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Part of deep foundation pit support engineering needs to select connected precast concrete square piles (CPCSPs). Under the
premise that the quality of precast concrete square piles (PCSPs) meets engineering requirements, the quality of CPCSPs becomes
the key factor to ensure the safety of foundation pit support structures. Tis paper puts forward a new connection technology of
CPCSPs and carries out the fexural behavior experiment of unconnected precast concrete square piles (UPCSPs) and CPCSPs.
Te distribution of crack and strain on diferent surfaces of UPCSPs and CPCSPs are measured by carbon fber composite strain
sense optical cables, glass fber composite strain sense optical cables, and fxed-point polyurethane strain sense optical cables. Te
anti-crack load, ultimate load, bending moment, and fexural deformation of UPCSPs and CPCSPs are measured. Te ex-
perimental results of UPCSPs and CPCSPs are compared. Te results show that the anti-crack strength of CPCSPs is greatly
increased while the fexural deformation of CPCSPs is decreased before the occurrence of crack. With the development of crack
(failure stage), the outside areas of hoop steel plate exhibit cracks. At this moment, the strength of CPCSPs is no longer controlled
by the strength of middle areas. Te ultimate strength of CPCSPs is basically equivalent to that of UPCSPs. Te ultimate bending
moment of CPCSPs is higher than its design value (about 66%∼76%). Te selection of CPCSPs in the design of foundation pit
support has good reliability.

1. Introduction

Te foundation pit support technologies in China mainly
include cast-in place pile, prestress anchor, diaphragm wall,
inner support, (composite) soil nail wall, and SMW con-
struction method. According to incomplete data statistics,
the above traditional support forms [1–5] are chosen by
more than 95% of foundation pits. However, with the de-
velopment of society and the progress of technology, the
problems of high cost, large construction space, long con-
struction period, high energy consumption, and serious
environment pollution of traditional support forms have
become increasingly prominent. Precast concrete piles are
more and more widely used in foundation pit support en-
gineering because of their advantages in short construction
period, reliable construction quality, high environmental

protection, and economic benefts [6–10]. Due to the limits
of production molds, transportation conditions, and piling
equipment, the length of precast concrete piles generally
does not exceed 15m. Only the connected piles can meet the
requirements for the embedded depth of deep foundation pit
support structures.

In recent years, the bearing capacity performances of
precast concrete piles are researched deeply by engineering
and academic circles, and abundant research results have
been obtained. Te connection method of bonded steel plate
weld for PHC piles in standard atlas was improved by Li et al.
[11]. It was found that the mechanical performance, con-
struction technology, and weld quality of improved con-
nection joint had signifcantly improved compared to
standard connection joint. On this basis, a new PHC uplift
pile with hold-hoop connection method was proposed by
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Zhang et al. [12, 13], which could signifcantly improve the
pullout capacity of piles. Te new mechanic-connection
method was developed by Qi et al. [14]. It was found that
the compressive and tensile capacity of mechanic-
connection bamboo joint piles were signifcantly better
than those of common prestress piles. Te fexural behavior
test of prestress concrete hollow square piles was carried out
by Liu et al. [15], and it was found that the ultimate bending
moment of weld joints met the requirement of inspection
value. At the same time, the axial tensile tests on the internal
buckle mechanic-connection joint of prestress concrete
hollow square uplift piles were carried out by Fan et al. [16].
Te comprehensive detection ways and judgment of defect
of precast square concrete piles were proposed by Zhang
[17]. An extensive evaluation of capacity interpretation
criteria was presented for driven precast concrete (PC) piles
under axial compression loading by Marcos et al. [18]. Te
tensile and fexural behaviors of prestressed concrete square
pile connection joint with resilient clamping were studied by
Wang et al. [19, 20]. Te fexural performance of prestressed
concrete solid square piles and resilient clamping connec-
tions were studied by Xu et al. [21]. Te experimental results
indicated that the head of rebar and end of plate were the
weak parts of piles. Te full-scale fexural behavior experi-
ments on the connection joints of composite reinforcement
concrete precast square piles were carried out by Xu et al.
[22]. Te experimental results showed that the ultimate anti-
bending capacity of connection joint was greater than that of
pile shaft. Several widely used connection methods for
precast concrete piles from economic beneft, service life,
and feld workload were summarized and compared by
Ptuhina et al. [23]. Te infuence of topographic and geo-
logical conditions was considered by Song et al. [24–30].

