 10−8 cm2/s and the relative kinetic modulus of elastic-
ity is 94.09%. At this time, the corresponding water/binder
ratio is 0.365, and sand rate is 37.32%. The cement content is
357 kg/m3, and the flyash content is 65.69 kg/m3. The fine
aggregate content is 772.25 kg/m3, and the nano-SiO2 content
is 5.03 kg/m3. The coarse aggregate content is 1,109.18 kg/m3.
The water reducer content is 3.69 kg/m3, and the expansive
agent content is 26.95 kg/m3. The air-entraining agent con-
tent is 0.62%.

Based on the optimized parameters, an evaluation model
of concrete durability is constructed. It is used to evaluate the
relationship between input variables and output variables, to
improve the fitting effect between predicted values and actual
values, and reduce the matching errors and experimental
costs. To verify the accuracy of the proposed algorithm for
the multiobjective optimization model of concrete durability,
the predicted values under the optimized concrete mix ratio
were compared with the experimental values as well as for
the comparative analysis in this study are shown in Table 3.

As can be seen from Table 3, the error between the pre-
dicted values and the experimental values of chloride ion
permeability coefficient and relative dynamic elastic modu-
lus under the optimal mix proportion of concrete is very
small. Among them, the predicted value of chloride ion per-
meability coefficient of the proposed model is 3.15, which is
1.29% different from the actual value of the test. The pre-
dicted value of the relative dynamic elastic modulus is 94.09,
which is 0.59% different from the real test value. Compared
with SVM-NSGA-Ⅱ, RF-NSGA-Ⅱ, and LSSVM–NSGA-Ⅱ,
the proposed model has the best prediction performance.
The experimental results show that the algorithm proposed
in this paper is reliable and accurate in multiobjective opti-
mization of concrete durability, and has good prediction
ability and strong generalization ability.

TABLE 2: Proportional parameter values corresponding to target optimization results.

No. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 F θ

1 0.375 38.23 373 59.18 770.31 4.92 1144.32 3.53 27.09 0.66 88.03 2.36
2 0.375 38.23 366 59.63 775.93 4.92 1137.65 3.58 27.09 0.65 88.35 2.37
3 0.371 38.07 364 62.72 786.03 5.10 1137.65 3.58 27.06 0.66 89.18 2.42
… … … … … … … … … … … … …

21 0.367 37.55 359 65.77 772.32 5.05 1108.94 3.69 26.97 0.61 93.88 3.10
22 0.365 37.32 357 65.69 772.25 5.03 1109.18 3.69 26.95 0. 62 94.09 3.15
… … … … … … … … … … … … …

36 0.368 37.19 348 66.02 799.45 5.11 1101.25 3.65 26.95 0.67 95.82 4.15
37 0.370 37.19 345 65.38 808.21 4.89 1093.57 3.68 26.99 0.65 96.31 4.19
38 0.370 37.11 345 65.12 810.36 4.89 1093.57 3.68 27.01 0.66 96.59 4.28
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7. Conclusion

(1) The paper proposes a novel method for self-healing
concrete using nano-SiO2 filler to address the issue of
common cracks in conventional concrete. This
approach effectively improves the strength recovery
rate and overall durability of concrete, thereby
prolonging the service life of civil infrastructure.

(2) We have constructed an evaluation model based on
PSO-LSSVM and an improved NSGA-II algorithm
to quickly and accurately determine the optimal
design of concrete mix proportions. Ten factors,
including water–binder ratio, sand ratio, cement, fly
ash, fine aggregate, coarse aggregate, nano-SiO2,
water-reducing agent, expansive agent, and air-
entraining agent, are selected as input variables.
The evaluation model considers frost resistance and
impermeability as the durability optimization objec-
tives. By incorporating constraint conditions related
to raw materials and mix proportions, along with
specifications and project requirements, we are able
to select an optimal durability concrete scheme.
Experimental results show that the proposed self-healing
concrete scheme effectively resolves mechanical prop-
erty degradation caused by cracks in conventional
concrete, leading to enhanced durability of civil infra-
structure. The objective optimization outcomes of the
evaluation model align well with engineering practice.
The proposed method is an intelligent, accurate, and
efficient mix proportion optimization approach,
holding significant practical value in engineering
production and providing valuable guidance for
engineering practice.

(3) To address the issue of the NSGA-II algorithm get-
ting stuck in local optima within the evaluation
model, we have proposed an improved NSGA-II
algorithm. This enhanced version incorporates Tent
chaotic mapping for the population initialization and
adopts an adaptive crossover operator, enabling the
algorithm to avoid the local optimization pitfalls.

Regarding the sample size of the mix ratio data obtained in
this study, we acknowledge that it is relatively small, and it
may affect the performance of the evaluation model. In the
future, we plan to enhance the prediction optimization effect
by obtaining more data. Additionally, we aim to expand the

optimization targets to include durability, strength, and eco-
nomic cost of concrete, considering mix ratio optimization
design under more factors.
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