At present, the research of connected piles is focus on the
tensile and compressive strength of pile joints. Tere is little
research on the fexural behavior of pile joints. Te research
work that has been carried out is either the small size or low
bending performance of test specimens. As the precast
concrete pile of foundation pit support, the main force
condition is anti-bending. Te technology requirements of
connected piles are far higher than those of compression
piles and tension piles. Terefore, it has an important en-
gineering application value for foundation pit support to
carry out the research on connection technologies and
fexural behaviors of precast concrete piles. In this paper,
a new connection technology for precast concrete square
piles (PCSPs) is proposed.Te tensile and compressive loads
are transferred by plate groove weld, and the fexural loads
are transferred by hoop steel plate. Tat is, the connection
technology of hoop steel plate after welding plate groove is
chosen to solve the complex force problems when PCSPs are
used for foundation pit support. Te relationships between
fexural loads and displacement, ultimate load, and failure
mode are researched by the fexural behavior test of full-scale
CPCSPs and UPCSPs. Te research results will provide an
important theoretical basis for the design and application of
CPCSPs.

2. Connection Technology of Anti-Bending Pile

In order to solve the complex force problems of tension,
compression, and bending when PCSPs are used for
foundation pit support, the connection technology of hoop
steel plate after welding plate groove is chosen. Firstly, the
bevel of plate groove is chamfered to 8 : 20 before welding, so
as to increase the contact area of weld spot. Secondly, the
hoop steel plate is made into two symmetrical “L” parts. Te
side length of pile section is 500mm and 600mm, re-
spectively, and the length of hoop steel plate is 1000mm and
1200mm, respectively. After a layer of adhesive steel
structural glue is evenly applied on the inner side of hoop
steel plate, the hoop steel plate is frmly fxed at the con-
nection joint of PCSPs with clamps. Finally, the hoop steel
plate is frmly welded by groove weld technology.

Te section size at the connection joint of PCSPs with
side length of 500mm is 480× 480mm, and the specifcation
of hoop steel plate is 480× 480× 8mm. Te section size at
the connection joint of PCSPs with side length of 600mm is
580× 580mm, and the specifcation of hoop steel plate is
580× 580× 8mm. Te PCSP with side length of 600mm is
taken as an example, and the connection technology pa-
rameters of PCSPs are shown in Figures 1 and 2.

3. Flexural Test Scheme of Precast Concrete
Square Connection Pile

Te research on the tensile and compressive properties of
CPCSPs is relatively mature. In this paper, the fexural
behavior of CPCSPs is researched. Te test includes two
groups of PCSPs with diferent side lengths, and each group
includes three CPCSPs and one UPCSP. Among them, Nos.
5-1, 5-2, 5-3, 6-1, 6-2, and 6-3 are CPCSPs, and 5A and 6A
are UPCSPs. Te lengths of piles are 7.0m. Te connection
locations are located at the middle of PCSPs. Te concrete
strength of 6 CPCSPs is 43.7∼54.7MPa, and the average
concrete strength is 49.08MPa. Te main parameters of
CPCSPs and UPCSPs are shown in Table 1.

3.1. Load Device and Measurement Device of Test. Te dis-
tribution beam, hydraulic jack, and manual oil pump are
used for loading during test. Te oil pressure gauge with
accuracy of 0.4 level is used to measure pressure. Te load
device of test is shown in Figure 3. Te digital dial indicators
are used to measure the defection of PCSPs and erected at
the connection joint of PCSPs, with both sides of PCSPs with
0.8m and 1.6m away from connection joint, which are
shown in Figure 4. Te carbon fber composite strain sense
optical cables and glass fber composite strain sense optical
cables are used to measure the strain crack of piles. Te
fxed-point polyurethane strain sense optical cables are used
to measure the crack of piles. Te sense optical cables are,
respectively, arranged on the top, upper and lower of front,
and upper of back of piles, which are shown in Figure 5. Te
purpose that authors choose three diferent strain sense
optical cables is to ensure the reliability of experimental
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results. Te main performances of measure instrument are
shown in Table 2.

3.2. Load Method. Preload is loaded to eliminate virtual
contact strain before test. Te load increases from zero to
80% of estimated anti-crack bending moment according to
the load with 20% of estimated anti-crack bending moment.
Te duration of each load level is 3minutes. Ten, the load
increases from 80% to 100% of estimated anti-crack bending
moment according to the load with 10% of estimated anti-
crack bending moment. Te duration of each load level is
3minutes. During the test, observe whether there are cracks
and record the distribution and development of cracks. If
there is no crack at the load with 100% of estimated anti-
crack bending moment, the load continues increasing until
cracks appear according to the load with 10% of estimated
anti-crack bending moment. Te duration of each load level
is 3minutes. Ten, the load continues increasing to the
ultimate state of PCSPs according to the load with 10% of
estimated anti-crack bending moment. Te duration of each
load level is 3minutes. Observe and record all data.

3.3. Anti-Crack Load and Ultimate Load. It is considered to
be the limit state of PCSPs when any of the following
conditions occur. Te crack width of piles reaches 1.5mm.
Te tensile rebar is broken. Te location of weld is broken or
detached. Te concrete in compression zone is failure. Te
load cannot increase or remain stable.

Te anti-crack load is determined by following ways.
When the crack occurs at the frst time during loading, the
previous load level is taken as the anti-crack load. When the
crack occurs at the frst time within the required duration of
load level, the average value of the current load level and
previous load level is taken as the anti-crack load. When the
crack occurs at the frst time after the required duration of
load, the current load level is taken as the anti-crack load.

Te ultimate load is determined by following ways.
When the ultimate state is reached during loading, the
previous load level is taken as the ultimate load. When the
ultimate state is reached within the required duration of load
level, the average value of the current load level and previous
load level is taken as the ultimate load. When the ultimate
state is reached after the required duration of load, the
current load is taken as the ultimate load.

Before the test, the state of PCSPs is checked. All PCSPs
are complete without crack. During the test, each PCSP is
loaded to the ultimate state. Te test results are as follows.

4. Test Results and Analysis

4.1. Distribution Law of Crack. During the test, each PCSP
shows cracks. 5-1 and 5A are taken as examples to illustrate
the distribution law of cracks in CPCSP and UPCSP, which
are shown in Figures 6 and 7.

Figure 6 shows the crack distribution sketch of 5A and 5-
1 under the last load level. Most cracks of piles are similar to
the inversive splay, which is consistent with the stress state of
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Figure 1: Schematic diagram of pile connection technology (unit: mm). (a) Connection location of pile. (b) Hoop steel plate.
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Figure 2: Scene diagram of precast concrete square pile. (a) Precast concrete square pile. (b) Precast concrete square connection pile.
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Figure 3: Schematic diagram of load equipment, where 1 is the CPCSP; 2 is the distribution beam; 3 is the rolling hinge support; 4 is the fxed
hinge support; 5 is the bottom plate; 6 is the reaction pier after loading; and 7 is the protection pier before loading.
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Table 2: Main performance of measurement instrument.

Name Type Range Degree of accuracy
Digital dial indicator MFX-50 50mm 0.01mm
Carbon fber composite strain sense optical cable NZS-DSS-C09(CF) ±15000 με 1 με
Glass fber composite strain sense optical cable NZS-DSS-C09(GF) ±15000 με 1 με
Fixed-point polyurethane strain sense optical cable NZS-DSS-C08 ±15000 με 1 με
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Figure 5: Actual layout of optical cable on the surface of CPCSP. (a) 500mm. (b) 600mm.
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piles with upper side under tension and lower side under
compression. Te crack density at the left side of 5A is 1.0/
10 cm, and the crack density at the right side of 5A is 1.1/
10 cm. Te crack density at the left side of 5-1 is 0.7/10 cm,
and the crack density at the right side of 5-1 is 0.8/10 cm. In
comparison, the crack density of CPCSPs is signifcantly
lower than that of UPCSPs, which is the main reason that the
fexural deformation ability of UPCSPs is weakened.

Figure 7 shows the test crack distribution law of 5-1.
Tere are 4 obvious strain peaks on the left side of 5-1 and 3
obvious strain peaks on the right side of 5-1. Te experi-
mental results show that the number and location of cracks
are basically consistent with those of actual cracks. During
the test, cracks frst appeared at the middle of UPCSPs, while
the middle of CPCSPs is the connection joint, which is co-

afected by hoop steel plate and adhesive steel glue. Te
ductility and crack of CPCSPs are enhanced and reduced,
respectively, by the coordination deformation of steel plate
and concrete. Te experimental results of other groups are
similar to those of this test and will not be repeated.

4.2. Distribution Law of Stress and Strain. Since the stress
state of each CPCSP is relatively consistent during the
loading, 5-1 is also taken as an example to explore the stress
and strain distribution law of CPCSPs. Te experimental
results are shown in Figures 8–10.

Figure 8 shows the strain diagram of glass fber optical
cable on the top, back, and front of 5-1. Before the load of
360 kN, the change of strain is small (within 200 με). Te
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Figure 6: Actual distribution sketch of cracks in CPCSP and UPCSP. (a) 5A. (b) 5-1.
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stress is also small, and the crack is in the initial development
stage. With the increase of load, the crack also starts to
develop signifcantly after the load of 360 kN. Te strain and
stress increase signifcantly, and the stress concentration
appears. In terms of whole 5-1, the stress at both ends is zero,
and the stress increases gradually from both ends to

connection joint. Te stress on the top, upper of front, and
back is positive, which is in tensile state. Te stress on the
lower of front is negative, which is in compressive state.

Figure 9 shows the strain diagram of polyurethane
optical cable on the top, back, and front of 5-1. Te test
results are relatively consistent with the strain diagram of
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glass fber. Before the load of 360 kN, the change of strain is
small. Te stress is small, and the crack is in the initial
development stage.With the increase of load, the crack starts
to develop signifcantly after the load of 360 kN. Te strain
and stress also increase signifcantly. In terms of whole 5-1,
the strain at both ends is zero, and the strain increases

gradually from both ends to connection joint. Te strain on
the top, upper of front, and back is positive, which is in
tensile state. Te strain on the lower of front is negative,
which is in compressive state.

Figure 10 shows the strain diagram of carbon fber
optical cable on the top (Figure 10 is the strain diagram of
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Figure 9: Strain diagram of polyurethane optical cable on the top, back, and front of 5-1. (a) Top. (b) Back. (c) Upper of front. (d) Lower
of front.
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carbon fber optical cable in the middle of Figure 8), back,
and front of 5-1. Te strain at the middle of connection joint
is relatively large and concentrated, and the strain at both
sides of connection joint is relatively small. In addition, the
strain on the top, back, and front (except the lower of front)
of the middle of connection joint is positive, which is in
tension state. Te strain at both sides of connection joint is
negative, which is in compression state.

In summary, the pile has a tensile efect on the top, back,
and front of hoop steel plate before the load of 144 kN, and
the hoop steel plate is in tensile state. After the load of
144 kN and with the increase of load, the pile has

a compressive efect on the back and upper of front of hoop
steel plate, and the hoop steel plate is in compressive state.
Te pile has a downward tensile efect on the both sides for
the top of hoop steel plate, and the hoop steel plate is in
tensile state.

4.3. Comparison of Flexural Behavior between UPCSP and
CPCSP. Te anti-crack load, ultimate load, bending mo-
ment, and fexural deformation measured by tests are
shown in Table 3. According to the test results of three
CPCSPs with the side length of 500mm (Nos. 5-1∼5-3), the
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Figure 10: Strain diagram of carbon fber optical cable on the top, back, and front of 5-1 (a) Top. (b) Back. (c) Upper of front. (d) Lower
of front.
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range of anti-crack load is 348∼444 kN, and the average
value is 396 kN. Te range of anti-crack bending moment
and maximum anti-crack fexural deformation is
270.7∼347.5 kN·m and 12.08∼21.56mm, respectively, and
the average value is 309.1 kN·m and 15.35mm, respectively.
Te range of ultimate load is 576∼600 kN, and the average
value is 584 kN.Te range of ultimate bending moment and
maximum ultimate fexural deformation is
453.1∼472.3 kN·m and 30.90∼49.46mm, respectively, and
the average value is 459.5 kN·m and 40.26mm, respectively.
According to the test results of one UPCSP with the side
length of 500mm (No. 5A), the anti-crack load is 332 kN,
and the anti-crack bending moment and maximum anti-
crack fexural deformation are 257.9 kN·m and 16.36mm,
respectively. Te ultimate load is 577 kN, and the ultimate
bending moment and maximum ultimate fexural de-
formation are 454.7 kN·m and 40.95mm, respectively. It
can be seen that the anti-crack load and anti-crack bending
moment of CPCSPs are greater than those of UPCSPs, and
their value is increased by 19.28% and 19.85%, respectively.
Te ultimate load, ultimate bending moment, and maxi-
mum anti-crack or ultimate fexural deformation of
CPCSPs and UPCSPs are basically equivalent. Te strength
and deformation characteristics of test are consistent with
the results of mechanical theory analysis (the maximum
tensile stress occurs in the middle of piles and at the top of
cross section; because of the coordinated deformation of
hoop steel plate and the pile concrete, the anti-bending
strength and anti-crack ability of CPCSPs are enhanced,
and its fexural deformation is weakened before the oc-
currence of crack). Terefore, the anti-crack strength of
CPCSPs is greatly increased while the fexural deformation
of CPCSPs is decreased. With the development of cracks,
the outside areas of hoop steel plate show cracks. At this
moment, the strength of CPCSPs is no longer controlled by
the strength of middle areas, so it is shown that the ultimate
strength of CPCSPs is basically equivalent to that of
UPCSPs.

According to the test results of three CPCSPs with the
side length of 600mm (Nos. 6-1∼6-3), the range of anti-
crack load is 528∼552 kN, and the average value is 544 kN.
Te range of anti-crack bending moment and maximum
anti-crack fexural deformation is 411.4∼430.6 kN·m and

11.99∼13.67mm (the maximum anti-crack fexural de-
formation of 6-2 is not accepted), respectively, and the
average value is 424.2 kN·m and 12.83mm, respectively. Te
range of ultimate load is 975∼1072 kN, and the average value
is 1034 kN. Te range of ultimate bending moment and
maximum ultimate fexural deformation is
769.0∼846.6 kN·m and 40.42∼47.94mm, respectively, and
the average value is 816.5 kN·m and 44.18mm, respectively.
According to the test results of one UPCSP with the side
length of 600mm (No. 6A), the anti-crack load is 455 kN,
and the anti-crack bending moment is 353.0 kN·m. 6A
shows crack under the load level of 520 kN. Te test
equipment produces deformation when the load reaches
845 kN, and the test is terminated. It is seen that the anti-
crack load and ultimate load of CPCSPs are greater than
those of UPCSPs, which again shows that the anti-bending
strength of CPCSPs has been improved.

Te fexural deformations of CPCSPs and UPCSPs are
shown in Table 4. With the increase of load, the fexural
deformation increases gradually. Except for 6-2 and 6A,
which are afected by the deformation of simply supported
beams, the fexural deformation at the center of other piles is
greater than that of other positions. Te maximum fexural
deformation of 5-1∼5-3 is between 30.90 and 49.46mm, and
the average value is 40.26mm. Te maximum fexural de-
formation of 5A is 40.95mm. Te maximum fexural de-
formation of 6-1 and 6-3 is 40.42 and 47.94mm, respectively,
and the average value is 44.19mm. In summary, the anti-
bending strength of CPCSPs is greater than that of UPCSPs.

Table 3: Anti-crack load, ultimate load, bending moment, and fexural deformation.

Number
of pile

State of pile
before test

Anti-crack
load (kN)

Anti-crack
bending
moment
(kN·m)

Maximum
anti-crack
fexural

deformation
(mm)

Ultimate
load (kN)

Ultimate
bending
moment
(kN·m)

Maximum
ultimate fexural
deformation

(mm)

Design value
of bending
moment
(kN·m)

5A

Complete
without
crack

332 257.9 16.36 577 454.7 40.95 260
6A 455 353.0 5.78 845 — 10.00 490
5-1 348 270.7 12.41 576 453.1 40.42

2605-2 396 309.1 12.08 576 453.1 30.90
5-3 444 347.5 21.56 600 472.3 49.46
6-1 552 430.6 13.67 1072 846.6 40.42

4906-2 528 411.4 34.10 1056 833.8 39.17
6-3 552 430.6 11.99 975 769.0 47.94

Table 4: Detailed data of fexural deformation (unit: mm).

Number of
piles No. 1 No. 2 No. 3 No. 4 No. 5

5A 23.88 34.52 40.95 36.99 24.52
6A 10 5.27 7.63 4.93 9.06
5-1 22.63 32.4 40.42 40.38 30.11
5-2 16.53 25.59 30.9 25.28 16.54
5-3 36.19 46.7 49.46 43.41 30.88
6-1 23.24 33.23 40.42 35.51 23.66
6-2 44.22 51.42 39.17 42.86 34.33
6-3 24.04 38.84 47.94 37.25 24.29
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5. Conclusions

Te following conclusions are mainly obtained by experi-
mental study on the fexural behavior of CPCSPs and
UPCSPs:

(1) Most cracks of piles are similar to the inversive splay,
which is consistent with the stress state of piles with
upper side under tension and lower side under
compression. Te crack density of CPCSPs is sig-
nifcantly lower than that of UPCSPs

(2) Te anti-crack bending moment of CPCSPs is about
19.85%∼20.17% higher than that of UPCSPs before
the occurrence of crack. Te anti-crack strength of
CPCSPs is greatly increased while the fexural de-
formation of CPCSPs is decreased. With the de-
velopment of crack (failure stage), the outside areas
of hoop steel plate exhibit cracks. At this moment,
the strength of CPCSPs is no longer controlled by the
strength of middle areas, so it is shown that the
ultimate strength of CPCSPs is basically equivalent
to that of UPCSPs.

(3) Te ultimate bending moment of CPCSPs is not
lower than that of UPCSPs and is about 66%∼76%
higher than its bending moment design value.
Terefore, the selection of CPCSPs in the design of
foundation pit support has good reliability.
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